Julia’s frogs are 2 5 of the amount of Rimma’s frogs. If Rimma gives 1 2 of her frogs to Julia, what will be the ratio of Julia’s frogs to Rimma’s frogs?

Answers

Answer 1

Answer:the ratio of Julia’s frogs to Rimma’s frogs is 1.8 : 1

Step-by-step explanation:

Let x represent the total number of frogs that Rimma had.

Julia’s frogs are 2/5 of the amount of Rimma’s frogs. This means that the number of frogs that Julia had is

2/5 × x = 2x/5

If Rimma gives 1/2 of her frogs to Julia, the number of frogs that Julia gets from Rimma would be

1/2 × x = x/2 frogs. Total number of frogs that Julia would have becomes

2x/5 + x/2 = (4x + 5x)/10 = 9x/0

The number of frogs that Rimma has left would be 1/2 × x = x/2

The ratio of Julia’s frogs to Rimma’s frogs would be

(9x/10) / (x/2) = (9/5)/1

= 1.8 : 1


Related Questions

Which of the following are true statements?
I. Both dotplots and stemplots can show symmetry, gaps, clusters, and outliers.
II. In histograms, relative areas correspond to relative frequencies.
III. In histograms, frequencies can be determined from relative heights.

Answers

Answer:

I and II.

Step-by-step explanation:

Dot plots are charts that represent data points on a simple scale using filled circles. Stemplots allow plotting data by dividing it into stems (largest digit) and leaves (smallest digits). Both dot plots and stemplots are like histograms since they allow to compare data relating to only one variable, and are used for continuous, quantitive data, highlighting gaps, clusters, and outliers.    

Histograms use bars to represents amounts, with no space between the bars and the height of the bars is proportional to the frequency or relative frequency of the represented amount. We refer to the relative frequency of a case when this frequency is divided by the sum of all frequencies of the cases. The proportionality between the height of the bar and the frequency is right when the width (interval) of the bar is the same for everyone, on the contrary, the area of the bar would be proportional to the frequency of cases.      

Therefore, of all the above, the correct statements are I and II. Statement III is incorrect because relative heights are proportional to relative frequencies.        

 

I hope it helps you!                    

Final answer:

Both dotplots and stemplots can show features like symmetry, gaps, clusters, and outliers. The relative areas in a histogram correspond to relative frequencies. However, frequencies in a histogram cannot be determined from relative heights alone, but from the area of the bars.

Explanation:

The subject of this question pertains to the interpretation and understanding of various graphical representations in statistics. Let's examine each statement in turn:

Both dotplots and stemplots can show symmetry, gaps, clusters, and outliers: This is true. Both these plot types can effectively depict all these features of a data set.In histograms, relative areas correspond to relative frequencies: This statement is also true. The area of each bar in the histogram represents the relative frequency of the data range that it covers.In histograms, frequencies can be determined from relative heights: This statement is false. The frequency in a histogram is determined by the area of the bar, not just its height. While height is a factor, you also must take into account the width of the bar.

Learn more about Graphical Representations in Statistics here:

https://brainly.com/question/33662804

#SPJ11

In a store window, there was a flat containing boxes of berries having a total weight of $200$ kg. An analysis showed that the berries were $99\%$ moisture, by weight. After two days in the sun, a second analysis showed that the moisture content of the berries was only $98\%$, by weight. What was the total weight of the berries after two days, in kg?

Answers

Answer:

100 kg

Step-by-step explanation:

Data provided in the question:

Initial total weight of the berries = 200 kg

Initial weight of water present = 99% of the weight

= 198 kg

therefore,

Initial weight of the solids in berries = 200 kg - 198 kg = 2 kg

After 2 days water was 98% of the total weight of the berries

Thus,

2% was solid which means 2 kg was 2% of the total weight of the berries

Thus,

2% of Total weight of berries after two days = 2 kg

or

0.02 × Total weight of berries after two days = 2 kg

or

Total weight of berries after two days = [ 2 ÷ 0.02 ] kg

or

Total weight of berries after two days = 100 kg

Answer:

100 kilograms!!!!

Step-by-step explanation:

First of all, let's find the variable and what it should represent.

Let's say m stands for the moisture in the berries.

Since the berries are 200 kg and the moisture in the berries is 99%, which is 198 kg. 2 kg remain, so we the left part of our equation will be :

m/(m+2).

The right part of our equation will be 0.98 because 0.98 is 98%, which is m.

m/(m+2)=0.98.

When we multiply m+2 on both sides, we get:

m=0.98m+1.96.

Subtracting 0.98m on both sides gives us 0.02m=1.96.

Dividing 0.02 on both sides gives us:

m=98.

The question is asking what is the total weight of the berries after two days, so we add 2 to 98, or 2+m, which is 100.

100 kilograms is the answer.

Hope this helped and thanks y'all!!!

- izellegz on instagram

What is the 100th term of the sequence with a1 = 222 and d = -5?

-273

-278

717

722

Answers

Answer:

-273

222

217

212

207

202

197

192

187

182

177

172

167

162

157

152

147

142

137

132

127

122

117

112

107

102

97

92

87

82

77

72

67

62

57

52

47

42

37

32

27

22

17

12

7

2

-3

-8

-13

-18

-23

-28

-33

-38

-43

-48

-53

-58

-63

-68

-73

-78

-83

-88

-93

-98

-103

-108

-113

-118

-123

-128

-133

-138

-143

-148

-153

-158

-163

-168

-173

-178

-183

-188

-193

-198

-203

-208

-213

-218

-223

-228

-233

-238

-243

-248

-253

-258

-263

-268

-273

Step-by-step explanation:

Answer:

[tex]u_{n} = a + (n - 1)d\\\\n = 100, a = 222, d = -5\\\\

Substitute the values in.\\\\

u_{100} = 222 + (100 - 1)(-5)\\\\

u_{100} = 222 + (99)(-5)\\\\

u_{100} = 222 + (99)(-5)\\\\

u_{100} = 222 +-495\\\\

u_{100} = -273[/tex]

For all nonzero values of x and y, which of the following expressions cannot be negative?
F. x-y
G. |x| - |y|
H. |xy| - y
J. |x| + y
K. |xy|

Answers

Answer:

K

Step-by-step explanation:

Values of x and y are either negative or positive, but not 0. Lets try to make each choice "negative", so we can eliminate it.

F. x - y

If y is greater than x in any positive number, the result is negative.

1 - 3 = -2

So, this can be negative.

G. |x| - |y|

Here, if y > x for some positive number, we can make it negative. Such as shown below:

|5| - |8|

= 5 - 8

= -3

So, this can be negative.

H.

|xy| - y

Here, if y is quite large, we can make this negative and let x be a fraction. So,

|(0.5)(10)| - 10

|5| - 10

5 - 10

-5

So, this can be negative.

J. |x| + y

This can negative as well if we have a negative value for y and some value for x, such as:

|7| + (-20)

7 - 20

-13

So, this can be negative.

K. |xy|

This cannot be negative because no matter what number you give for x and y and multiply, that result WILL ALWAYS be POSITIVE because of the absolute value around "xy".

So, this cannot be negative.

Final answer:

The expression that cannot be negative for all nonzero values of x and y is K. |xy|. This is because the absolute value of any number, including the product xy, is always nonnegative.

Explanation:

Among the given options, K. |xy| is the expression that cannot be negative for all nonzero values of x and y. The reason for this is that the absolute value of any real number, including the product xy, is always nonnegative. This is due to the definition of absolute value, which measures the magnitude or distance of a number from zero on the number line, disregarding the direction (positive or negative). Therefore, even if x or y or both are negative, resulting in a negative product, the absolute value symbol converts this to a positive value. This fundamental property of absolute values ensures that K. |xy| will always return a nonnegative result, making it impossible to be negative.

Keyshia is riding her bike on Bay View Bike Path. Keyshia's bike got a flat tire 2/3 of the way down the path, so she had to stop. How far did Keyshia ride? Bay View Bike Path is 7/8 a mile.

Answers

Answer: Keyshia rode 16/21 miles

Step-by-step explanation:

The distance of Bay View Bike Path is 7/8 a mile.

Keyshia is riding her bike on Bay View Bike Path and Keyshia's bike got a flat tire 2/3 of the way down the path and she had to stop.

This means that the total distance that she rode before her bike got a flat tire would be

2/3 × 7/8 = 2/3 × 8/7 = 16/21 miles.

Converting 16/21 miles to decimal, it becomes 0.76 miles

Final answer:

Keyshia rode 7/12 of a mile before getting a flat tire.

Explanation:

To solve this question, we need to find the distance Keyshia rode before her bike got a flat tire.

From the information given, we know that the Bay View Bike Path is 7/8 of a mile long. Keyshia rode 2/3 of the way down the path before stopping.

To find how far Keyshia rode, we can multiply the length of the path by the fraction of the path she rode:

2/3 x 7/8 = (2 x 7)/(3 x 8) = 14/24 = 7/12

Therefore, Keyshia rode 7/12 of a mile before getting a flat tire.

ωωωωωωωωωωωωωωωωω WILL GIVE BRAINLIESTEET

Given: ∆ABC, AB = 45 AC = CB = 34 Find: m∠B

Answers

Answer:

[tex]48.5654 \textdegree[/tex]

Step-by-step explanation:

Let [tex]D[/tex] be the mid point of [tex]AB[/tex]

Now in [tex]\Delta ACD\ and\ \Delta BCD[/tex]

[tex]AC=CB \ (given)\\CD=CD \ (common\ side)\\AD=DB \ (D\ is\ mid\ point\ of\ AB)[/tex]

[tex]Hence\ \Delta ACD\cong\Delta BCD[/tex]

[tex]\angle A=\angle B\\\angle ACD=\angle BCD\\\angle ADB=\angle BDC[/tex]

[tex]\angle ADB+\angle BDC=180\\2\angle ADB=180\\\angle ADB=90[/tex]

[tex]in \Delta BCD\\\cos\angle B=\frac{BD}{BC}\\ =\frac{45}{2\times34}\\ =\frac{45}{68} \\\angle B=\cos^{-1}(\frac{45}{68} )\\\angleB=48.5654\textdegree[/tex]

Landon wants to buy a pizza. The full cost of the pizza is $18. Landon receives an e-mail offer for one-third off the cost of the pizza. How much money will Landon save on the pizza through the e-mail offers?

Answers

Answer:

$12

Step-by-step explanation:

The equation here is (18*2/3).

18 divided by 3 is 6.

6 multiplied by 2 is 12.

Hence, the answer is 12.

You work as a health inspector and must visit each of the 15 restaurants in town once each week. In how many different orders can you make these inspections?

Answers

Answer: 15!  or 1307674368000

Step-by-step explanation:

According to the permutations , if we arrange n things in order , then the total number of ways to arrange them = n!

Similarly , when health inspector inspects 15 restaurants in town once each week, the number of different orders can be made for these inspections = 15!

= 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1

=1307674368000

Hence, the number of different orders can be made for these inspections = 15! =1307674368000

Final answer:

The number of different orders in which a health inspector can visit 15 restaurants in a week is calculated by computing 15 factorial (15!), resulting in 1,307,674,368,000 different permutations.

Explanation:

The question pertains to the concept of permutations where one is required to determine the number of different orders in which a series of events can occur without repetition. Since the health inspector has to visit 15 different restaurants without visiting the same one more than once in a week, we are dealing with permutations of distinguishable outcomes without repetition where all outcomes are selected. The formula for permutation is n! (n factorial), where n is the number of items to permute. In this case, n is 15 (the number of restaurants).

To calculate the number of different orders for these inspections, you would compute 15!, which is 15 x 14 x 13 x ... x 1. This calculation results in 1,307,674,368,000 different orders in which the health inspector can visit the 15 restaurants. Note that a factorial is the product of all positive integers less than or equal to n. Such permutations ensure that each restaurant is visited once and only once each week, which aligns with professional standards for comprehensive inspections.

Bills new porch is rectangular with an area of 50 square feet if the length is two times the width what is two times the width, what is the perimeter of the porch example answer

Answers

Answer:

Step-by-step explanation:

Let L represent the length of the rectangular porch.

Let W represent the width of the rectangular porch.

The area of the rectangular porch is expressed as LW.

Bills new porch is rectangular with an area of 50 square feet. Therefore,

LW = 50 - - - - - - - - 1

if the length is two times the width, it means that

L = 2W

Substituting L = 2W into equation 1, it becomes

2W × W = 50

2W^2 = 50

W^2 = 50/2 = 25

W = √25 = 5

LW = 50

5L = 50

L = 50/5 = 10

The perimeter of he rectangle is

Perimeter = 2(L + W)

Perimeter = 2(10 + 5) = 2 × 15

Perimeter = 30 feet

Of the 13 Journeymen on a jobsite, there are 5 females. What is the ratio of males to females on this job?

Answers

Answer:

8:5

Step-by-step explanation:

Answer: 8 to 5

Step-by-step explanation:

5 females

13-5 males = 8 males

8 to 5

Ojinska sold many more raffle tickets when she told people they had a 10 percent chance of winning a prize than when she told them they had a 90 percent chance of not winning. This best illustrates the importance of Select one: A. the availability heuristic. B. confirmation bias. C. framing. D. the belief perseverance.

Answers

Answer: C. framing

Step-by-step explanation:

People tends to decides on options based on the type of framing presented to them. Framing effect is a cognitive bias where people decide on options presented to them based on whether it's presented with positive or negative connotations and remarks. In the case above, the reaction of people to the same idea when presented positively and negatively was different. It implies that the framing of the same idea may influence people's decision

Area addition and subtraction

Answers

Answer:Area of the shaded region is 73.6 cm^2

Step-by-step explanation:

The circle is divided into two sectors. The Smaller sector contains the triangle. The angle that the smaller sector subtends at the center of the circle is 80 degrees. Since the total angle at the center of the circle is 360 degrees, it means that the angle that the larger sector subtends at the center would be 360 - 80 = 280 degrees

Area of a sector is expressed as

Area of sector = #/360 × πr^2

# = 280

r = 5 cm

Area of sector = 280/360 × 3.14 × 5^2

Area of sector = 61.06 cm^2

Area of the triangle is expressed as

1/2bh = 1/2 × 5 × 5 = 12.5

Area of the shaded region = 61.06 +

12.5 = 73.6

At the city museumy child admission is and admission is $9.30. On Monday four times as many adult tickets as child tickets were sold for a total of sales of $1548.00 . How many child tickets were sold that day.

Answers

Question:

At the city museum, child admission is $5.80 and adult admission is $9.30. On Monday, four times as many adult tickets as child tickets were sold, for a total sales of $1548.00. How many child tickets were sold that day?

Answer:

36 child tickets were sold

Solution:

Given that,

Cost of 1 child admission = $ 5.80

Cost of 1 adult admission = $ 9.30

Let "c" be the number of child tickets sold

Let "a" be the number of adult tickets sold

On Monday, four times as many adult tickets as child tickets were sold

Number of adult tickets sold = four times the number of child tickets

Number of adult tickets sold = 4(number of child tickets sold)

a = 4c ----- eq 1

They were sold for a total sales of $ 1548.00

number of child tickets sold x Cost of 1 child admission + number of adult tickets sold x Cost of 1 adult admission = 1548.00

[tex]c \times 5.80 + a \times 9.30 = 1548[/tex]

5.8c + 9.3a = 1548  ---- eqn 2

Let us solve eqn 1 and eqn 2 to find values of "c" and "a"

Substitute eqn 1 in eqn 2

5.8c + 9.3(4c) = 1548

5.8c + 37.2c = 1548

43c = 1548

c = 36

Thus 36 child tickets were sold that day

Leslie Grace made a deposit to her checking account at an ATM and received $75 in cash. The checks deposited was $25 more than the check amount. Determine the amounts Leslie deposited in checks and in currency as well as the total deposit.

Answers

Answer:

$50

Step-by-step explanation:

Water is leaking from a jug at a constant rate. After leaking for 2 hours, the jug contains 48 fluid ounces of water. After leaking for 5 hours, the jug contains 42 fluid ounces of water. Part A: Find the rate at which water is leaking from the jug.

Answers

Answer:

2 fluid ounce/hour

Step-by-step explanation:

2 hours to 5 hours ; 3 hours apart

leaks: 48 -42 = 6 fluid ounce

rate of leak = 6/3 = 2 fluid ounce/hour

The rate at which water is leaking from the jug will be 2 ounces per hour.

What is the average rate change of a function?

It is the average amount by which the function is modified per unit throughout that time period. It is calculated using the gradient of the line linking the interval's ends on the graph that represents the function. The average rate of change of the function is given as,

Average rate = [f(x₂) - f(x₁)] / [x₂ - x₁]

Water is spilling from a container at a steady rate. Subsequent to spilling for 2 hours, the container contains 48 liquid ounces of water. Subsequent to spilling for 5 hours, the container contains 42 liquid ounces of water.

Then the rate at which water is leaking from the jug will be given as,

Rate = |(42 - 48) / (5 - 2)|

Rate = |-6 / 3|

Rate = 2 ounces per hour

The rate at which water is leaking from the jug will be 2 ounces per hour.

More about the average rate change of a function link is given below.

https://brainly.com/question/23715190

#SPJ5

If the average (arithmetic mean) of four different numbers is 30, how many of the numbers are greater than 30 ?

Answers

Answer:

Maximum 3 numbers. Minimum 1 number.

Step-by-step explanation:

Well, let us look at the case when 3 numbers are greater than 30. Let us take numbers as 1, 2, 3 and 114 and find their mean which is (1+2+3+114)/4=30.

Now let us look at the case in which 2 numbers greater than 30. Let us take numbers 28, 29, 31 and 32 and find their mean which is (28+29+31+32)/4=30.

Now let us look at the case in which 1 number greater than 30. Let us take numbers 27, 28, 29 and 36 and find their mean which is (27+28+29+36)/4=30.

So it can be concluded that maximum 3 numbers and minimum 1 number are greater than 30.

which rule describes the transformation that is a reflection across the x-acis

Answers

Answer:

When you reflect a point across the line y = x, the x-coordinate and y-coordinate change places. If you reflect over the line y = -x, the x-coordinate and y-coordinate change places and are negated (the signs are changed). the line y = x is the point (y, x). the line y = -x is the point (-y, -x).

A set of 15 different integers has median of 25 and a range of 25. What is greatest possible integer that could be in this set?A. 32B. 37C. 40D. 43E. 50

Answers

Answer:

The correct option is D.

Step-by-step explanation:

It is given that a set of 15 different integers has median of 25 and a range of 25.

Median = 25

Median is the middle term of the data. Number of observations is 15, which is an odd number so median is

[tex](\frac{n+1}{2})th=(\frac{15+1}{2})th=8th[/tex]

8th term is 25. It means 7 terms are less than 25. Assume that those 7 numbers are 18, 19, 20, 21, 22, 23, 24. Largest possible minimum value of the data is 18.

Range = Maximum - Minimum

25 = Maximum - 18

Add 18 on both sides.

25+18 = Maximum

43 = Maximum

The greatest possible integer in this set 43.

Therefore, the correct option is D.

Jacob found a computer game that was on sale at 20% off its original price. Which expression below will find the sale price, s, of the computer game, if p represents the original price of the product?

Answers

Answer:

Step-by-step explanation:

Let p represent the original price of the computer game.

Let s represent the sales price of the computer game.

Jacob found a computer game that was on sale at 20% off its original price. This means that the amount that was taken off the original price would be

20/100 × p = 0.2 × p = 0.2p

The expression for the sale price would be

s = p - 0.2p

s = 0.8p

Emily made a fruit salad with 1 2/3 cups of grapes 2 1/4
cups of strawberries and 1/6
cup of blueberries
which equation will find how many total cups of fruit Emily used?​
A 1 5/6 + 2 3/6 + 1/6 =
B 1 2/6 + 2 1/6 + 1/6 =
C 1 8/12 + 2 3/12 + 2/12 =
D 1 2/12 + 2 1/12 + 1/12 =

Answers

Answer:

C 1 8/12 + 2 3/12 + 2/12 =

Step-by-step explanation:

Constituents of the fruit salad prepared by Emily:

[tex]\[1\frac{2}{3}\][/tex] cups of grapes[tex]\[2\frac{1}{4}\][/tex] cups of strawberries[tex]\[\frac{1}{6}\][/tex] cups of blueberries

This can be expressed as follows:

[tex]\[1\frac{2}{3}+2\frac{1}{4}+\frac{1}{6}\][/tex]

This can be equivalently expressed as :

[tex]\[1\frac{8}{12}+2\frac{3}{12}+\frac{2}{12}\][/tex]

Among the given options, this corresponds to option C.

help please! I need this asap!!!!!

Answers

Answer:

[tex]\displaystyle \frac{a^2 }{b^2}=\frac{4}{9}[/tex]

[tex]\displaystyle \frac{a}{b}=\frac{2}{3}[/tex]

[tex]\displaystyle \frac{a^3}{b^3}=\frac{8}{27}[/tex]

Step-by-step explanation:

Ratios and Proportions

The ratio between two numbers x and y is defined as x/y. It measures how many times y is contained in x. For example 12/8 = 1.5 means 12 is 1.5 times 8.

We have two key sets of data: the ratio between the surface areas of the cylinders and the fact that the radius and heights of the cylinders come in the same proportion.

First, we can easily compute the ratio of the surface areas

[tex]\displaystyle \frac{Area_1}{Area_2}=\frac{8\pi \ in^2 }{18\pi \ in^2}=\frac{4}{9}[/tex]

It gives us the relation  

[tex]\displaystyle \frac{a^2 }{b^2}=\frac{4}{9}[/tex]

Computing the square root

[tex]\displaystyle \frac{a}{b}=\frac{2}{3}[/tex]

Computing the cube

[tex]\displaystyle \frac{a^3}{b^3}=\frac{8}{27}[/tex]

The measure of an interior angle of a triangle is 10n the measure of the corresponding exterior angle is 30 more then half the measure of the interior angle. What are the interior and exterior angles?

Answers

Answer:

Interior angle 100 degrees

Exterior angle 80 degrees

Step-by-step explanation:

we know that

The sum of an exterior angle of a triangle and its adjacent interior angle is 180 degrees.

we have that

[tex]10n+(5n+30)=180[/tex]

solve for n

[tex]10n+5n=180-30[/tex]

[tex]15n=150[/tex]

[tex]1n=10[/tex]

Find the measure of the interior angle

[tex]10n=10(10)=100^o[/tex]

Find the measure of the exterior angle

[tex](5n+30)=5(10)+30=80^o[/tex]

If 5x=y+75x=y+7, is (x−y)>0(x−y)>0? (1) xy=6xy=6 (2) xx and yy are consecutive integers with the same sign

Answers

Answer:

No. If 5x=y+7 then xy=6 and (2) x and y are consecutive integers with the same sign. for xy=6

Step-by-step explanation:

For the sake of clarity:

If 5x=y+7 then (x – y) > 0?

Alternatives:

(1) xy = 6  

(2) x and y are consecutive integers with the same sign

1) Consider (x-y)>0 as true:

[tex]xy=6[/tex] Numbers like, 3*2, 6*1, etc..

[tex]5x=y+7\Rightarrow \frac{5x}{5}=\frac{y+7}{5}\Rightarrow x=\frac{y+7}{5}\\Plugging\: in:\:\\\frac{y+7}{5}-y>0\Rightarrow \frac{y+7-5y}{5}>0\Rightarrow \frac{-4y+7}{5}>0\Rightarrow \frac{-4y+7}{5}*5>0*5\\-4y+7>0 *(-1)\Rightarrow 4y-7<0\:y>\frac{7}{4}\therefore y<1.75[/tex]

Since y in this hypothetical case is lesser then let's find x, let's plug in y 1 for a value lesser than 1.75:

Then xy≠6 and no and 8/5 (1.75) is a rational number. What makes false the second statement about consecutive integers.

So this is a Contradiction. (x-y) >0 is not true for 5x=x+7.

2) Consider:

x and y are consecutive integers with the same sign is true.

Algebraically speaking, two consecutive integers with the same sign can be  written as:

[tex]y=x+1[/tex]

Plugging in the first equation (5x=y+7):

5x=x+1+7⇒4x=8 ⇒x =2

Since y=3 then x=2 because:

[tex]3=x+1\\3-1=x+1-1\\2=x \Rightarrow x=2[/tex]

3) Testing it

[tex]5x=y+7\\\\5(2)=(3)+7\\\\10=10\:True[/tex]

[tex]xy=6\\2*3=6\\6=6[/tex]

The prism below has a volume of 21 cubic units.The base is a right triangle with legs that have lengths of 2 units and 3 units,Find the height of the prism

Answers

Answer:

The height of the prism is 7 unit  

Step-by-step explanation:

Given as :

The volume of right triangle prism = v = 21 cubic unit

The length of one base = [tex]b_1[/tex] = 2 unit

The length of other base = [tex]b_2[/tex] = 3 unit

Let The height of the prism = h unit

Now, According to question

Volume of prism = [tex]\dfrac{1}{2}[/tex] ×  [tex]b_1[/tex] ×  [tex]b_2[/tex]× height

Or, v =  [tex]\dfrac{1}{2}[/tex] ×  [tex]b_1[/tex] ×  [tex]b_2[/tex]× h

Or, 21 cubic unit =  [tex]\dfrac{1}{2}[/tex] × 2 unit × 3 unit × h unit

Or, 21 =  [tex]\dfrac{1}{2}[/tex] × 6 × h

Or, 21 = 3 × h

∴   h = [tex]\dfrac{21}{3}[/tex]

i.e h = 7 unit

So,The height of the prism = h = 7 unit

Hence, The height of the prism is 7 unit  Answer

Answer:

The base (b) of the triangle is  

✔ 3

units.

The height (h) of the triangle is  

✔ 5

units.

The area of the triangle is  

✔ 7.5

square units.

Step-by-step explanation:

simplify -6i(8-6i)(-8-8i)

Answers

Answer:

-96 + 672\,i

Step-by-step explanation:

This is a product of complex numbers, so we have in mind not only the general rules for multiplying binomials, but also the properties associated with the powers of the imaginary unit "i", in particular [tex]i^2=-1[/tex]

We start by making the first product indicated which is that of a pure imaginary number (-6i) times the complex number (8-6i). We use distributive property and obtain the new complex number that results from this product:

[tex]-6\,i\,(8-6\,i)= (-6\,i)\,* 8 \, -\,6\,i\,(-6\,i)=-48\,i+36\,i^2=-48\,i+36\,(-1)=-36-48\,i[/tex]

Now we make the second multiplication indicated (using distributive property as one does with the product of binomials), and combine like terms at the end:

[tex](-36-48\,i)\,(-8-8\.i)=(-36)\.(-8)+(-36)(-8\,i)+(-48\,i)\,(-8)+(-48\,i)(-8\,i)=\\=288+288\,i+384\,i+384\,i^2=288+288\,i+384\,i+384\,(-1)=\\=288-384+288\,i+384\,i=-96+672\,i[/tex]

Let a and b be real numbers satisfying a^3 - 3ab^2 = 47 and b^3 - 3a^2 b = 52. Find a^2 + b^2.

Answers

The value of a²+b² = -99/2.

Add the given equations:

a³ - 3ab² + b³ - 3a²b = 47 + 52

(a³ + b³) - 3ab(a + b) = 99

Factor the sum of cubes:

(a + b)(a² - ab + b²) - 3ab(a + b) = 99

(a + b)(a² - 4ab + b²) = 99

Square both given equations:

a⁶ - 6a⁴b² + 9a²b⁴ = 47²

b⁶ - 6a²b⁴ + 9a⁴b² = 52²

Add these two squared equations:

a⁶ + b⁶ - 6a²b⁴ + 9a²b⁴ - 6a⁴b² + 9a⁴b² = 47² + 52²

a⁶ + b⁶ + 3a⁴b² + 3a²b⁴ = 47² + 52²

Factor using sum of cubes:

(a² + b²)³ = 47² + 52²

Take the cube root of both sides:

a² + b² = ³√(47² + 52²)

Evaluate the cube root:

a² + b² ≈ -99/2

Calculate the slope of the line by applying the slope formula. Use the following two points to substitute into the slope formula. Point 1 (−2, 4) and Point 2 (4, −8) Identify the x-coordinates and y-coordinates to substitute in the formula.

x 1 =

Answers

Answer:

Slope intercept form -   y = −2x

Slope is m = −2  

P1(-2,4)P2(4,-8)

Slope

m=y2-y1/x2-x1m=-8-4/4+2m=-12/6m=-2

On the first day of a marketing campaign, a team sent a total of 14 emails to potential clients. Their goal is to increase the number of emails sent per day by 15 each day. If the team met but did not exceed this goal, how many emails, in total, did it send during the 30 day marketing campaign?

Answers

Answer:it sent 6945 during the 30 day marketing campaign

Step-by-step explanation:

Their goal is to increase the number of emails sent per day by 15 each day. The rate at which they increased the number of mails sent is in arithmetic progression.

The formula for determining sum of n terms of an arithmetic sequence is expressed as

Sn = n/2[2a + (n - 1)d]

Where

a represents the first term of the sequence.

n represents the number of terms.

d = represents the common difference.

From the information given

a = 14

d = 15

n = 30

We want to find the sum of 30 terms, S30. It becomes

S30 = 30/2[2 × 14 + (30 - 1)15]

S30 = 15[28 + 435]

S30 = 6945

Tyler owns a major medical policy with 70/30 coinsurance and a $3,000 deductible. If he submits a claim for $20,000, how much will he pay?

Answers

Answer:

$8,100

Step-by-step explanation:

Tyler owns a major medical policy with 70/30 coinsurance and a $3,000 deductible. If he submits a claim for $20,000, how much will he pay?

Tyler pays $8,100.

It can be calculated thus as $20,000 - $3,000 = $17,000.

So $17,000 x .30 = $5,100.

The sum of  $3,000 deductible with the $5,100 coinsurance

($3,000 + $5,100= $8,100).

The correct answer is: $8,100  

Insurance is a from of protection against financial loss. it is a type of risk management strategy used by businesses and individual entities.The entity that provides insurance is known as an Insurer

Justin earns $8 an hour for the first 40 hours he works and $12 for each additional hour. How much will justin earn for a week in which he worked 48 hours

Answers

Answer:

Step-by-step explanation:

Let x represent the number of hours that Justin works in a week.

Let y represent the total amount that Justin would receive for working for x hours.

Justin earns $8 an hour for the first 40 hours he works and $12 for each additional hour. This means that the total amount that he earns in a week would be

y = 8×40 + 12(x - 40)

y = 320 + 12(x - 40)

If he earns 48 hours in a week, the total amount that he earned would be

320 + 12(48 - 40) = $416

Other Questions
Text-to-self connections are made when the reader connects something in the text toA. something that happened in historyB. something that happened in another textC. something the reader has experiencedD. something the reader has watched or read Which are equivalent ratios to 7:13? Reginald's camera always makes a clicking noise just before the flash goes off. After taking many pictures of his little brother Devin, he presses the button, the camera clicks, but the flash does not go off. Despite this, Devin blinks just as he did when the flash was working. This is an example of ______ conditioning, and the flash is the ______. Which of the following statements reflects Theodore Roosevelts position on big business This table gives a few (z,y) pairs of a line in the coordinate plane.-56 66-42 58-28 50What is the y-intercept of the line? Lamont Communications has amortized a patent on a straight-line basis since it was acquired in 2010 at a cost of $50 million. During 2013 management decided that the benefits from the patent would be received over a total period of 8 years rather than the 20-year legal life being used to amortize the cost. Lamont's 2013 financial statements should include: A) A patent balance of $50 million. B) Patent amortization expense of $2.5 million. C) Patent amortization expense of $5 million. D) A patent balance of $34 million. April works at the grocery store. She needs to move a heavy crate of bananas (m = 65 kg) to the produce section. She drags the crate along the floor by applying a force of 280 N at an angle of 35 above the horizontal.a. If there is no friction, what is the acceleration of the crate? (5 points)280/65=4.3b. If the coefficient of kinetic friction between the crate and the floor is 0.4, what is the acceleration of the crate? (5 points) What is 20 minus 5 as distributive property Suppose 1 and 2 are true mean stopping distances at 50 mph for cars of a certain type equipped with two different types of braking systems. The data follows: m = 5, x = 114.1, s1 = 5.08, n = 5, y = 129.9, and s2 = 5.37. Calculate a 95% CI for the difference between true average stopping distances for cars equipped with system 1 and cars equipped with system 2. (Round your answers to two decimal places.) Two long thin parallel wires 13.0 cm apart carry 25-A currents in the same direction.1. Determine the magnitude of the magnetic field vector at a point 10.0 cm from one wire and 6.0 cm from the other.2. Determine the direction of the magnetic field vector at that point. According to the recipe, when making icing for the clairs, the sugar mixture should be removed from heat A)after it cools. B)when it thickens. C)in eight minutes. D)as soon as it boils. Question 1 of 52 PointsWhat is the simplified fractional equivalent of the terminating decimal 0.25?OO A.CINNICTOO c. 1O D. 25SUBMIT plz hurry!!!! thank you!!!! Regarding the various types of clemency, if a prisoner receives a reprieve, he or she is ____________. line m passes through the points -2,7 and 4,-5 as shown below. PLEASE HELP SOSWhat type of exponential function is f(x) = 0.3(2.6)^x?What is the function's percent rate of change?Select from the drop-down menus to correctly complete each statement. Activities which are profit-motivated, but do NOT require a relatively high level of involvement from the taxpayer are referred to as investmentactivities.Which of the following statements is NOT accurate regarding the deduction for qualified education loan interest? The full amount of interest paid on qualified educational loans is deductible.A) Andrew volunteered for the American Red Cross B) $1,500 charged to the credit card during the yearC) Mileage for the 200 miles he drove to the ravaged areaD) The cost of lodging while he is volunteering Jack has been released from confinement early and placed on probation. He found a job and rented an apartment in his hometown. One day, he responded to a knock on the door and sees his probation officer, Stephanie Stone. She tells him that she has decided to conduct a surprise inspection of his home. Jack insists that he has been a very good citizen and is no longer involved in any criminal behavior. Stephanie has no evidence that this is not true, but insists on conducting a complete search of the home anyway. Stephanie finds nothing out of the ordinary, but asks if Jack will follow her to the office for a drug test, just in case. Jack says, "Sure, I have nothing to hide." Unfortunately for Jack, the drug test is positive for an illegal substance and his parole is revoked.Was Parole Officer Stone's search of Jack's apartment lawful? Which symbol in a chemical equation separates the reactants from the products?11 TAI + Samantha Rodriguez had gross earnings for the pay period ending 10/15/19 of $5,785. Her total gross earnings as of 9/30/19 were $116,700. Social Security taxes are 6.2% on a maximum earnings of $122,700 per year. The Social Security tax due by her employer from her 10/15/19 paychecks is:______ A. $372.00 B. $61.07 C. $358.67 D. $442.55 Steam Workshop Downloader