Answer:
126 = 2w² -36w21 inchesStep-by-step explanation:
The length is described as 4(-9 +w/2), which simplifies to 2w-36. The area is the product of length and width, so is ...
Area = width×length
126 = w(2w -36) = 2w² -36w
__
This equation can be divided by 2, then the square completed to give ...
w² -18w = 63
w² -18w +81 = 144 . . . . add 81 to complete the square
(w -9)² = 12² . . . . . . . . . show as squares
w -9 = 12 . . . . . . . . . . . . take the positive square root
w = 12 +9 = 21
The width of the placemat is 21 inches.
Answer:
[tex]126in^2=2w^2-36w[/tex] and w= 21 inches.
Step-by-step explanation:
The placemat has an area of [tex]126in^2[/tex]. Now, let's call w to the width, the exercise says that the length of the placemat is four times the quantity of nine less than half its width, that is
length = 4(w/2-9).
Now, the area is length*width, so
[tex]A=w*4(\frac{w}{2}-9)= \frac{4w^2}{2}-36w = 2w^2-36w.[/tex]
and we know that [tex]A=126in^2[/tex], so
[tex]126in^2=2w^2-36w.[/tex]
Now, let's find the solution.
[tex]2w^2-36w-126=0[/tex] is a quadratic formula of the form [tex]ax^2+bx+c[/tex] with a=2, b= -36 and c = -126. The solutions will be
[tex]w=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]w=\frac{-(-36)\pm\sqrt{36^2-4(2)(-126)}}{2a}[/tex]
[tex]w=\frac{36\pm\sqrt{1296+1008}}{2*2}[/tex]
[tex]w=\frac{36\pm\sqrt{2304}}{4}[/tex]
[tex]w=\frac{36\pm48}{4}[/tex]
[tex]w=\frac{36+48}{4}[/tex] or [tex]w=\frac{36-48}{4}[/tex]
[tex]w=\frac{84}{4}[/tex] or [tex]w=\frac{-12}{4}[/tex]
as we are searching a distnace, we are going to use the positive solution, that is
[tex]w=\frac{84}{4}= 21.[/tex]
Then, the width is 21 inches.
Write an exponential function whose graph contains the points (1, 6) and (0, 2).
Answer:
y = 2 [tex](3)^{x}[/tex]
Step-by-step explanation:
The exponential function is of the form
y = a [tex](b)^{x}[/tex]
To find a and b substitute the given points into the equation
Using (0, 2), then
2 = a [tex](b)^{0}[/tex] ⇒ a = 2
Using (1, 6), then
6 = 2 [tex](b)^{1}[/tex] ⇒ b = 3
Equation is y = 2 [tex](3)^{x}[/tex]
Indicate in standard form the equation of the line through K(6,4) L(-6,4)
[tex]\bf (\stackrel{x_1}{6}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{-6}~,~\stackrel{y_2}{4}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{4-4}{-6-6}\implies \cfrac{0}{-12}\implies 0 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-4=0(x-6)\implies y-4=0\implies y=4[/tex]
Answer: [tex]y-4=0[/tex]
Step-by-step explanation:
The equation of line passing through two points (a,b) and (c,d) is given by :-
[tex](y-b)=\dfrac{d-b}{c-a}(x-a)[/tex]
The standard form of equation of a line is given by :-
[tex]Ax+By+C=0[/tex], where A , B , and C are integers.
Then , the equation of line passing through two points K(6,4) and L(-6,4) is given by :-
[tex](y-4)=\dfrac{4-4}{-6-6}(x-6)\\\\\Rightarrow\ y-4=(0)(x-6)\\\\\Rightarrow\ y-4=0[/tex]
what are the roots of the equation
[tex] {x}^{2} - 16x + 89 = 0[/tex]
in simplest a+bi form?
By completing the square,
[tex]x^2-16x+89=x^2-16x+64+25=(x-8)^2+25=0[/tex]
[tex](x-8)^2=-25[/tex]
[tex]x-8=\pm\sqrt{-25}[/tex]
[tex]x=8\pm5i[/tex]
A family has two cars. The first car has a fuel efficiency of
25
miles per gallon of gas and the second has a fuel efficiency of
15
miles per gallon of gas. During one particular week, the two cars went a combined total of
1025
miles, for a total gas consumption of
55
gallons. How many gallons were consumed by each of the two cars that week?
Answer:
15x+25y=975
x+y=55
Rearrange equation two so x is by itself.
x=-y+55
Plug the rearranged equation two into equation one.
15(-y+55)+25y=975
Evaluate the 'new' equation 1.
-15y+825+25y=975
10y+825=975
10y=150
y=15
Choose an equation to evaluate with y to get x. (i chose equation 2 because it was easier)
x+15=55
Evaluate the equation
x=55-15
x=40
So now we have x=40 and y=15
Evaluate those two terms with both equations to check the correctness.
15(40)+25(15)=975
600+375=975
975=975 (correct)
40+15=55
55=55 (correct)
Both equations are correct so the values of x and y are true.
Please mark as brainliest. :)
A chemical company makes two brands of antifreeze. The first brand is 65% pure antifreeze, and the second brand is 90% pure antifreeze. In order to obtain 40 gallons of a mixture that contains 80% pure antifreeze, how many gallons of each brand of antifreeze must be used?
[tex]\bf \begin{array}{lcccl} &\stackrel{solution}{gallons}&\stackrel{\textit{\% of }}{antifreeze}&\stackrel{\textit{gallons of }}{antifreeze}\\ \cline{2-4}&\\ \textit{1st brand}&x&0.65&0.65x\\ \textit{2nd brand}&y&0.90&0.9y\\ \cline{2-4}&\\ mixture&40&0.8&32 \end{array}~\hfill \to \begin{cases} x+y&=40\\ \boxed{x}=40-y\\ \cline{1-2} 0.65x+0.9y&=32 \end{cases} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\bf \stackrel{\textit{substituting in the 2nd equation}}{0.65\left( \boxed{40-y} \right)+0.9y=32}\implies 26-0.65y+0.9y=32 \\\\\\ 26+0.25y=32\implies 0.25y=6\implies y=\cfrac{6}{0.25}\implies \blacktriangleright y=24 \blacktriangleleft \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{since we know that}}{x=40-y\implies }x=40-24\implies \blacktriangleright x=16 \blacktriangleleft[/tex]
Answer:
it should be used 16 gallons of 65% pue antifreeze and 24 gallons of 80% antifreeze.
Step-by-step explanation:
Let 'x' = amount of 65% antifreeze.
Let 'y' = amount of 90% antifreeze.
We need to obtain 40 gallons of mixture, then:
x + y = 40 gallons [1]
Also we know that the mixture should contain 80% pure antifreeze, then:
0.65x + 0.9y = 0.80(x+y) → 0.15x = 0.1y → y = 1.5x [2]
Now, subtituting the value of 'y' into [1]:
x + y = 40 gallons → x + 1.5x = 40 gallons → 2.5x = 40 gallons
⇒ x = 16 gallons.
Then: y = 40 - 16 = 24 gallons.
Now, it should be used 16 gallons of 65% pue antifreeze and 24 gallons of 80% antifreeze.
Evaluate 3(a + b + c) 2 for a = 2, b = 3, and c = 4.
Answer:
54
Step-by-step explanation:
Given:
[tex]3(a + b + c) 2[/tex]
Input the numbers provided into the equation
3(2 + 3 + 4)2
Add all of the numbers inside the parentheses
3(9)2
Multiply
3 * 2 = 6
6 * 9 = 54
Hey there! :)
3(a + b + c)2 ; when a = 2, b = 3, c = 4
In order to evaluate this, we simply need to plug everything in then simplify/
3(2 + 3 + 4)2
Simplify everything inside the parenthesis first.
3(9)2
Simplify.
27 × 2
Simplify.
54 is our final answer.
Hope this helped! :)
which parent function is an example of a piecewise function?
Answers:
Linear parent function
Quadratic parent function
An Exponential parent function
Absolute value parent function
pls helppp I’m sorry if this doesn’t make sense
The correct option is Absolute value parent function. The absolute value parent function is a piecewise function because it is defined by different expressions depending on whether the input is positive or negative. In contrast, linear, quadratic, and exponential functions are defined by a single expression over their entire domains and are not piecewise.
The absolute value parent function is an example of a piecewise function. A piecewise function is a function that is defined by multiple sub-functions, each applied to a certain interval of the domain.
On the contrary, linear, quadratic, and exponential parent functions have a single expression defining them throughout their domain.
Linear functions, such as y = ax + b, have a constant rate of change and are not piecewise. Quadratic functions, like y = ax^2 + bx + c, create parabolas and are also defined by a single expression over their entire domain. Exponential functions, such as y = b^x, grow by a consistent percentage rate and are continuous and not piecewise.
Which are factors of x2 – 4x – 5? Check all that apply.
1.) (x – 5)
2.) (x – 4)
3.) (x – 2)
4.) (x + 1)
5.) (x + 5)
Ask: Which two numbers add up to -4 and multiply to -5?
-5 and 1
Rewrite the expression using the above
= (x - 5) and (x + 1)
When you shift a function you are
Answer:
translating it
Step-by-step explanation:
Shifting a function, in mathematics and economics, refers to the process through which the entire graph or model of a function is moved either up, down, left or right. A phase shift, commonly noted by φ, is an example of this, seen when aligning a cosine or sine function with initial conditions of data. In economics, factors like income, household preferences and taxes cause shifts in the consumption function.
Explanation:When you shift a function in mathematics, you are essentially moving the entire graph of the function either up, down, left, or right. This is done by altering the function equation. For instance, the position of a block on a spring, modeled by a periodic function like a cosine function, can be shifted to the right. This rightward shift is termed a phase shift, typically denoted by the Greek letter phi (φ). The equation for the position as a function of time for the block becomes x(t) = Acos(wt + φ), where φ reflects the phase shift.
A shift in a function can also occur under economic contexts. Factors besides income can trigger the entire consumption function to shift, either parallelly up or down or make the slope of the consumption function steeper or flatter.
Shifting of functions is a crucial concept, whether we're handling a cosine or sine function to align the function with data's initial conditions or in economical situations where changes in income, taxes, or household preferences could cause significant shifts in the consumption function.
Learn more about Shift in Functions here:https://brainly.com/question/29028605
#SPJ3
Find the image of (1, 2) after a reflection about x= 3 followed by a reflection about x= 7.
Please Help!!!
Answer:
(9,2)
Step-by-step explanation:
(1,2) is reflected over vertical line x=3 which means since (1,2) is 2 units over from x=3 that the reflection is going to be 2 units over in the other direction from x=3 so the first image is (5,2)
Now the last image is processed by a reflection through vertical line x=7
(5,2) is 2 units from x=7 so the reflection will also be 2 units from the vertical line x=7 so the final image is (9,2).
Answer (9,2)
Answer:
(9, 2 )
Step-by-step explanation:
Under a double reflection in 2 parallel vertical lines
The y- coordinate remains unchanged
The x- coordinate is twice the difference of the parallel lines added to the original x- coordinate, that is
image = (1 + 2(7 - 3), 2 ) = (1 + 8, 2) = (9, 2 )
What is the parabolas line of symmetry
Final answer:
The line of symmetry of a parabola is a vertical line that passes through its vertex, dividing the parabola into two equal halves. This line of symmetry can be determined mathematically for a parabolic equation by the formula x = -b/(2a). Symmetry plays an important role in the behavior of optical devices such as spherical and parabolic mirrors.
Explanation:
The line of symmetry of a parabola is a vertical line that passes through its vertex, and it divides the parabola into two mirror-image halves. This line is also known as the axis of symmetry. For a parabola described by the equation y = ax² + bx + c, the axis of symmetry can be found using the formula x = -b/(2a), where a, b, and c are coefficients in the quadratic equation, representing the parabola's concavity, slope at the vertex, and the y-intercept, respectively.
In the context of optical devices like mirrors and lenses, the concept of symmetry is crucial. For instance, a spherical mirror reflects rays in a way that demonstrates symmetry with respect to its optical axis. When a parabolic mirror is used, all parallel rays of light are reflected through its focal point, illustrating how symmetry is a fundamental principle in both nature and physics.
Just like in nature, where symmetrical patterns can be seen in butterfly wings and other complex systems, symmetry in mathematical terms is significant and pervasive, revealing fundamental properties of the objects and phenomena in question.
156
364
Question 4 (5 points)
In a survey, 60% of those questioned chose winter as their favorite season. If 48 people chose
winter, then how many people were surveyed?
29
32.
80
128
Question 5 (5 points)
Answer:
Third option: 80 people.
Step-by-step explanation:
Let be "x" the number of people that were surveyed.
You know that 48 people chose winter as their favorite season and these amount of people are the 60% of those questioned.
Knowing this, you can calculate the number of people that were surveyed with this procedure:
[tex]x=\frac{(48\ people)(100\%)}{60\%}\\\\x=(48\ people)(\frac{5}{3})\\\\x=80\ people[/tex]
Therefore, 80 people were surveyed. This matches with the third option.
Which of the following is true about the function below? 1/sqrt x+10
Answer:
what are the questions about it? cant answer if there are no questions
Step-by-step explanation:
Answer:
its domain isn (-10,∞) and its range is (0,∞)
Step-by-step explanation:
if this is the a.pex question regarding what is true about the function below, here you go
which table represents vaiable solution for y=5x, where x is the number of tickets sold for the school play and y is the amount of money collected for the tickets?
Answer:
The answer is the first table: (0, 0), (10, 50), (51, 255), (400, 2000)
Step-by-step explanation:
Let's check all of the tables:
Table 1:
x = 0, y = 0 ⇒ 0 = 5 · 0 ⇒ 0 = 0
x = 10, y = 50 ⇒ 50 = 5 · 10 ⇒ 50 = 50
x = 51, y = 255 ⇒ 255 = 5 · 51 ⇒ 255 = 255
x = 400, y = 2000 ⇒ 2000 = 5 · 400 ⇒ 2000 = 2000
mac is 5 feet tall and cast a 4 foot 6 inch shadow. at the same time a nearby tree casts a 20 foot shadow what’s the closest high to the tree
By using the principles of similar triangles and setting up a ratio based on the given information, we can determine that the tree is approximately 22.22 feet tall.
Explanation:We can solve this problem using similar triangles. In this case, the person (Mac) and his shadow form one triangle, while the tree and its shadow form another triangle. It's given that Mac is 5 feet tall and casts a 4 foot 6 inch (or 4.5 feet) shadow. At the same time, a nearby tree casts a 20 foot long shadow. The question asks, how tall is the tree?
What we need to do here is simple: set up a proportion using the ratios of the lengths of the sides of these two triangles. The ratio is height to shadow. So, let's use the information given:
Ratio for Mac and his shadow: 5 feet/4.5 feet.Ratio for tree and its shadow: let's represent the unknown height of the tree as 'T' in feet. So, the ratio for the tree and its shadow becomes T feet/20 feet.Equating both ratios gives us: 5/4.5 = T/20. Solving this equation for 'T' will give us the height of the tree in feet.
Therefore, to compute 'T', cross multiply to get: T = (5*20)/4.5 = 22.22 feet approximately.
So, the tree is approximately 22.22 feet tall.
Learn more about Similar Triangles here:https://brainly.com/question/32489731
#SPJ2
(06.03)
How can one half x − 5 = one third x + 6 be set up as a system of equations? (6 points)
Answer:
yes it can
Step-by-step explanation:
1/2x-5=1/3x+6
Answer: third option.
Step-by-step explanation:
[tex]\frac{1}{2}x-5=\frac{1}{3}x+6[/tex] can be rewritten into two separate equationts:
[tex]\left \{ {{ y=\frac{1}{2}x-5} \atop {y=\frac{1}{3}x+6}} \right.\\\\[/tex]
You can observe that this linear equations are written in Slope-Intercept form:
[tex]y=mx+b[/tex]
But the equations shown in options provided are written in Standard form:
[tex]Ax+By=C[/tex]
Therefore, you need to move the x term to the left side of the equation (In each equation):
- For the first equation:
[tex]y-\frac{1}{2}x=-5[/tex]
Simplifying:
[tex]\frac{2y-x}{2}=-5\\\\2y-x=-10[/tex]
- For the second equation:
[tex]y-\frac{1}{3}x=6[/tex]
Simplifying:
[tex]\frac{3y-x}{3}=6\\\\3y-x=18[/tex]
Then the system of equations is:
[tex]\left \{ {{2y-x=-10} \atop {3y-x=18}} \right.[/tex]
Two pools are being filled with water. Pool A
is filled at a rate of 3 gallons every hour. Pool
B is filled at a rate of 4 gallons every 1 hour.
Which expression is correct for the pool that is
filling faster?
I need help
Answer:Pool B is being filled quicker
Step-by-step explanation: It is being filled quicker because 4 is a bigger number than 3 so there is your answer
For which function is f(x) equal to f'(x)?
Answer:
f(x) = [tex]e^{x}[/tex]
Step-by-step explanation:
The only function that has it;s derivative equal to the function is the exponential function.
That is f(x) = f'(x) = [tex]e^{x}[/tex]
Solve 4(1-x) + 3x = -2(x + 1)
Answer:
-2 = x
Step-by-step explanation:
4(1-x)+3x = -2(x+1) Distribute
4 - 4x + 3x = -2x -2 Combine Like Terms (On the same sides of the equal sign)
4 -x = -2x -2 Combine Like Terms (On different sides of the equal sign)
4 = -3x - 2 Solve
6 = -3x
-2 = x
Final answer:
The solution to the equation 4(1-x) + 3x = -2(x + 1) is found to be x = -6, after simplifying and checking by substitution back into the original equation, which confirms the solution by resulting in an identity.
Explanation:
To solve the equation 4(1-x) + 3x = -2(x + 1), we need to expand and simplify our equation:
4 - 4x + 3x = -2x - 2
4 - x = -2x - 2
Adding 2x to both sides we get:
4 + x = -2
Now subtracting 4 from both sides, we obtain:
x = -6
We then check this solution by plugging it back into the original equation, confirming that it simplifies to an identity. Therefore, x = -6 is the correct solution.
Select all functions that have a y-intercept of (0,5).
f(x)=7(b)^x-2
f(x)=-3(b)^x-5
f(x)=5(b)^x-1
f(x)=-5(b)^x+10
f(x)=2(b)^x+5
Answer:
[tex]f(x)=7(b)^{x}-2[/tex]
[tex]f(x)=-5(b)^{x}+10[/tex]
Step-by-step explanation:
we know that
The y-intercept is the value of y when the value of x is equal to zero
Verify each case
case 1) we have
[tex]f(x)=7(b)^{x}-2[/tex]
so
For x=0
[tex]f(0)=7(b)^{0}-2[/tex]
[tex]f(0)=7(1)-2=5[/tex]
therefore
The function has a y-intercept of (0,5)
case 2) we have
[tex]f(x)=3(b)^{x}-5[/tex]
so
For x=0
[tex]f(0)=3(b)^{0}-5[/tex]
[tex]f(0)=3(1)-5=-2[/tex]
therefore
The function does not have a y-intercept of (0,5)
case 3) we have
[tex]f(x)=5(b)^{x}-1[/tex]
so
For x=0
[tex]f(0)=5(b)^{0}-1[/tex]
[tex]f(0)=5(1)-1=4[/tex]
therefore
The function does not have a y-intercept of (0,5)
case 4) we have
[tex]f(x)=-5(b)^{x}+10[/tex]
so
For x=0
[tex]f(0)=-5(b)^{0}+10[/tex]
[tex]f(0)=-5(1)+10=5[/tex]
therefore
The function has a y-intercept of (0,5)
case 5) we have
[tex]f(x)=2(b)^{x}+5[/tex]
so
For x=0
[tex]f(0)=2(b)^{0}+5[/tex]
[tex]f(0)=2(1)+5=7[/tex]
therefore
The function does not have a y-intercept of (0,5)
A new landowner is interested in constructing a fence around the perimeter of her property. Her property is 1,080√30
feet wide and 500√20 feet long. What is the perimeter of the property? (Recall that the perimeter is the sum of each
side of a shape or boundary).
A 1,580√40 feet
B. 5,320√5 feet
C. 3,160√20 feet D. 10,640√5 feet
Answer:
16302.9432 ft
Step-by-step explanation:
P = 2L + 2W
Where P is the perimeter, L is the length and W is the width
P = 2(1080√30) + 2(500√20) = 16302.9432 ft
Answer:
D
Step-by-step explanation:
took the test :)
What transformation were applied to ABCD to obtain A’B’C’D?
Answer:
Rotation 90 degree counterclockwise then 2 units up.
Step-by-step explanation:
Given : Quadrilateral ABCD and A'B'C'D'.
To find: What transformation were applied to ABCD to obtain A’B’C’D.
Solution: We have given
A (3,6) →→ A'(-6,5)
B( 3,9)→→ B'(-9 ,5)
C(7,9)→→C'(-9 ,9)
D(7,6)→→D'(-6,9)
By the 90 degree rotational rule : (x ,y) →→(-y ,x) and unit 2 unit up
A (3,6) →→ A'(-6,3) →→ A'(-6,3+2)
B( 3,9)→→ B'(-9 ,3)→→ B'(-9 ,3+2)
C(7,9)→→C'(-9 ,7) →→C'(-9 ,7+2)
D(7,6)→→D'(-6,7)→→D'(-6,7+2)
Therefore, Rotation 90 degree counterclockwise then 2 units up.
The transformation applied is Rotation 90 degree counterclockwise then 2 units up.
What are coordinates?A coordinate system in geometry is a system that employs one or more integers, or coordinates, to define the position of points or other geometric components on a manifold such as Euclidean space.
The transformation which was applied to ABCD to obtain A’B’C’D be found by finding the change in the coordinates of the quadrilateral. Therefore,
A (3,6) ⇒ A'(-6,5)B( 3,9) ⇒ B'(-9 ,5)C(7,9) ⇒ C'(-9 ,9)D(7,6) ⇒ D'(-6,9)As it is observed that the change in the coordinate is 90 degrees counterclockwise then 2 units up. Therefore, the transform of the coordinates can be done as (x ,y)⇒(-y ,x)⇒(-y, x+2).
A (3,6) ⇒ A'(-6,3+2)B( 3,9) ⇒ B'(-9 ,3+2)C(7,9) ⇒ C'(-9 ,7+2)D(7,6) ⇒ D'(-6,7+2)Since the condition holds true, it can be concluded that the transformation applied is Rotation 90 degree counterclockwise then 2 units up.
Learn more about Coordinates:
https://brainly.com/question/23450276
#SPJ5
Which ordered pair is a solution of the equation?
y + 5 = 2(2+1)
Choose 1 answer
®
Only (5,10
®
Only (-1,-5)
©
Both (5, 10) and (-1,-5)
0
Neither
Answer:
neither
Step-by-step explanation:
y would 1 but there is no x
Answer:(-1,-5)
Step-by-step explanation:
Because that's how math works. Its also what Khan Academy says soooo...
Subtract the second equation from the first 4x+3y=17-(4x+y=9)
Answer:
[tex]2y=8[/tex]
Step-by-step explanation:
The given equations are:
[tex]4x+3y=17[/tex]
and
[tex]4x+y=9[/tex]
We subtract the second equation from the first equation to get:
[tex]4x-4x+3y-y=17-9[/tex]
This simplifies to:
[tex]2y=8[/tex]
When we subtract the second equation from the first one, we get:
[tex]2y=8[/tex]
Someone plz help me
Answer:
The answer is the third option- (24n,when n=4.8 the value is 5)
I would recommended reading over the lesson again and maybe watching some videos to help you to grasp the material.
hope this helps!
Please help me !!!!!
Answer:
the answer is 12
Step-by-step explanation:
Answer:
Second option
[tex]x =9[/tex]
Step-by-step explanation:
To solve this problem we use the secant theorem.
If two secant lines intersect with a circumference, the product between the segment external to the circumference and the total segment in one of the secant lines is equal to the product of the corresponding segments in the other secant line.
This means that
[tex](5+4)*4 = (x+3)*3[/tex]
Now we solve the equation for the variable x
[tex](9)*4 = (x+3)*3[/tex]
[tex]36 = 3x + 9[/tex]
[tex]36-9 = 3x[/tex]
[tex]3x =27[/tex]
[tex]x =9[/tex]
Simplify 5 square root of 7 end root plus 12 square root of 6 end root minus 10 square root of 7 end root minus 5 square root of 6 . (1 point) 5 square root of 14 end root minus 7 square root of 12 5 square root of 7 end root minus 7 square root of 6 7 square root of 12 end root minus 5 square root of 14 7 square root of 6 end root minus 5 square root of 7
Answer:
So, the simplified version is
[tex]-5\sqrt{7}+7\sqrt{6}[/tex]
In words it can be written as minus 5 square root of 7 end root plus 7 square root of 6 end root
Step-by-step explanation:
[tex]5\sqrt{7}+12\sqrt{6}-10\sqrt{7}-5\sqrt{6}[/tex]
We need to simplify the above expression.
Combining the like terms of the above expression.
Like terms are those that have same variables.
[tex]=(5\sqrt{7}-10\sqrt{7})+(12\sqrt{6}-5\sqrt{6})[/tex]
[tex]=((5-10)(\sqrt{7})+((12-5)(\sqrt{6}))[/tex]
[tex]=((-5)(\sqrt{7})+((7)(\sqrt{6}))[/tex]
So, the simplified version is
[tex]-5\sqrt{7}+7\sqrt{6}[/tex]
In words it can be written as minus 5 square root of 7 end root plus 7 square root of 6
Factor completely.
-2k - k 3 - 3k 2
a.) k(-k + 1)(k - 2)
b.) -k(k - 1)(k - 2)
c.) -k(k + 1)(k + 2)
Answer:
-k (k+1) (k+2)
Step-by-step explanation:
-2k - k³ - 3k² (factor-k out)
-k (2 + k² + 3k) (rearrange to standard quadratic form)
-k (k² + 3k + 2) (factor expression inside parentheses using your favorite method)
-k (k+1) (k+2)
Answer:
Option c.
Step-by-step explanation:
The given expression is
[tex]-2k-k^3-3k^2[/tex]
We need to find the factor form of the given expression.
Taking out HCF.
[tex]-k(2+k^2+3k)[/tex]
Arrange the terms according to there degree.
[tex]-k(k^2+3k+2)[/tex]
Splitting the middle terms we get
[tex]-k(k^2+2k+k+2)[/tex]
[tex]-k((k^2+2k)+(k+2))[/tex]
[tex]-k(k(k+2)+(k+2))[/tex]
[tex]-k(k+1)(k+2)[/tex]
The factor form of given expression is -k(k+1)(k+2). Therefore, the correct option is c.
What is the true solution to In 20+ In 5 = 2 In x?
X5
x= 10
X = 50
X=100
Answer:
for this question the correct answer is x= 10
Step-by-step explanation:
The true value of the equation In 20+ In 5 = 2 In x is x=10.
What is logaritmic function?
It is a function which is denoted through log or ln.
How to solve logarithmic function?
We have been given a log equation
log20+log5=2logx (log m +log n =log(mn))
log(20*5)=2logx
log(100)=2logx
log[tex](10)^{2}[/tex]=2logx (log[tex]m^{n}[/tex]=nlogm)
2 log 10=2 log x
x=10
Hence the required answer is x=10
Learn more about logarithmic functions at https://brainly.com/question/13473114
#SPJ2
Two lines intersect at a:
• A. ray
• B. line
• C. point
• D. plane