Answer:
$120
Step-by-step explanation:
Let the cost of the dress be "c"
ONE HALF the cost DECREASED by 12, can be written as:
[tex]\frac{1}{2}c-12[/tex]
2/5th the cost of dress, can be written as:
[tex]\frac{2}{5}c[/tex]
Now, we equate both parts and solve for c to get cost of dress. Shown below:
[tex]\frac{1}{2}c-12=\frac{2}{5}c\\\frac{1}{2}c-\frac{2}{5}c=12\\\frac{5-4}{10}c=12\\\frac{1}{10}c=12\\c=\frac{12}{\frac{1}{10}}\\c=12*10\\c=120[/tex]
Thus,
The ccost of the dress is $120
How do you solve 3/4x=-24
Answer:
Step-by-step explanation:
Answer:
-32
Step-by-step explanation:
Divide both sides by 3/4 to solve for x.
-24/1*4/3 = -96/3
-96/3=-32
-2(x+5)^2=50 solve using square root
Answer:
x = -5 + 5i, -5 - 5i
Step-by-step explanation:
(x-1)²-25=0
Factor by using the difference between two squares
Answer:
see explanation
Step-by-step explanation:
A difference of 2 squares factors in general as
a² - b² = (a - b)(a + b)
(x - 1)² - 25 ← is a difference of squares
with a = x - 1 and b = 5, thus
(x - 1)² - 25
=(x - 1 - 5)(x - 1 + 5) = (x - 6)(x + 4), then
(x - 6)(x + 4) = 0
Equate each factor to zero and solve for x
x - 6 = 0 ⇒ x = 6
x + 4 = 0 ⇒ x = - 4
Solutions are x = - 4, x = 6
The regular price of a dress is $80. The price has been marked up by 23%. What is the amount of mark up?
Answer:
Step-by-step explanation:
the amount of mark up = 23% of 80
= [tex]\frac{23*80}{100}[/tex]
= 23 * 0.8 = $18.4
Is (6,2) a solution to x+5y<16 x<8
Answer:
The ordered pair is not a solution of the system of inequalities
Step-by-step explanation:
we know that
If a ordered pair is a solution of a system of inequalities, then the ordered pair must satisfy both inequalities (makes true both inequalities)
we have the system
[tex]x+5y < 16[/tex] ----> inequality A
[tex]x< 8[/tex] ----> inequality B
substitute the value of x and the value of y of the ordered pair in each inequality
ordered pair (6,2)
Verify inequality A
For x=6, y=2
[tex]6+5(2) < 16[/tex]
[tex]16 < 16[/tex] ----> is not true
so
The ordered pair not satisfy the inequality A
therefore
The ordered pair is not a solution of the system of inequalities
what is the sum of 1/2 and 0.75 ?
Answer:
The answer should be C. 1 1/4
Step-by-step explanation:
Eliminate A and B because none of them work
Eliminate E because we are using 1/4s
Eliminate D because we aren't using decimals
You can also think of a clock with adding 1/4s: 0.75 + 1/4= 1
1 + 1/4 = 1 1/4
(you can divide 1/2 into 2 one fourths)
The answer is 1 1/4 option C.
What is the sum of 1/2 and 0.75?
Simply add these two terms i.e:
1/2 + 0.75
Write 0.75 as a 75/100 and take lcm and lcm is 100.
1/2 + 75/100
On solving we get,
= ( 50 + 75 )/100
= 125/100
= 5/4
= 1 1/4
Learn more about the sum of two numbers on: https://brainly.com/question/14327931
#SPJ2
. (06.02) Which of these is the algebraic expression for "seven less than some number?" (3 points) Fraction 7 over h Fraction h over 7 h − 7 7 − h
Answer: H-7
Step-by-step explanation: I got it right on test! have a great day! :)
How many times will interest be added to the principal in one year if the
interest is compounded annually?
Answer:
Only 1 time
Step-by-step explanation:
When it is compound interest it can be added in the following ways:
Annually = 1 Time in a year
Semiannually = 2 Times in a year
Quarterly = 4 Times in a year
Monthly = 12 Times in a year
Answer:
2
Step-by-step explanation:
a.p.e.x
38. Emily is buying some graduation pictures. She pays $25 for the sitting and $15 for each
sheet of pictures she buys. (make a table if it helps)
a. How much does she pay for 5 sheets of pictures?!
b. How much does she pay for "x" sheets?
c. How many sheets can she buy for $145?
a. She pays $100 for 5 sheets
b. 25+15x dollars for x sheets
c. 8 sheets
Step-by-step explanation:
Given
Sitting cost = $25
Per sheet picture cost = $15
Let p be the number of sheets of pictures
Then the cost can be written as a function of p
[tex]c(p) = 25+15p[/tex]
Now,
a. How much does she pay for 5 sheets of pictures?!
Putting p = 5 in the function
[tex]c(5) = 25 + 15(5)\\= 25+75\\=100[/tex]
She will pay $100 for 5 sheets of pictures
b. How much does she pay for "x" sheets?
Putting x in place of p
[tex]c(x) = 25+15x[/tex]
c. How many sheets can she buy for $145?
We know the cost now, we have to find p so,
[tex]145 = 25+15p\\145-25 = 25+15p-25\\120 = 15p[/tex]
Dividing both sides by 15
[tex]\frac{15p}{15} = \frac{120}{15}\\p = 8[/tex]
Hence,
She can buy 8 sheets for $145
Keywords: Linear equation, Algebraic functions
Learn more about functions at:
brainly.com/question/629998brainly.com/question/6208262#LearnwithBrainly
The sum of a number and -9 is -36. What is the number?
Solve for x in this equation.
x+(-9)=-36
x-9=-36
x=-27
answer: -27
24,358 divided by 38
Answer:
641
Step-by-step explanation:
24,358 ÷ 38=641
Hope this helps!!
24,358 / 38 = 641
Use long division to find the answer :)
Hope this helps!
What is the solution to the system of equations?
y=5x+2
3x=-y + 10
(-4,-18)
(-18,-4)
(7,1)
(1,7)
Answer:
Y = 5x + 2 . . . . . . . . . . (1)
3x = -y + 10 . . . . . . . . (2)
3x = -(5x + 2) + 10
3x = -5x - 2 + 10
3x + 5x = -2 + 10
8x = 8
x = 1
y = 5(1) + 2 = 5 + 2 = 7
Solution is (1, 7)
Step-by-step explanation:
The Solution is (1,7) is the solution to the system of equations:
y=5x+2, 3x=-y + 10
What is simplification?Simplify simply means to make it simple. In mathematics, simply or simplification is reducing the expression/fraction/problem in a simpler form. It makes the problem easy with calculations and solving.
here, we have,
given that,
We need to find the solution of the system of following equations.
y= 5x + 2 eq(1)
3x = -y +10 eq(2)
We will solve the equations using Substitution method to find the values of x and y
we put value of y from eq (1) into eq (2), The eq(2) will be:
3x = - (5x + 2) + 10
3x = -5x -2 +10
3x+5x = -2+10
8x = 8
x= 1
Now, putting value of z in eq(1) to find value of y
y = 5x +2
y = 5(1) + 2
y = 5+2
y = 7
So, Solution is (1,7).
Hence, The Solution is (1,7) is the solution to the system of equations:
y=5x+2, 3x=-y + 10
To learn more on simplification click:
brainly.com/question/28996879
#SPJ7
A circle of radius 10 is divided into four congruent sectors. One of these sectors is used to form the curved surface of a cone. What is the volume of this cone?
Answer:
V ≈ 63.4
Step-by-step explanation:
The arc length of the segment becomes the circumference of the cone's base. Therefore, we can find the radius of the cone:
s = C
(90/360) 2π (10) = 2π r
r = 2.5
The radius of the segment is the slant length of the cone. So we can use Pythagorean theorem to find the cone's height.
l² = r² + h²
10² = 2.5² + h²
h = √93.75
The volume of the cone is:
V = π/3 r² h
V = π/3 (2.5)² √93.75
V ≈ 63.4
4. An investment account pays 4.6%
annual interest compounded quarterly.
If $6050 is placed in this account, find
the balance after 6 years.
A. $6810.53
B. $7420.65
C. $7960.43
D. $8134.22
Answer:
Step-by-step explanation:
Use the formula
[tex]A(t)=P(1+\frac{r}{n})^{(n)(t)}[/tex]
where A(t) is the amount after all the compounding is done, P is the initial investment, r is the interest rate as a decimal, n is the number of times the investment is compounded each year, and t is time in years. For us,
P = 6050
r = .046
n = 4
t = 6
A(t) = ?
Filling in our given info:
[tex]A(t)=6050(1+\frac{.046}{4})^{(4)(6)}[/tex]
which simplifies to
[tex]A(t)=6050(1+.0115)^{24}[/tex]
which simplifies a bit more to
[tex]A(t)=6050(1.0115)^{24}[/tex] and
A(t) = 6050(1.31577397) so
A(t) = $7960.43
which is choice C
Final answer:
The balance after 6 years is $6810.53 that is option A is correct.
Explanation:
To find the balance after 6 years, we can use the formula for compound interest: A = P(1 + r/n)^(nt).
Given that the initial principal (P) is $6050, the interest rate (r) is 4.6% (or 0.046 in decimal form), and it is compounded quarterly (n=4 times per year), we can plug in the values and solve for A.
A = $6050(1 + 0.046/4)^(4*6) = $6810.53
Therefore, the balance after 6 years is $6810.53, which corresponds to answer choice A.
write an equation for the line perpendicular to y=2x-5 through the point (8,-2)
For this case we have that by definition, the equation of the line of the slope-intersection form is given by:
[tex]y = mx + b[/tex]
Where:
m: It is the slope of the line
b: It is the cut-off point with the y axis
By definition, if two lines are perpendicular then the product of their slopes is -1.
We have the following equation of the line:
[tex]y = 2x-5[/tex]
Then [tex]m_ {1} = 2[/tex]
We find [tex]m_ {2}:[/tex]
[tex]m_ {2} = \frac {-1} {m_ {1}}\\m_ {2} = \frac {-1} {2}\\m_ {2} = - \frac {1} {2}[/tex]
Thus, the perpendicular line will be of the form:
[tex]y = - \frac {1} {2} x + b[/tex]
We substitute the given point and find "b":
[tex]-2 = - \frac {1} {2} (8) + b[/tex]
[tex]-2 = -4 + b\\-2 + 4 = b\\b = 2[/tex]
Finally, the equation is of the form:
[tex]y = - \frac {1} {2} x + 2[/tex]
ANswer:
[tex]y = - \frac {1} {2} x + 2[/tex]
Solve the system of linear equations by graphing. y−x=17 y=4x+2
Answer:
x=5, y=22. (5, 22).
Step-by-step explanation:
y-x=17
y=4x+2
----------
4x+2-x=17
3x+2=17
3x=17-2
3x=15
x=15/3
x=5
y-5=17
y=17+5
y=22
Answer:
x = 5, y = 22 → (5, 22)Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}y-x=17&(1)\\y=4x+2&(2)\end{array}\right\\\\\\\text{substitute (2) to (1):}\\\\(4x+2)-x=17\qquad\text{combine like terms}\\\\(4x-x)+2=17\qquad\text{subtract 2 from both isdes}\\\\3x+2-2=17-2\\\\3x=15\qquad\text{divide both sides by 3}\\\\\dfrac{3x}{3}=\dfrac{15}{3}\\\\x=5[/tex]
[tex]\text{Put the value of x to (2):}\\\\y=4(5)+2\\\\y=20+2\\\\y=22[/tex]
Aaron operates a farm stand. The supply function for grapes at the farm stand is P=Q-7, Where P is the price and Q is the quantity of baskets. If Aaron makes 15 baskets of grapes, what price will he sell the baskets of grapes at?
A. $5
B. $7
C. $15
D. $8
Answer:
Step-by-step explanation:
P = Q - 7.......Q is the quantity of baskets....and he makes 15 baskets....so sub in 15 for Q and solve for P, the price
P = 15 - 7
P = 8 <====
Answer:
D.$8
Step-by-step explanation:
Firstly, you replace Q with 15. Then you solve the equation.
P=15-7
P=8
How does 6 x 3/4 compared to 6
Answer:
6*(3/4) is 75% of 6.
Step-by-step explanation:
3/4 =0.75
Consider this:
6*1 =6, so 1=100%.
6*1/2 =6*0.5=3, so 1/2=50%.
You can then see that 6*0.75=4.5 is 75% of 6.
Find the volume and area for the objects shown and answer Question
Step-by-step explanation:
You must write formulas regarding the volume and surface area of the given solids.
[tex]\bold{\#1\ Rectangular\ prism:}\\\\V=lwh\\SA=2lw+2lh+2wh=2(lw+lh+wh)\\\\\bold{\#2\ Cylinder:}\\\\V=\pi r^2h\\SA=2\pi r^2+2\pi rh=2\pir(r+h)\\\\\bold{\#3\ Sphere:}\\\\V=\dfrac{4}{3}\pi r^3\\SA=4\pi r^2[/tex]
[tex]\bold{\#4\ Cone:}\\\\V=\dfrac{1}{3}\pi r^2h\\\\\text{we need calculate the length of a slant length}\ l\\\text{use the Pythagorean theorem:}\\\\l^2=r^2+h^2\to l=\sqrt{r^2+h^2}\\\\SA=\pi r^2+\pi rl=\pi r^2+\pi r\sqrt{r^2+h^2}=\pi r(r+\sqrt{r^2+h^2})\\\\\bold{\#5\ Rectangular\ Pyramid:}\\\\V=\dfrac{1}{3}lwh\\\\[/tex]
[tex]\\\text{we need to calculate the height of two different side walls}\ h_1\ \text{and}\ h_2\\\text{use the Pythagorean theorem:}\\\\h_1^2=\left(\dfrac{l}{2}\right)^2+h^2\to h_1=\sqrt{\left(\dfrac{l}{2}\right)^2+h^2}=\sqrt{\dfrac{l^2}{4}+h^2}=\sqrt{\dfrac{l^2}{4}+\dfrac{4h^2}{4}}\\\\h_1=\sqrt{\dfrac{l^2+4h^2}{4}}=\dfrac{\sqrt{l^2+4h^2}}{\sqrt4}=\dfrac{\sqrt{l^2+4h^2}}{2}[/tex]
[tex]\\\\h_2^2=\left(\dfrac{w}{2}\right)^2+h^2\to h_2=\sqrt{\left(\dfrac{w}{2}\right)^2+h^2}=\sqrt{\dfrac{w^2}{4}+h^2}=\sqrt{\dfrac{w^2}{4}+\dfrac{4h^2}{4}}\\\\h_2=\sqrt{\dfrac{w^2+4h^2}{4}}=\dfrac{\sqrt{w^2+4h^2}}{\sqrt4}=\dfrac{\sqrt{w^2+4h^2}}{2}[/tex]
[tex]SA=lw+2\cdot\dfrac{lh_1}{2}+2\cdot\dfrac{wh_2}{2}\\\\SA=lw+2\!\!\!\!\diagup\cdot\dfrac{l\cdot\frac{\sqrt{l^2+4h^2}}{2}}{2\!\!\!\!\diagup}+2\!\!\!\!\diagup\cdot\dfrac{w\cdot\frac{\sqrt{w^2+4h^2}}{2}}{2\!\!\!\!\diagup}\\\\SA=lw+\dfrac{l\sqrt{l^2+4h^2}}{2}+\dfrac{w\sqrt{w^2+4h^2}}{2}\\\\SA=\dfrac{2lw}{2}+\dfrac{l\sqrt{l^2+4h^2}}{2}+\dfrac{w\sqrt{w^2+4h^2}}{2}\\\\SA=\dfrac{2lw+l\sqrt{l^2+4h^2}+w\sqrt{w^2+4h^2}}{2}[/tex]
What is the product?
(-20+5) (58-65)
10 -1004+17025-652
0-1004+ 170452-652
0-1004–7025-652
0-1004 +17025+652
The solution to the given equation (-20+5) (58-65) is 105. This is calculated by first simplifying the expressions within the brackets and then multiplying the resulting numbers.
Explanation:The student's question relates to the calculations and simplifying of expressions in mathematics. This type of operation can be found in basic algebra, and its mastery is an essential part of succeeding in mathematics.
To solve the equation given, which is (-20+5) (58-65), we'll need to separate it into two steps. First, simplify the expressions in the brackets. Therefore, -20+5 equals -15 and 58-65 equals -7. Now, substitute these values back into the equation getting -15 * -7. Multiplying these two values will give a product of 105. That is the final answer. The provided list of numbers following the initial problem statement seems to be irrelevant to this specific calculation.
Learn more about Algebraic expressions here:https://brainly.com/question/953809
#SPJ12
a school ordered 3 large boxes of board markers. After giving 15 markets to each of 3 teachers, there were 90 markers left. How many markers were originally in each box?
There were 45 markers originally in each box.
Step-by-step explanation:
Given,
Boxes ordered = 3 large boxes
Markers given to one teacher = 15
Markers given to 3 teachers = 15*3 = 45 markers
Remaining markers = 90
Let,
x be the original number of markers in 3 boxes.
Total markers - markers given to teachers = markers left
[tex]x-45=90\\x=90+45\\x=135[/tex]
There were 135 markers in 3 boxes.
3 boxes = 135 markers
1 box = [tex]\frac{135}{3}=45\ markers[/tex]
There were 45 markers originally in each box.
Keywords: multiplication, addition
Learn more about multiplication at:
brainly.com/question/13076219brainly.com/question/13096001#LearnwithBrainly
A bought a car for Rs.100000 and spent Rs. 10000 on its repairs.He sold this car to B at a gain of 10% who later on sold to Close at a gain of 5%.what did C pay for the car?
Final answer:
C paid Rs. 127,050 for the car.
Explanation:
To find out what C paid for the car, we need to consider the gains made by A and B. A bought the car for Rs.100,000 and spent Rs. 10,000 on repairs. This means A's total cost is Rs. 110,000. A then sells the car to B at a gain of 10%, which means B buys the car for 110% of Rs. 110,000, or Rs. 121,000.
Now, B sells the car to C at a gain of 5%. To find out what C paid, we need to calculate 105% of Rs. 121,000, which gives us Rs. 127,050. Therefore, C paid Rs. 127,050 for the car.
PLEASE PLEASE HELP ME PLEASE
Which radical expressions are equivalent to
Answer:
D and E
Step-by-step explanation:
Using the rule of radicals
[tex]a^{\frac{m}{n} }[/tex] ⇔ [tex]\sqrt[n]{a^{m} }[/tex]
Given
[tex]3^{\frac{4}{7} }[/tex]
= ([tex]\sqrt[7]{3}[/tex])^4 → D or
= [tex]\sqrt[7]{3^{4} }[/tex] = [tex]\sqrt[7]{81}[/tex] → E
A checkbook register has a balance of $158 if a deposit of $35 is made and a check for $78.96 is written find the new balance
Final answer:
The new balance in the checkbook register is $114.04.
Explanation:
To find the new balance in a checkbook register after a deposit and a check are processed, you need to add the deposit to the current balance and then subtract the amount of the check.
Initially, the checkbook register has a balance of $158.
A deposit of $35 is made, and a check for $78.96 is written.
Calculating the new balance involves the following steps:
Add the deposit of $35 to the initial balance of $158 to get $193. Subtract the amount of the check, $78.96, from the $193 to find the new balance.After completing these steps, the new balance in the register would be $193 - $78.96 = $114.04.
Balancing your checkbook regularly is essential to manage your money efficiently and to avoid fees associated with overdrafts or insufficient funds.
Question attached, please help!
Answer:
Triangle ABC is dilated is dilated with a scale factor of ⅓ with the center of dilation at the point (3,4) resulting in triangle DEC
Step-by-step explanation:
From triangle ABC,
|AC|=3 units
From triangle DEC,
|EC|= 1 unit
Since the two triangles are similar, we can find the scale factor using the ratio of the image length over the corresponding object length.
[tex]scale \: factor = \frac{ |EC| }{ |AC| } [/tex]
Let us substitute the values to get:
[tex]scale \: factor = \frac{1}{3 } [/tex]
When we trace through AD and EB, they will meet at C. Hence C(3,4) is the center of dilation.
68. Solve: 46x - 10) = 8x + 40
A 0
B.5/2
ina
c. 23
D. 5
Solve: 4(6x - 10) = 8x + 40
A 0
B.5/2
c. 23
D. 5
Answer:Option D
The solution to given equation is x = 5
Solution:Given that we have to solve the given equation
4(6x - 10) = 8x + 40
Let us solve the above expression and find value of "x"
Multiplying 4 with terms inside bracket in L.H.S we get,
24x - 40 = 8x + 40
Move the variables to one side and constant terms to other side
24x - 8x = 40 + 40
Combine the like terms,
16x = 80
[tex]x = \frac{80}{16} = 5[/tex]
Thus solution to given equation is x = 5
Complete the inequality statement.
14 ft ____ 4 1/2 yd.
<
>
=
Answer: 14ft > 4 1/2 yd
Step-by-step explanation:
mystery question A=8+8 B= A-7 A=16 B=
Answer:
9.
Step-by-step explanation:
It's given that A = 16. It shows that B = A-7, so that would mean B is 16-7, which is 9.
The Green Goober, a wildly unpopular superhero, mixes 333 liters of yellow paint with 555 liters of blue paint to make 888 liters of special green paint for his costume.
Write an equation that relates y, the amount of yellow paint in liters, and b, the amount of blue paint in liters, needed to make the Green Goober's special green paint.
PLEASE ANSWER!!!!!!!!!!!!!!!!!!!!!!!!!!
The equation that relates y, the amount of yellow paint in liters, and b, the amount of blue paint in liters, needed to make the Green Goober's special green paint is y + b = 888
Solution:
Given that the Green Goober mixes 333 liters of yellow paint with 555 liters of blue paint to make 888 liters of special green paint for his costume.
Let "y" be the amount of yellow paint in liters needed to make the Green Goober's special green paint
Let "b" be the amount of blue paint in liters needed to make the Green Goober's special green paint
The required equation is:
amount of yellow paint in liters + amount of blue paint in liters = Green Goober's special green paint
y + b = 888
Where y = 333 liters and b = 555 liters ( from given information)
Thus the equation is found
Answer:
y=3/5b
Step-by-step explanation:
A stone fell from the top of a cliff into the ocean.
In the air, it had an average speed of 16 m/s. In the water, it had an average speed of 3 m/s before hitting the seabed. The total distance from the top of the cliff to the seabed is 127 meters, and the stone's entire fall took 12 seconds.
How long did the stone fall in the air and how long did it fall in the water?
Time taken by stone in air is 7 seconds and time taken by stone in water is 5 seconds
Solution:
Let "x" represents the time taken by stone in the air
Given that the stone's entire fall took 12 seconds
Thus, the total time taken by it in both air and water = 12 seconds
time taken by stone in the air = x
time taken by stone in water = 12 - x
In the air, it had an average speed of 16 m/s
average speed in air = 16 m/s
We know that,
distance = speed x time
distance covered by it in air = [tex]16 \times x = 16x[/tex]
distance covered in air = 16x
It had an average speed of 3 m/s before hitting the seabed
average speed in water = 3 m/s
distance covered by it in water = [tex]3 \times (12 - x) = 36 - 3x[/tex]
distance covered in water = 36 - 3x
Then,
Total distance covered = distance covered in air + distance covered in water
Total distance covered = 16x + 36 - 3x = 13x + 36
But, the total distance covered by it = 127 meters ( Given )
Therefore,
13x + 36 = 127
13x = 127 - 36
13x = 91
x = 7
Hence, the time taken by stone in air = x seconds = 7 seconds,
And, the time taken by it in water = 12 - x = 12 - 7 = 5 seconds