Answer:
60 lines can be typed in the page
Step-by-step explanation:
Given:
Length of the page = 17 inches
Length of the margin = 0.5-inch
length of one line = 4/15
To Find:
The number of lines that can be typed on a page
Solution:
Let the number of line that can be typed be n
then
n <= [tex]n \leq \frac{\text { total length of the page}-\text {top margin} - \text{ bottom margin}}{\text{size of each line }}[/tex]
the top and bottom margins are 0.5 inches each
so we will be having
=> [tex]n \leq \frac{17 -0.5-0.5}{\frac{4}{15}}[/tex]
=>[tex]n \leq \frac{16}{\frac{4}{15}}[/tex]
=>[tex]n \leq \frac{16\times 15}{4}[/tex]
=>[tex]n \leq\frac{240}{4}[/tex]
=> [tex]n \leq 60[/tex]
The lowest monthly commission that a salesman earned was only 1/5 more than 1/4 as high as the highest commision he earned. The highest and lowest comissions when added together equal $819. What was the lowest comission?
Answer: the lowest commission is $163.96
Step-by-step explanation:
Let x represent the lowest monthly commission that a salesman earned.
Let y represent the highest monthly commission that a salesman earned.
The lowest monthly commission that a salesman earned was only 1/5 more than 1/4 as high as the highest commission he earned. This means that
x = y/4 + 1/5 - - - - - - - - 1
The highest and lowest commissions when added together equal $819. This means that
x + y = 819
x = 819 - y - - - - - - -2
Substituting equation 2 into 1, it becomes
819 - y = y/4 + 1/5
Multiplying through by 20, it becomes
16380 - 20y = 5y + 4
25y = 16380 - 4 = 16376
y = 16376/25 = 655.04
x = 819 - 655.04 = 163.96
Which system of linear inequalities is represented by the graph?
x + 3y > 6
y ≥ 2x + 4
Answer:
the correct option is D.
Step-by-step explanation:
x+3y>6
y≥2x+4
consider the equation x+3y=6
3y = 6-x
[tex]y=\frac{-x}{3} +2[/tex]
this line is in the form of y = mx + c
where m is the slope os the line and c is the y intercept of the line
therefore the line has a y intercept of 2 and slope of-1/3
therefore the line has negative slope with positive intercept.
now consider the line y=2x+4
this line is in the form of y = mx + c
where m is the slope os the line and c is the y intercept of the line
therefore slope = 2 and y intercept = 4
therefore the line has positive slope and positive y intercept.
in option a both line has positive intercept so it cant be an answer.
in option b one line has positive intercept of 2 and another with negative intercept of -4 but we need intercept of both line to be positive so it cant be an answer.
in option c both line has negative intercept of -2 and -4 but we need intercept of both line to be positive so it cant be an answer.
in option d both line has positive intercept of 2 and 4 and also one of the line has negative slope and another line has positive slope so it should be an answer
further to confirm consider x+3y>6
put the point 0,0 in the inequality
0>6 which is wrong so 0,0 cant lie in the region which is true according to the graph.
Answer:
d
Step-by-step explanation:
The depth of the new tire is 9/32 inch after two month use 1/16 inch worn off, what is the depth of the tire remaning tire thread in math?
Answer:
[tex]\frac{7}{32}[/tex] inch.
Step-by-step explanation:
We have been given that the depth of the new tire is 9/32 inch after two month use 1/16 inch worn off. We are asked to find the depth of the tire remaining tire thread.
To find the depth of remaining tire thread, we will subtract worn off value from initial depth as:
[tex]\text{Depth of remaining tire thread}=\frac{9}{32}-\frac{1}{16}[/tex]
Let us make a common denominator.
[tex]\text{Depth of remaining tire thread}=\frac{9}{32}-\frac{1*2}{16*2}[/tex]
[tex]\text{Depth of remaining tire thread}=\frac{9}{32}-\frac{2}{32}[/tex]
Combine numerators:
[tex]\text{Depth of remaining tire thread}=\frac{9-2}{32}[/tex]
[tex]\text{Depth of remaining tire thread}=\frac{7}{32}[/tex]
Therefore, the depth of the remaining tire thread would be [tex]\frac{7}{32}[/tex] inch.
The remaining depth of the tire is 7/32 inches.
To determine the remaining depth of the tire tread, you need to subtract the depth worn off from the initial depth of the tire.
Step-by-Step Solution:
The initial tread depth of the tire is 9/32 inches.The depth worn off after two months is 1/16 inches.To subtract these fractions, we need a common denominator. The least common denominator between 32 and 16 is 32.Convert 1/16 to an equivalent fraction with a denominator of 32: 1/16 = 2/32.Now subtract the fractions: 9/32 - 2/32 = 7/32.Thus, the remaining tread depth is 7/32 inches.This approach ensures you correctly determine the remaining depth of the tire tread.
Provide an appropriate response. You are dealt two cards successively without replacement from a standard deck of 52 playing cards. Find the probability that the first card is a two and the second card is a ten. Round your answer to three decimal places.
A. 0.994
B. 0.500
C. 0.006
D. 0.250
Answer:
C. 0.006
Step-by-step explanation:
Here we have to calculate the probability of two events happen at once, so the probability is the product of the probability of having a 2 and the probability of having a 10.
There are four 2 cards out of 52 in the poker game, so the probability of having a 2 is:
[tex]P(2)=\frac{4}{52}=0.077[/tex]
Now the probability of having a 10 is 4 out of 51 because we substracted the card labeled as 2.
[tex]P(10)=\frac{4}{51}=0.079[/tex]
so the probability is:
[tex]P(P(2)andP(10))=0.077*0.079=0.006[/tex]
If the square root of the length of the hypotenuse of a right triangle is 2 units, what is the sum of the squares of the length of the two other sides?
Answer:16
Step-by-step explanation:
Fatima works at a bakery. She places 5 candied flowers on top of each cupcake she decorates. She Will decorate 2 dozen cupcakes today and 2 dozen tomorrow how many candied flower will Fatima use in these two days
Answer: 240 candied flowers
Step-by-step explanation:
She places 5 candied flowers on top of each cupcake she decorates. She will decorate 2 dozen cupcakes today. A dozen cupcakes is 12. 2 dozen cupcakes would be 24. Total number of candied flowers that she will place on top of each cupcake today would be 24 × 5 = 120 candied flowers.
She will also decorate 2 dozens tomorrow. Total number of candied flowers that she will place on top of each cupcake tomorrow would be 24 × 5 = 120 candied flowers
Total number if candied flowers that Fatima will use in 2 days would be 120 + 120 = 240
Student scores on exams given by a certain instructor have mean 74 and standard deviation 14. This instructor is about to give two exams, one to a class of size 25 and the other to a class of size 64. Approximate the probability that the average test score in the class of size 25 exceeds 80.
Answer:
[tex]P(\bar X >80)=P(Z>2.143)=1-P(z<2.143)=1-0.984=0.016[/tex]
Step-by-step explanation:
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
Let X the random variable that represent the Student scores on exams given by a certain instructor, we know that X have the following distribution:
[tex]X \sim N(\mu=74, \sigma=14)[/tex]
The sampling distribution for the sample mean is given by:
[tex]\bar X \sim N(\mu,\frac{\sigma}{\sqrt{n}})[/tex]
The deduction is explained below we have this:
[tex]E(\bar X)= E(\sum_{i=1}^{n}\frac{x_i}{n})= \sum_{i=1}^n \frac{E(x_i)}{n}= \frac{n\mu}{n}=\mu[/tex]
[tex]Var(\bar X)=Var(\sum_{i=1}^{n}\frac{x_i}{n})= \frac{1}{n^2}\sum_{i=1}^n Var(x_i)[/tex]
Since the variance for each individual observation is [tex]Var(x_i)=\sigma^2 [/tex] then:
[tex]Var(\bar X)=\frac{n \sigma^2}{n^2}=\frac{\sigma}{n}[/tex]
And then for this special case:
[tex]\bar X \sim N(74,\frac{14}{\sqrt{25}}=2.8)[/tex]
We are interested on this probability:
[tex]P(\bar X >80)[/tex]
And we have already found the probability distribution for the sample mean on part a. So on this case we can use the z score formula given by:
[tex]z=\frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
Applying this we have the following result:
[tex]P(\bar X >80)=P(Z>\frac{80-74}{\frac{14}{\sqrt{25}}})=P(Z>2.143)[/tex]
And using the normal standard distribution, Excel or a calculator we find this:
[tex]P(Z>2.143)=1-P(z<2.143)=1-0.984=0.016[/tex]
Final answer:
Using the Central Limit Theorem and the z-score formula, we calculate that the approximate probability that the average test score in the class of size 25 exceeds 80 is approximately 1.62%.
Explanation:
To approximate the probability that the average test score in the class of size 25 exceeds 80, we can use the Central Limit Theorem which tells us that the sampling distribution of the sample mean will be approximately normally distributed if the sample size is large enough (typically n ≥ 30 is considered sufficient, but we can still use this for a sample of 25 when the population distribution is not overly skewed).
The formula for the z-score of a sample mean is:
z = (X - μ) / (σ / √n)
where X is the sample mean, μ is the population mean, σ is the population standard deviation, and n is the sample size. Given the population mean μ = 74, population standard deviation σ = 14, and sample size n = 25, we can calculate the z-score for a sample mean of 80.
Using these values:
z = (80 - 74) / (14 / √25) = (6) / (14 / 5) = 6 / 2.8 = 2.14
Now, we need to find the probability corresponding to a z-score of 2.14. We check the standard normal distribution table or use a calculator with normal distribution functions to find that the area to the left of z = 2.14 is approximately 0.9838. The probability that the average is above 80 is the area to the right of 2.14, so we subtract this value from 1.
Probability = 1 - 0.9838 = 0.0162
The approximate probability that the average test score in the class of size 25 exceeds 80 is approximately 0.0162, or 1.62%.
Lloyd's Cereal company packages cereal in 1 pound boxes (16 ounces). A sample of 16 boxes is selected at random from the production line every hour, and if the average weight is less than 15 ounces, the machine is adjusted to increase the amount of cereal dispensed. If the mean for 1 hour is 1 pound and the standard deviation is 0.1 pound, what is the probability that the amount dispensed per box will have to be increased?
Answer:
The probability that the amount dispensed per box will have to be increased is 0.0062.
Step-by-step explanation:
Consider the provided information.
Sample of 16 boxes is selected at random.
If the mean for 1 hour is 1 pound and the standard deviation is 0.1
1 Pound = 16 ounces , then 0.1 Pound = 16/10 = 1.6 ounces
Thus: μ = 16 ounces and σ = 1.6 ounces.
Compute the test statistic [tex]z=\frac{\bar x-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z=\frac{15-16}{\frac{1.6}{\sqrt{16}}}[/tex]
[tex]z=\frac{-1}{\frac{1.6}{4}}[/tex]
[tex]z=\frac{-1}{0.4}[/tex]
[tex]z=-2.5[/tex]
By using the table.
P value = P(Z<-250) = 0.0062
Thus, the probability that the amount dispensed per box will have to be increased is 0.0062.
John rides his bike to work each day. The distance between his house and his work is approximately 6.5 miles, and it takes him on average 45 minutes to get there on his bike. In order to compare the approximate speed of his bike to that of a car, he determines his average speed on the bike in miles per hour.
Which of the following values most likely represents the value John determined to be his speed on the bike in miles per hour?
A
9.0 mph
B
8.7 mph
C
8.66 mph
D
8.667 mph
Answer:
D) 8.667 mph
Step-by-step explanation:
Given: Distance= 6.5 miles
Times= 45 minutes
First, convert the time into hours as we need to find speed in the unit of mph.
We know, 1 hour= 60 minutes
∴ Time= [tex]\frac{45}{60} = 0.75\ h[/tex]
Now, find the speed of John´s bike
Speed= [tex]\frac{distance}{time}[/tex]
⇒ Speed= [tex]\frac{6.5}{0.75} = 8.667\ mph[/tex]
∴ Speed of John´s bike is 8.667 mph
Breandan makes a cranberry orange drink by mixing 15 cups of orange juice. If he uses 27 cups of orange juice how many cups of orange juice how many cranberry juice should he use to make.
To keep the taste consistent, Brendan should use 18 cups of cranberry juice to mix with 27 cups of orange juice, preserving the original 3:2 juice ratio.
Brendan's original mixture was 15 cups of orange juice to 10 cups of cranberry juice. This creates a ratio of 15:10, which simplifies to 3:2 when divided by 5. To maintain the same taste, Brendan will want to keep the same ratio.
Now to calculate the amount of cranberry juice needed for 27 cups of orange juice, we set up a proportion
Set up a proportion to find the unknown value (x), representing the amount of cranberry juice:
3/2 = 27/x
Cross-multiply to solve for x:
3x = 2 x 27
3x = 54
Divide both sides by 3 to solve for x:
x = 54 / 3
x = 18
Brendan should use 18 cups of cranberry juice to mix with 27 cups of orange juice to keep the taste of the drink consistent.
The complete question is:
Brendan makes a cranberry-orange drink by mixing 15 cups of orange juice with 10 cups of cranberry juice. If he uses 27 cups of orange juice, how many cups of cranberry juice should he use in order for the drink to taste the same?
Georgina was given that the length of the rectangle was 2.5 inches longer than its width, and that the perimeter of the rectangle was 75.4 inches. Algebraically, find the length and width of the rectangle.
Answer: length = 20.1
Width=17.6
Step-by-step explanation:
Plssssssssssssssssssss Answer this is Major?
This activity will help you meet these educational goals:
You will create a quadratic function to model the area of a bean-bag toss carnival game, and then graph it and examine its key features.
Your woodworking class is going to make games for the school carnival. You are in charge of making a rectangular game board for a bean bag toss. The length and width of the board have a specific relationship that is shown by the algebraic expressions in the image, which represents a possible finished game board. The units are in inches.
Part A
Enter the correct answer in the box.
Use the expressions that represent the length and width of the game board to write an equation that models the area of the figure. Let y represent the area, and write your answer in the form y = ax2 + bx + c, where a, b, and c are real numbers.
Part B
Graph the equation you wrote in part A. Adjust the zoom of the graphing window so the vertex, x-intercepts, and y-intercept can be seen.
Part C
The graph of a quadratic equation always has an extreme location (maximum or minimum). State whether the parabola opens upward or downward, whether it has a maximum or a minimum, and what the coordinates of that point are. Use the pointer tool to approximate the coordinates of this extreme location to the nearest whole number.
Part D
According to the graph, what is the maximum possible area of the game board? Give your answer to the nearest whole number. (Assume that the maximum area is not reduced by the open hole in the game board.)
Part E
Type the correct answer in each box.
Use the original expressions for the length and width, and substitute the x-coordinate from the extreme location. What are the length and width of the game board at the extreme location?
The length is ________________inches, and the width is ____________
inches.
Part F
What type of quadrilateral will be formed when the game board covers the maximum possible area?
Part G
Suppose the carnival director asks you to create a game board that is 1,120 square inches. Find the dimensions that would meet this request by setting the area equation equal to 1,120, solving for x, and substituting x into the expressions for the length and width. As before, assume the open hole in the game board does not affect the area calculation.
Part H
When you solved the area equation for x, did any extraneous solutions result? Describe how an extraneous solution would arise in this situation.
Part I
What method of solving quadratics did you use to solve the equation set equal to 1,120? Why did you choose this method? Discuss the usefulness of other methods of solving quadratics as they pertain to this scenario. Use this resource to help refresh your memory on methods for solving quadratic equations.
Answer:
See below because there are 9 parts (A through I)
Explanation:
Part A: write an equation that models the area of the figure. Let y represent the area, and write your answer in the form y = ax2 + bx + c.
The figure shows a rectangular table with these dimensions:
Length: - x + 64Witdth: x + 4The area of a rectangle is width × length:
[tex](x + 4)\times (-x+64)[/tex]Use distributive property:
[tex]x\cdot (-x)+x\cdot(64)+4\cdot (-x)+4\cdot (64)=-x^2+64x-4x+256[/tex]Simplify:
[tex]-x^2+64x-4x+256=-x^2+60x+256[/tex]Part B. Graph the equation you wrote in part A. Adjust the zoom of the graphing window so the vertex, x-intercepts, and y-intercept can be seen.
1. Factor the equation:
Common factor - 1:[tex]-x^2+60x+256=-(x^2-60x-256)[/tex]
Find two numbers that add - 60 and whose product is -256. Theyb are -64 and + 4[tex]-(x-64)(x+4)[/tex]
2. Find the roots:
Equal the expression to zero:
[tex]-(x-64)(x+4)=0\\ \\ x-64=0\implies x=64\\ \\ x+4=0\implies x=-4[/tex]
Those are the x-intercepts: (-4,0) and (64,0)
3. Find the symmetry axis:
The simmetry axis is the line x = the middle value between the two roots:
[tex]x=(64-4)/2=60/2=30[/tex]
4. Find the vertex
The vertex has x-coordinate equal to the x axis (30 in this case).
Substitute in the equation of find the y-coordinate:
[tex]y=-(30-64)(30+4)=-(-34)(34)=1,156[/tex]
Hence, the vertex is (30, 1,156)
5. Find the y-intercept
Make x = 0
[tex]y=-(x^2-60x-256)=-(0-256)=256[/tex]
Hence, the y-intercept is (0, 256)
With the x-incercepts, the y-intercept, the axis of symmetry, and the vertex, you can sketch the graph.
You can see now the graph in the attached figure
Part C. Extreme location of the graph
The graph shows that the parabola opens downward. That is due to the fact that the coefficient of the leading term (x²) is negative.
The parabola starts in the second quadrant. starts growing, crosses the x-axis at (-4,0), crosses the y-axis at (0,256), reaches the maximum value at (30, 1156), and then decreases toward the fouth quadrant, crossing the x-axis at (64,0).
Thus the vertex is a maximun, and the coordinates of the maximum are (30, 1156).
Part D. According to the graph, what is the maximum possible area of the game board? Give your answer to the nearest whole number. (Assume that the maximum area is not reduced by the open hole in the game board.)
The maximum possible area of the game is the maximum value of the function y = -x² + 60x + 256.
This value was calculated as y = 1156.
Part E. Use the original expressions for the length and width, and substitute the x-coordinate from the extreme location. What are the length and width of the game board at the extreme location?
The length is:
length = - x + 64 inchesx = 30length = - 30 + 64 = 34 inchesThe width is:
width = x + 4x = 30width = 30 + 4 = 34 inchesPart F. What type of quadrilateral will be formed when the game board covers the maximum possible area?
Since the length and the width are equal, the quadrilateral is a square.
Part G. Suppose the carnival director asks you to create a game board that is 1,120 square inches. Find the dimensions that would meet this request by setting the area equation equal to 1,120, solving for x, and substituting x into the expressions for the length and width.
[tex]y=-x^2+60x+256\\ \\ 1,120=-x^2+60x+256\\ \\ x^2-60x-256+1120=0\\ \\ x^2-60x+864=0[/tex]
Factor:
Find two numbers whose sum is - 60 and the product os 864. They are -24 and - 34:
[tex]x^2-60x+864=(x-24)(x-36)[/tex]
Use the zero product rule:
[tex](x-24)(x-36)=0\\ \\ x-24=0\implies x=24\\ \\ x-36=0\implies x=36[/tex]
Now substitute to find the dimensions:
x = 36
length = - x + 64length = - 36 + 64 = 28width = x + 4 = 36 + 4 = 40Hence, legth = 28, width = 40
x = 24
length = - x + 64 = -24 + 64 = 40width = x + 4 = 24 + 4 = 28Part H. When you solved the area equation for x, did any extraneous solutions result? Describe how an extraneous solution would arise in this situation.
The two solutions are valid (non extraneous) because both leads to positive real dimensions for which the areas can be 1,120 in².
28×40 = 1,12040×28 = 1,120An extraneous solution could arise if you try to find areas for which x is greater than or equal to 64, because in that case - x + 64 would be zero or negative and dimensions must be positive.
For the same reason, also an extraneous solution would arise if you try to fix areas for which x is less than or equal to - 4.
So, the domain of your function has to be - 4 < x < 64.
Part I. What method of solving quadratics did you use to solve the equation set equal to 1,120? Why did you choose this method?
The method use was factoring.
Discuss the usefulness of other methods of solving quadratics as they pertain to this scenario.
The other importants methods are graphical and the quadratic equation.
For graphical method you graph your parabola and find the values of x that sitisfies the area searched (value of y).
The quadratic equation gives the y-values (areas) without factoring:
[tex]\frac{-b+/-\sqrt{b^2-4(a)(c)} }{2(a)}[/tex]
In the △PQR, PQ = 39 in, PR = 17 in, and the altitude PN = 15 in. Find QR. Consider all cases.
Answer:
QR = 28 inches or 44 inches
Step-by-step explanation:
In right triangle QNP, the length of QN is given by the Pythagorean theorem as ...
QP² = QN² +PN²
QN = √(QP² -PN²) = √(1521 -225) = √1296 = 36
In right triangle RNP, the length of RN is similarly found:
RN = √(RP² -PN²) = √(289 -225) = √64 = 8
So, we have N on line QR with QN = 36 and RN = 8.
If N is between Q and R, then ...
QR = QN +NR = 36 +8 = 44
If R is between Q and N, then ...
QR = QN -NR = 36 -8 = 28
The possible lengths of QR are 28 in and 44 in.
Final answer:
To determine QR in ∆PQR, the Pythagorean theorem is used on the two right triangles formed by the altitude PN. Calculating gives QN = 36 inches and RN = 8 inches, hence, QR = QN + RN = 44 inches.
Explanation:
To find the length QR in ∆PQR, where PQ = 39 inches, PR = 17 inches, and the altitude PN = 15 inches, we can use the properties of right triangles. Since PN is the altitude to base QR, it forms two right triangles, ∆PNQ and ∆PNR, within ∆PQR. We can use the Pythagorean theorem to solve for the lengths of QN and RN, and then sum these to find QR.
Firstly, let’s find QN in ∆PNQ:
PQ² = PN² + QN²QN² = PQ² - PN²QN = √(PQ² - PN²)QN = √(39² - 15²) = √(1521 - 225) = √1296QN = 36 inchesSecondly, we do the same for RN in ∆PNR:
PR² = PN² + RN²RN² = PR² - PN²RN = √(PR² - PN²)RN = √(17² - 15²) = √(289 - 225) = √64RN = 8 inchesTherefore, QR = QN + RN = 36 inches + 8 inches = 44 inches.
Does there exist a di↵erentiable function g : [0, 1] R such that g'(x) = f(x) for all x 2 [0, 1]? Justify your answer
Answer:
No; Because g'(0) ≠ g'(1), i.e. 0≠2, then this function is not differentiable for g:[0,1]→R
Step-by-step explanation:
Assuming: the function is [tex]f(x)=x^{2}[/tex] in [0,1]
And rewriting it for the sake of clarity:
Does there exist a differentiable function g : [0, 1] →R such that g'(x) = f(x) for all g(x)=x² ∈ [0, 1]? Justify your answer
1) A function is considered to be differentiable if, and only if both derivatives (right and left ones) do exist and have the same value. In this case, for the Domain [0,1]:
[tex]g'(0)=g'(1)[/tex]
2) Examining it, the Domain for this set is smaller than the Real Set, since it is [0,1]
The limit to the left
[tex]g(x)=x^{2}\\g'(x)=2x\\ g'(0)=2(0) \Rightarrow g'(0)=0[/tex]
[tex]g(x)=x^{2}\\g'(x)=2x\\ g'(1)=2(1) \Rightarrow g'(1)=2[/tex]
g'(x)=f(x) then g'(0)=f(0) and g'(1)=f(1)
3) Since g'(0) ≠ g'(1), i.e. 0≠2, then this function is not differentiable for g:[0,1]→R
Because this is the same as to calculate the limit from the left and right side, of g(x).
[tex]f'(c)=\lim_{x\rightarrow c}\left [\frac{f(b)-f(a)}{b-a} \right ]\\\\g'(0)=\lim_{x\rightarrow 0}\left [\frac{g(b)-g(a)}{b-a} \right ]\\\\g'(1)=\lim_{x\rightarrow 1}\left [\frac{g(b)-g(a)}{b-a} \right ][/tex]
This is what the Bilateral Theorem says:
[tex]\lim_{x\rightarrow c^{-}}f(x)=L\Leftrightarrow \lim_{x\rightarrow c^{+}}f(x)=L\:and\:\lim_{x\rightarrow c^{-}}f(x)=L[/tex]
The whitish distance across the scale model of the planet Venus is 15 cm. The actual widest distance across Venus is approximately 12,000 km. What is the scale of the Model of Venus
Answer:
1 cm : 800 km or 1/80,000,000
Step-by-step explanation:
A model or map scale is often expressed as ...
(1 unit of A on the model) : (N units of B in the real world)
We're given the relative measurements as ...
15 cm : 12,000 km
Dividing by 15 gives the unit ratio as above:
1 cm : 800 km
__
A scale can also be expressed as a unitless fraction. To find that, we need to convert the units of both parts of this ratio to the same unit.
0.01 m : 800,000 m
Multiplying by 100, we get ...
1 m : 80,000,000 m
Since the units are the same, they aren't needed, and we can write the scale factor as ...
1 : 80,000,000 or 1/80,000,000
1) Find the minimum and maximum values for the function with the given domain interval.
minimum value = 7; maximum value = 8
minimum value = 0; maximum value = 7
minimum value = 0; maximum value = none
minimum value = none; maximum value = 8
minimum value = 0; maximum value = 8
Answer:
"minimum value = 0; maximum value = 8"
Step-by-step explanation:
This is the absolute value function, which returns a positive value for any numbers (positive or negative).
For example,
| -9 | = 9
| 9 | = 9
| 0 | = 0
Now, the domain is from -8 to 7 and we want to find max and min value that we can get from this function.
If we look closely, putting 7 into x won't give us max value as putting -8 would do, because:
|7| = 7
|-8| = 8
So, putting -8 would give us max value of 8 for the function.
Now, we can't get any min values that are negative, because the function doesn't return any negative values. So the lowest value would definitely be 0!
|0| = 0
and
ex: |-2| = 2 (bigger), |-5| = 5 (even bigger).
So,
Min Value = 0
Max Value = 8
Answer:
minimum value = 0; maximum value = 8
Step-by-step explanation:
The function [tex]f(x)[/tex] is an absolute value function, which means that for negative values in it's domain it gives positive values of [tex]f(x)[/tex], and therefore it's minimum value is 0.
In the given domain interval the maximum value of the function is 8 because [tex]f(-8)=8[/tex].
A clothing store is selling a shirt for a discounted price of $43.61. If the discount is 11%, what was the original price, in dollars, of the shirt? Do not include units in your answer.
A clothing store is selling a shirt for a discounted price of $43.61 . The original price of the shirt was approximately $49.01.
Explanation:To find the original price of the shirt, we can use the formula: Original Price = Discounted Price / (1 - Discount Rate). In this case, the discounted price is $43.61 and the discount rate is 11%, or 0.11. Plugging these values into the formula, we get: Original Price = 43.61 / (1 - 0.11) = 43.61 / 0.89 ≈ 49.01. Therefore, the original price of the shirt was approximately $49.01.
Learn more about original price of a discounted item here:https://brainly.com/question/32856381
#SPJ3
Translate the following into an inequality:
Eight is less than twice what number?
8 < 2n
8 < 2 - n
n < 8 × 2
2 < 8n
Answer:
The right inequa is
8 < 2n
:)
Answer:
8<2n is correct :) Hope it helped
The combined math and verbal scores for students taking a national standardized examination for college admission, is normally distributed with a mean of 500 and a standard deviation of 170. If a college requires a minimum score of 800 for admission, what percentage of student do not satisfy that requirement?
The combined math and verbal scores for students taking a national standardized examination for college admission, is normally distributed with a mean of 630 and a standard deviation of 200. If a college requires a student to be in the top 25 % of students taking this test, what is the minimum score that such a student can obtain and still qualify for admission at the college?
The extract of a plant native to Taiwan has been tested as a possible treatment for Leukemia. One of the chemical compounds produced from the plant was analyzed for a particular collagen. The collagen amount was found to be normally distributed with a mean of 69 and standard deviation of 5.9 grams per mililiter.
(a) What percentage of compounds have an amount of collagen greater than 67 grams per mililiter?
answer: %
(b) What percentage of compounds have an amount of collagen less than 78 grams per mililiter?
answer: %
(c) What exact percentage of compounds formed from the extract of this plant fall within 3 standard deviations of the mean?
Do not use the 68-95-99.7 rule
answer: %
Answer:
1. 96.08%; 2. x=764.8; 3. 63.31%; 4. 93.57%; 5. 99.74%
Step-by-step explanation:
The essential tool here is the standardized cumulative normal distribution which tell us, no matter the values normally distributed, the percentage of values below this z-score. The z values are also normally distributed and this permit us to calculate any probability related to a population normally distributed or follow a Gaussian Distribution. A z-score value is represented by:
[tex]\\ z=\frac{(x-\mu)}{\sigma}[/tex], and the density function is:
[tex]\\ f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-z^{2}}{2} }[/tex]
Where [tex]\\ \mu[/tex] is the mean for the population, and [tex]\\ \sigma [/tex] is the standard deviation for the population too.
Tables for z scores are available in any Statistic book and can also be found on the Internet.
First PartThe combined math and verbal scores for students taking a national standardized examination for college admission, is normally distributed with a mean of 500 and a standard deviation of 170. If a college requires a minimum score of 800 for admission, what percentage of student do not satisfy that requirement?
For solve this, we know that [tex]\\ \mu = 500[/tex], and [tex]\\ \sigma = 170[/tex], so
z = [tex]\frac{800-500}{170} = 1.7647[/tex].
For this value of z, and having a Table of the Normal Distribution with two decimals, that is, the cumulative normal distribution for this value of z is F(z) = F(1.76) = 0.9608 or 96.08%. So, what percentage of students does not satisfy that requirement? The answer is 96.08%. In other words, only 3.92% satisfy that requirement.
Second PartThe combined math and verbal scores for students taking a national standardized examination for college admission, is normally distributed with a mean of 630 and a standard deviation of 200. If a college requires a student to be in the top 25 % of students taking this test, what is the minimum score that such a student can obtain and still qualify for admission at the college?
In this case [tex]\\ \mu = 630[/tex], and [tex]\\ \sigma = 200[/tex].
We are asked here for the percentile 75%. That is, for students having a score above this percentile. So, what is the value for z-score whose percentile is 75%? This value is z = 0.674 in the Standardized Normal Distribution, obtained from any Table of the Normal Distribution.
Well, having this information:
[tex]\\ 0.674 = \frac{x-630}{200}[/tex], then
[tex]\\ 0.674 * 200 = x-630[/tex]
[tex]\\ (0.674 * 200) + 630 = x[/tex]
[tex]\\ x = 764.8 [/tex]
Then, the minimum score that a student can obtain and still qualify for admission at the college is x = 764.8. In other words, any score above it represents the top 25% of all the scores obtained and 'qualify for admission at the college'.
Third Part[...] The collagen amount was found to be normally distributed with a mean of 69 and standard deviation of 5.9 grams per milliliter.
In this case [tex]\\ \mu = 69[/tex], and [tex]\\ \sigma = 5.9[/tex].
What percentage of compounds have an amount of collagen greater than 67 grams per milliliter?
z = [tex]\frac{67-69}{5.9} = -0.3389[/tex]. The z-score tells us the distance from the mean of the population, then this value is below 0.3389 from the mean.
What is the value of the percentile for this z-score? That is, the percentage of data below this z.
We know that the Standard Distribution is symmetrical. Most of the tables give us only positive values for z. But, because of the symmetry of this distribution, z = 0.3389 is the distance of this value from the mean of the population. The F(z) for this value is 0.6331 (actually, the value for z = 0.34 in a Table of the Normal Distribution).
This value is 0.6331-0.5000=0.1331 (13.31%) above the mean. But, because of the symmetry of the Normal Distribution, z = -0.34, the value F(z) = 0.5000-0.1331=0.3669. That is, for z = -0.34, the value for F(z) = 36.69%.
Well, what percentage of compounds have an amount of collagen greater than 67 grams per milliliter?
Those values greater that 67 grams per milliliter is 1 - 0.3669 = 0.6331 or 63.31%.
What percentage of compounds have an amount of collagen less than 78 grams per milliliter?
In this case,
z = [tex]\frac{78-69}{5.9} = 1.5254[/tex].
For this z-score, the value F(z) = 0.9357 or 93.57%. That is, below 78 grams per milliliter, the percentage of compounds that have an amount of collagen is 93.57%.
What exact percentage of compounds formed from the extract of this plant fall within 3 standard deviations of the mean?
We need here to take into account three standard deviations below the mean and three standard deviations above the mean. All the values between these two values are the exact percentage of compounds formed from the extract of this plant.
From the Table:
For z = 3, F(3) = 0.9987.
For z = -3, F(-3) = 1 - 0.9987 = 0.0013.
Then, the exact percentage of compounds formed from the extract of this plant fall within 3 standard deviations of the mean is:
F(3) - F(-3) = 0.9987 - 0.0013 = 0.9974 or 99.74%.
A z-score is used to determine how many standard deviations a value is from the mean. A score of 720 on the SAT is 1.74 standard deviations above the mean, whereas a score of 692.5 is 1.5 standard deviations above the mean. To compare scores from different tests, like the SAT and ACT, you compute the z-scores for each and compare them.
Explanation:In statistics and probability theory, when comparing values from different normal distributions, one useful tool is the z-score. It informs us of how many standard deviations an element is from the mean of its distribution. A z-score is calculated using the formula Z = (X - μ) / σ, where X is the value in question, μ is the mean, and σ is the standard deviation.
Calculating a z-scoreTo calculate a z-score for an SAT score of 720 when the mean is 520 and the standard deviation is 115:
Z = (720 - 520) / 115 = 200 / 115 ≈ 1.74.
This z-score of approximately 1.74 implies that the score of 720 is 1.74 standard deviations above the mean SAT score.
Math SAT score above the meanTo find an SAT score that is 1.5 standard deviations above the mean:
X = μ + 1.5σ = 520 + 1.5 × 115 = 520 + 172.5 = 692.5.
So, a score of approximately 692.5 is 1.5 standard deviations above the mean, indicating a well-above-average performance.
Comparing SAT and ACT scoresComparing an SAT math score of 700 and an ACT score of 30 with respect to their respective mean and standard deviation:
SAT z-score: Z = (700 - 514) / 117 ≈ 1.59ACT z-score: Z = (30 - 21) / 5.3 ≈ 1.70Based on their z-scores, the individual with the ACT score performed slightly better relative to others who took the same test than the individual who took the SAT math test.
Your school is sponsoring a pancake dinner to raise money for a field trip. You estimate that 200 adults and 250 children will attend. Let x represent the cost of an adult ticket and y represent the cost of a child ticket.
Write an equation that can be used to find what ticket prices to set in order to raise $3800
Show your work
Answer:
Step-by-step explanation:
Let x represent the cost of an adult ticket and
Let y represent the cost of a child ticket.
Your school is sponsoring a pancake dinner to raise money for a field trip. You estimate that 200 adults and 250 children will attend.
The equation that can be used to find what ticket prices to set in order to raise $3800 would be
200x + 250y = 3800
The equation that can be used to find what ticket prices to set in order to raise $3800 is [tex]3800=200x+250y[/tex].
What is an equation?An equation is formed when two equal expressions are equated together with the help of an equal sign '='.
As it is given that the cost of an adult ticket is x while the number of adult tickets sold was 200. Similarly, the cost of a child ticket is y while the number of child tickets sold will be 250. And the total money that is needed to be raised is $3800, therefore, the equation can be written as,
Total amount= Total amount of Adult Tickets + Total amount of Child Ticket
[tex]\$3,800 = (\$x \times 200)+(\$y \times 250)\\\\3800=200x+250y[/tex]
Hence, the equation that can be used to find what ticket prices to set in order to raise $3800 is [tex]3800=200x+250y[/tex].
Learn more about Equation:
https://brainly.com/question/2263981
Larry studied 2 1/4 hours Monday. He studied 2 5/6 hours Tuesday. Write an addition sentence to show how many hours he spent studying Monday and Tuesday.
Final answer:
Larry studied a total of 5 1/12 hours on Monday and Tuesday. To find this, convert the mixed numbers to improper fractions, find a common denominator, add the fractions together, and simplify to get the final sum.a
Explanation:
To calculate the total amount of time Larry spent studying on Monday and Tuesday, we need to add the hours together:
1. Monday: 2 1/4 hours
2. Tuesday: 2 5/6 hours
Let's convert these mixed numbers to improper fractions to simplify the addition:
Convert 2 1/4 to an improper fraction: 2 1/4 = (2×4)+1/4 = 9/4.Convert 2 5/6 to an improper fraction: 2 5/6 = (2×6)+5/6 = 17/6.Next, we find a common denominator, which is 12, and rewrite the fractions:
Rewrite 9/4 as a fraction with a denominator of 12: 9/4 = (9×3)/(4×3) = 27/12.Rewrite 17/6 as a fraction with a denominator of 12: 17/6 = (17×2)/(6×2) = 34/12.Now that they have the same denominator, we can add them together:
27/12 + 34/12 = 61/12To simplify, divide 61 by 12, which is 5 with a remainder of 1. Thus, the mixed number is 5 1/12. Therefore, the addition sentence to show how many hours Larry spent studying Monday and Tuesday is:
2 1/4 hours + 2 5/6 hours = 5 1/12 hours.PLEASE HELP ASAP STUDY GUIDE DUE IN TWO HOURS!!!!!!
A polynomial function has exactly four zeros: 4, 2, √2 and -√2. What degree would this polynomial have? Show ALL work.
Answer:
Fourth degree polynomial (aka: quartic)
====================================================
Work Shown:
There isnt much work to show here because we can use the fundamental theorem of algebra. The fundamental theorem of algebra states that the number of roots is directly equal to the degree. So if we have 4 roots, then the degree is 4. This is assuming that there are no complex or imaginary roots.
-------------------
If you want to show more work, then you would effectively expand out the polynomial
(x-m)(x-n)(x-p)(x-q)
where
m = 4, n = 2, p = sqrt(2), q = -sqrt(2)
are the four roots in question
(x-m)(x-n)(x-p)(x-q)
(x-4)(x-2)(x-sqrt(2))(x-(-sqrt(2)))
(x-4)(x-2)(x-sqrt(2))(x+sqrt(2))
(x^2-6x+8)(x^2 - 2)
(x^2-2)(x^2-6x+8)
x^2(x^2-6x+8) - 2(x^2-6x+8)
x^4-6x^3+8x^2 - 2x^2 + 12x - 16
x^4 - 6x^3 + 6x^2 + 12x - 16
We end up with a 4th degree polynomial since the largest exponent is 4.
The radius r(t)r(t)r, (, t, )of a sphere is increasing at a rate of 7.57.57, point, 5 meters per minute. At a certain instant t_0t 0 t, start subscript, 0, end subscript, the radius is 555 meters. What is the rate of change of the surface area S(t)S(t)S, (, t, )of the sphere at that instant?
Answer:
300pi
Step-by-step explanation:
Final answer:
The rate of change of the surface area of the sphere at that instant is 942.48 meters squared per minute.
Explanation:
To find the rate of change of the surface area S(t)S(t)S, (, t, )of the sphere at that instant, we need to differentiate the surface area formula with respect to time and then substitute the given values.
The formula for the surface area of a sphere is [tex]S = 4\pi r^2.[/tex]
Taking the derivative with respect to time, we have dS/dt = 8πr(dr/dt).
Given that dr/dt = 7.5 meters per minute and r = 5 meters, we can substitute these values into the derivative formula to find the rate of change of the surface area at that instant.
= dS/dt = 8π(5)(7.5)
= 300π
= 942.48 meters squared per minute.
Rina wants to ride the bumper cars 1 time and the Ferris wheel 5 times. It costs 1 ticket to ride the bumper cars and 1 ticket to ride the Ferris wheel. How many tickets does Rina need?
Answer:
Rina will need 6 tickets.
Explanation:
Rina needs only 1 ticket to ride the ferris wheel once, and 1 ticket to ride the bumper cars once. If she wants to ride the ferris wheel 5 times, then she'll need 5 tickets since 1 x 5 = 5. If she wants to ride the bumper cars only once, she'll only need 1 ticket since 1 x 1 = 1.
Add the answers together, and you get 6 tickets since 5 + 1 = 6.
Hope this helps! :)
Suppose that the distribution is bell-shaped. If approximately 99.7% of the lifetimes lie between 568 hours and 1066 hours, then the approximate value of the standard deviation for the distribution, according to the empirical rule, is .
Answer:
[tex]\sigma =\frac{478}{6}=79.667[/tex]
Step-by-step explanation:
The empirical rule, also referred to as "the three-sigma rule or 68-95-99.7 rule, is a statistical rule which states that for a normal distribution, almost all data falls within three standard deviations (denoted by σ) of the mean (denoted by µ)". The empirical rule shows that 68% falls within the first standard deviation (µ ± σ), 95% within the first two standard deviations (µ ± 2σ), and 99.7% within the first three standard deviations (µ ± 3σ).
And on this case since we are within 3 deviations (because we have 99.7% of the data between 568 and 1066hours), the result obtained using the z score agrees with the empirical rule.
So on this case we can find the standard deviation on this ways:
[tex]\mu -3\sigma = 568[/tex] (1)
[tex]\mu +3\sigma = 1066[/tex] (2)
If we subtract conditions (2) and (1) we got:
[tex]1066-588 =\mu +3\sigma -\mu +3\sigma[/tex]
[tex]478= 6\sigma[/tex]
[tex]\sigma =\frac{478}{6}=79.667[/tex]
Which coordinate divides the directed line segment from −10 at J to 23 at K in the ratio of 2 to 1?
1
11
12
Answer:
12
Step-by-step explanation:
The difference of the two coordinates is ...
23 -(-10) = 33
The desired coordinate is 2/3 of that length from J, so is ...
J + (2/3)·33 = J +22 = -10 +22 = 12
The desired coordinate is 12.
An ice cream store sells 23 flavors of ice cream, determine the number of 4 dip sundaes. how many are possible if order is not considered and no flavor is repeated?
Answer:
8,855
Step-by-step explanation:
The way to solve this problem is by using Combinations.
In Combinations, we can form different collections of k elements from a total of n elements where the order of them does not matter and any member of them is not repeated.
Combinations is expressed mathematically as:
[tex]\\nC_k = \frac{n!}{(n-k)!k!} [/tex] [1]
Where n is the total elements, k is the number of elements selected from n, and n! is n factorial, or, for instance, 3! is 3*2*1 = 6; 4! is 4*3*2*1 = 24.
This formula tells us how to form groups of k members from a total of n elements. These groups of k members have no repeated elements, that is, in the context of this question, no flavor is repeated in any group.
Likewise, different orders of the same members do not matter, or, in other words, if we have two groups of four members flavors (vanilla, chocolate, strawberry, lemon) and (chocolate, vanilla, lemon, strawberry), they are considered the same group since order does not matter in Combinations.
In this way, to determine the number of four dip sundaes (k) from 23 flavors (n) that an ice cream store sells, we need to apply the formula [1], as follows:
[tex]\\23C_4 = \frac{23!}{(23-4)!4!} [/tex]
[tex]\\23C_4 = \frac{23!}{19!4!} [/tex]
[tex]\\23C_4 = \frac{23*22*21*20*19!}{19!4!} [/tex], since 19!/19! = 1.
[tex]\\23C_4 = \frac{23*22*21*20}{4*3*2*1} [/tex]
[tex]\\23C_4 = 8,855 [/tex]
To find the number of 4-dip sundaes possible with 23 flavors of ice cream, we use combinations. The formula for combinations is C(n, r) = n! / (r!(n-r)!). Applying this formula, we find that there are 8855 possible 4-dip sundaes.
Explanation:To determine the number of 4-dip sundaes possible with 23 flavors of ice cream, we can use combinations.
A combination is used when the order does not matter, and no repetitions are allowed.
In this case, we use the formula for combinations of r items selected from a set of n items without replacement: C(n, r) = n! / (r!(n-r)!)
So, the number of 4-dip sundaes possible is C(23, 4) = 23! / (4!(23-4)!) = 23! / (4!19!)
Calculating this using a calculator, we find that there are 8855 possible 4-dip sundaes with 23 flavors of ice cream.
Learn more about Combinations here:https://brainly.com/question/30646507
#SPJ3
For every positive integer n, the nth term of sequence is given by an= 1/n - 1/(n+1). What is the sum of the first 100 terms?
(a) 1
(b) 0
(c) 25
(d) 99/100
(e) 100/101
Step-by-step explanation:
We need to find um of the first 100 terms of
[tex]\frac{1}{n}-\frac{1}{n+1}[/tex]
That is
[tex]\texttt{Sum = }\frac{1}{1}-\frac{1}{1+1}+\frac{1}{2}-\frac{1}{2+1}+\frac{1}{3}-\frac{1}{3+1}.....+\frac{1}{100}-\frac{1}{100+1}\\\\\texttt{Sum = }\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}.....+\frac{1}{100}-\frac{1}{101}\\\\\texttt{Sum = }\frac{1}{1}-\frac{1}{101}\\\\\texttt{Sum = }\frac{101-1}{101\times 1}\\\\\texttt{Sum = }\frac{100}{101}[/tex]
Option E is the correct answer.
Final answer:
The sum of the first 100 terms of the sequence an = 1/n - 1/(n+1) is 100/101 because it's a telescoping series where almost all terms cancel each other out except the very first and the very last term.
Explanation:
The student's question involves finding the sum of the first 100 terms of the sequence an = 1/n - 1/(n+1). To find this sum, we can notice that many terms will cancel each other out when we add up the sequence. This is because the sequence is telescoping. Let's illustrate this with the first few terms:
a1 = 1 - 1/2
a2 = 1/2 - 1/3
a3 = 1/3 - 1/4
...
a99 = 1/99 - 1/100
a100 = 1/100 - 1/101
When we add all these up, notice that every negative term cancels out with the positive term that precedes it, except for the very first term, which is 1, and the very last negative term, which is -1/101. Hence, the sum is 1 - 1/101 which simplifies to 100/101. Therefore, the correct answer is (e) 100/101.
Johnny has 1050. He spends 55 each week. He wants to stop spending money when he has at least 150 left. How many weeks can he withdraw money from his account?
Answer:
16 Weeks.
Step-by-step explanation:
1050 - 150 = 900.
900 divided by 55 = 16.3.
Round down, because 3 is less than 5.
Therefore, Johnny can spend $55 each week for 16 weeks and have at least $150 left in his account.
Hope this helps.
"Bill received $12 to feed a neighbor's cat for 3 days. At this pay rate, how many
days will he have to feed the cat to earn $40? The neighbor's family is going on
vacation for 3 weeks next summer. Bill wants to earn enough money to buy a CD
player that costs $89. Will he have enough money? Explain.
Answer:
Step-by-step explanation:
Bill received $12 to feed a neighbor's cat for 3 days. His pay rate, x would be 12/3 = 4
He is paid $4 for feeding the cat per day.
To earn $40, the number of days that bill would have to work would be 40/4 = 10 days.
The neighbor's family is going on
vacation for 3 weeks next summer. There are 7 days in a week. Converting 3 weeks to days, it becomes 7 × 3 = 21 days.
The total amount of money that Bill will earn in 21 days would be
21 × 4 = $84
Since Bill wants to earn enough money to buy a CD player that costs $89, $84 won't be enough. He still needs $5 more and that would be from 2 more days.