If z= 0.65, then the raw score is 0.65 standard deviations above the mean. True or false? explain

Answers

Answer 1

Answer:

True, this is the meaning of the z-score. Z = 0.65 means that the raw score is 0.65 standard deviations above the mean.

Step-by-step explanation:

The Z-score measures how many standard deviations a raw score is from the mean.

For example, a z-score of -2 means that the raw score is 2 standard deviations below the mean.

Another example, a z-score of 2 means that the raw score is 2 standard deviations above the mean.

If z= 0.65, then the raw score is 0.65 standard deviations above the mean.

True, this is the meaning of the z-score. Z = 0.65 means that the raw score is 0.65 standard deviations above the mean.


Related Questions

Annuity A pays 1 at the beginning of each year for three years. Annuity B pays 1 at the end of each year for four years. The Macaulay duration of Annuity A at the time of purchase is 0.93. Both annuities offer the same yield rate. Calculate the Macaulay duration of Annuity B at the time of purchase.

Answers

Answer:

Calculate the Macaulay duration of Annuity B at the time of purchase is 1.369.

Step-by-step explanation:

First, we use 0.93 to calculate the v which equals 1/(1+i).

[tex]\frac{0+1*v+2v^{2} }{1+v+v^{2} }[/tex] = 0.93

After rearranging the equation, we get 1.07[tex]v^{2}[/tex] + 0.07v - 0.93=0

So, v=0.9

Mac D: [tex]\frac{0+1*v+2*v^{2}+ 3*v^{2} }{1+v+v^{2}+ v^{3} }[/tex]

After substituting the value of v, we get Mac D = 1.369.

Consider the given function and the given interval. f(x) = 6 sin(x) − 3 sin(2x), [0, π]


(a) Find the average value fave of f on the given interval.

(b) Find c such that fave = f(c). (Round your answers to three decimal places.)

Answers

Answer:

(a) The average value of the given function is 12/π

(b) c = 1.238 or 2.808

Step-by-step explanation:

The average value of a function on a given interval [a, b] is given as

f(c) = (1/(b - a))∫f(x)dx;

from x = b to a

Now, given the function

f(x) = 6sin(x) - 3sin(2x), on [0, π]

The average value of the function is

1/(π-0) ∫(6sinx - 3sin2x)dx

from x = 0 to π

= (1/π) [-6cosx + (3/2)cos2x]

from 0 to π

= (1/π) [-6cosπ + (3/2)cos 2π - (-6cos0 + (3/2)cos0)]

= (1/π)(6 + (3/2) - (-6 + 3/2) )

= (1/π)(12) = 12/π

f(c) = 12/π

b) if f_(ave) = f(c), then

6sinx - 3sin2x = 12/π

2sinx - sin2x = 4/π

But sin2x = 2sinxcosx, so

2sinx - 2sinxcosx = 4/π

sinx - sinxcosx = 2/π

sinx(1 - cosx) = 2/π

This equation can only be estimated to be x = 1.238 or 2.808

Solving sin(x)(1 - cos(x)) = 2/π on [0, π] yields x = π/2 as the only solution. This corresponds to approximately 1.5708, satisfying the given equation.

To solve the equation sin(x)(1 - cos(x)) = 2/π, we can use the double-angle identity for sine, which states that sin(2x) = 2sin(x)cos(x). Rewrite the equation in terms of sin(2x):

sin(x)(1 - cos(x)) = 2/π

sin(x) - sin(x)cos(x) = 2/π

Now, substitute sin(x) = 2/π into the equation:

(2/π) - (2/π)cos(x) = 2/π

Multiply both sides by π to simplify:

2 - 2cos(x) = 2

Subtract 2 from both sides:

-2cos(x) = 0

Divide by -2:

cos(x) = 0

Now, find the values of x where cos(x) = 0, which occurs at x = π/2 and 3π/2. Since we are looking for solutions in the interval [0, π], x = π/2 is the only valid solution.

So, the solution to the equation sin(x)(1 - cos(x)) = 2/π on the interval [0, π] is x = π/2, which is approximately 1.5708.

To learn more about equation

https://brainly.com/question/29174899

#SPJ6

Determine whether each pair of triangles is similar. If yes, state the similarity property that supports it, if not, explain why.

Answers

Answer:

Step-by-step explanation:

If two triangles are equal, it means that the ratio of the length of each side of one triangle to the length of the corresponding side of the other triangle is constant. Also, corresponding angles are congruent.

1) Triangle TUV is similar to triangle SQR because

Angle Q is congruent to angle U

TU/SQ = UV/QR = 2

2) Triangle ABC is not similar to triangle DEF because the ratio of AB to DF is not constant.

A survey reports that the probability a person has blue eyes is 0.10. Assume that 4 people are randomly selected at Miramar College and asked if they have blue eyes, find the probability that at least 1 of them have blue eyes. Round to 3 decimal places. 0.291

Answers

Answer:

0.344 = 34.4% probability that at least 1 of them have blue eyes.

Step-by-step explanation:

For each person, there are only two possible outcomes. Either they have blue eyes, or they have not. The probability of a person having blue eyes is independent of any other person. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

A survey reports that the probability a person has blue eyes is 0.10.

This means that [tex]p = 0.1[/tex]

4 people are randomly selected at Miramar College

This means that [tex]n = 4[/tex]

Find the probability that at least 1 of them have blue eyes.

Either none of them have blue eyes, or at least one do. The sum of the probabilities of these events is decimal 1. So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

We want [tex]P(X \geq 1)[/tex]. So

[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]

In which

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{4,0}.(0.1)^{0}.(0.9)^{4} = 0.656[/tex]

[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.656 = 0.344[/tex]

0.344 = 34.4% probability that at least 1 of them have blue eyes.

To find the probability that at least one out of four people has blue eyes at Miramar College, we use the complement rule and calculate that the probability is 0.344 after rounding to three decimal places.

The question asks us to calculate the probability that at least one person out of four randomly selected people at Miramar College will have blue eyes, given that the probability a person has blue eyes is 0.10. To find the probability of at least one person having blue eyes, we can use the complement rule. The complement of at least one person having blue eyes is that no person has blue eyes.

The probability that a single person does not have blue eyes is 1 - 0.10 = 0.90. For four independent selections, the probability that none of them have blue eyes is 0.90 raised to the fourth power. Therefore, the probability that at least one out of four people has blue eyes is 1 minus this result.

Calculation:

P(no one has blue eyes) = 0.90 ^ 4

P(no one has blue eyes) = 0.6561

P(at least one has blue eyes) = 1 - P(no one has blue eyes)

P(at least one has blue eyes) = 1 - 0.6561

P(at least one has blue eyes) = 0.3439

Thus, the probability that at least one person out of the four has blue eyes, rounded to three decimal places, is 0.344.

[10 points] Given matrix A =  2 2 3, −6 −7 8 (a) (5 points). Show that A has no LU decomposition. (b) (5 points). Find the decomposition PA = LU, where P is an elementary permutation matrix.

Answers

Answer:

Both the answers are as in the solution.

Step-by-step explanation:

As the given matrix is not in the readable form, a similar question is found online and the solution of which is attached herewith.

Part a:

Given matrix is : A = [tex]\left[\begin{array}{ccc}0&3&4\\1&2&3\\-3&-7&8\end{array}\right][/tex]

Here,

[tex]det(A) =\left|\begin{array}{ccc}0&3&4\\1&2&3\\-3&-7&8\end{array}\right| = -55 \neq 0.[/tex]

Then, A is non-singular matrix.

Here, A₁₁= 0.

If we write A as LU with L lower triangular matrix and U upper triangular matrix, then A₁₁=L₁₁U₁₁.

So, As

A₁₁ = 0 gives L₁₁U₁₁= 0 ,

This indicates that either L₁₁= 0 or U₁₁ = 0.

If L₁₁= 0 or U₁₁ = 0, this would made the corresponding matrix singular, which contradicts the condition as  A is non-singular.

Therefore, A has no LU decomposition.

Part b:

By the implementation of the various row operations

interchange R1 and R2

[tex]\left[\begin{array}{ccc}1&2&3\\0&3&4\\-3&-7&8\end{array}\right][/tex]

R3+3R1=R3

[tex]\left[\begin{array}{ccc}1&2&3\\0&3&4\\0&-1&17\end{array}\right][/tex]

R3+(1/3)R2 = R3

[tex]\left[\begin{array}{ccc}1&2&3\\0&3&4\\0&0&55/3\end{array}\right][/tex]

Therefore, U = [tex]\left[\begin{array}{ccc}1&2&3\\0&3&4\\0&0&55/3\end{array}\right][/tex].

Here, LP = E₁₂=E₃₁=-3 &E₃₂=-1/3

[tex]LP=\left[\begin{array}{ccc}0&1&0\\1&0&0\\0&0&1\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\-3&0&1\end{array}\right]\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&-1/3&1\end{array}\right][/tex]

[tex]LP=\left[\begin{array}{ccc}0&1&0\\1&0&0\\-3&-1/3&1\end{array}\right][/tex]

[tex]LP=\left[\begin{array}{ccc}1&0&0\\0&1&0\\-1/3&-3&1\end{array}\right]\left[\begin{array}{ccc}0&1&0\\1&0&0\\0&0&1\end{array}\right][/tex]

So now U is given as

[tex]U=\left[\begin{array}{ccc}1&2&3\\0&3&4\\0&0&55/3\end{array}\right]\\L=\left[\begin{array}{ccc}1&0&0\\0&1&0\\-1/3&-3&1\end{array}\right]\\P=\left[\begin{array}{ccc}0&1&0\\1&0&0\\0&0&1\end{array}\right]\\[/tex]

A lab network consisting of 20 computers was attacked by a computer virus. This virus enters each computer with probability 0.4, independently of other computers. Find the probability that it entered at least 10 computers

Answers

The probability that the virus entered at least 10 computers is 0.7553.

To find the probability that the virus entered at least 10 computers, we can use the complementary probability formula. This formula states that the probability of an event A happening is equal to 1 minus the probability of event A not happening.

In this case, event A is the virus entering at least 10 computers. Event A not happening is the virus entering fewer than 10 computers.

The probability of the virus entering fewer than 10 computers is equal to the sum of the probabilities of the virus entering 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 computers.

We can use the binomial distribution to calculate the probability of the virus entering each of these numbers of computers. The binomial distribution is a probability distribution that describes the probability of getting a certain number of successes in a certain number of trials.

In this case, the trials are the computers, and the success is the virus entering the computer. The probability of success is 0.4, and the probability of failure is 0.6.

To find the probability of the virus entering fewer than 10 computers, we need to add up the probabilities in the table from 0 to 9.

P(virus entering fewer than 10 computers) = 0.36^20 + 20 * 0.36^19 * 0.6 + ... + 167960 * 0.36^11 * 0.6^9

We can use a calculator to evaluate this sum. The result is 0.2447.

Therefore, the probability of the virus entering at least 10 computers is 1 minus the probability of the virus entering fewer than 10 computers.

P(virus entering at least 10 computers) = 1 - 0.2447

P(virus entering at least 10 computers) = 0.7553

Therefore, the probability that the virus entered at least 10 computers is 0.7553.

For such more question on probability

https://brainly.com/question/25839839

#SPJ3

In 2001, one county reported that, among 3132 white women who had babies, 94 were multiple births. There were also 20 multiple births to 606 black women. Does this indicate any racial difference in the likelihood of multiple births? Test an appropriate hypothesis and state your conclusion in context.

Answers

Hypothesis:

The ratio of ladies giving multiple birth to total number of women for any race will be the same.

Test:

Ratio of white women giving multiple births = 94 / 3132 = 0.0300

Ratio of black women giving multiple births = 20 / 606 = 0.0330

Conclusion:

There is no racial difference in the likelihood of multiple births. Although we do see a difference in the ratios calculated above, the difference is small enough to be due to sample size difference of white and black women. The smaller number of total black women makes the ratio calculated from this sample have a higher probability to deviate from what is expected. This deviation will account for the difference in probability between both races.

We can see the effects of this small sample size by increasing or decreases the numerator by 1 for black women:

21 / 606 = 0.0347

19 / 606 = 0.0313

This change in the data of one woman produces a very large percentage change in our ratio for black women (5%). Thus despite inaccuracy due to small sample size, our hypothesis is correct.

Final answer:

A hypothesis test for the difference in proportions can be used to assess if there is a racial difference in the likelihood of multiple births between white and black women, based on the given data. The null hypothesis is no difference, and if the test statistic is significant, it may indicate a racial difference.

Explanation:

To evaluate any racial differences in the likelihood of multiple births between white women and black women based on the given data, we can perform a hypothesis test. Specifically, this would be a test for the difference between two proportions.

For white women:

Multiples: 94
Total births: 3132

For black women:

Multiples: 20
Total births: 606

Using a chi-squared distribution table or calculator, at α=0.05 and 1 degree of freedom, the critical value is approximately 3.841.

Since our calculated chi-squared value (0.2094) is less than the critical value (3.841), we fail to reject the null hypothesis.

Therefore, there is no significant evidence to conclude that there is a racial difference in the likelihood of multiple births among white and black women in this county.

The data file wages contains monthly values of the average hourly wages (in dollars) for workers in the U.S. apparel and textile products industry for July 1981 through June 1987.


a. Display and interpret the time series plot for these data.

b. Use least squares to fit a linear time trend to this time series. Interpret the regression output. Save the standardized residuals from the fit for further analysis.

c. Construct and interpret the time series plot of the standardized residuals from part (b).

d. Use least squares to fit a quadratic time trend to the wages time series. (i.e y(t)=βo+β1t+β2t^2+et). Interpret the regression output. Save the standardized residuals from the fit for further analysis.

e. Construct and interpret the time series plot of the standardized residuals from part (d).

Answers

Answer:

a. data(wages)

plot(wages, type='o', ylab='wages per hour')

Step-by-step explanation:

a.  Display and interpret the time series plot for these data.

#take data samples from wages

data(wages)

plot(wages, type='o', ylab='wages per hour')

see others below

b. Use least squares to fit a linear time trend to this time series. Interpret the regression output. Save the standardized residuals from the fit for further analysis.

#linear model

wages.lm = lm(wages~time(wages))

summary(wages.lm) #r square is correct

##  

## Call:

## lm(formula = wages ~ time(wages))

##  

## Residuals:

##      Min       1Q   Median       3Q      Max  

## -0.23828 -0.04981  0.01942  0.05845  0.13136  

##  

## Coefficients:

##               Estimate Std. Error t value Pr(>|t|)    

## (Intercept) -5.490e+02  1.115e+01  -49.24   <2e-16 ***

## time(wages)  2.811e-01  5.618e-03   50.03   <2e-16 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##  

## Residual standard error: 0.08257 on 70 degrees of freedom

## Multiple R-squared:  0.9728, Adjusted R-squared:  0.9724  

## F-statistic:  2503 on 1 and 70 DF,  p-value: < 2.2e-16

c. plot(y=rstandard(wages.lm), x=as.vector(time(wages)), type = 'o')

d. #we find Quadratic model trend

wages.qm = lm(wages ~ time(wages) + I(time(wages)^2))

summary(wages.qm)

##  

## Call:

## lm(formula = wages ~ time(wages) + I(time(wages)^2))

##  

## Residuals:

##       Min        1Q    Median        3Q       Max  

## -0.148318 -0.041440  0.001563  0.050089  0.139839  

##  

## Coefficients:

##                    Estimate Std. Error t value Pr(>|t|)    

## (Intercept)      -8.495e+04  1.019e+04  -8.336 4.87e-12 ***

## time(wages)       8.534e+01  1.027e+01   8.309 5.44e-12 ***

## I(time(wages)^2) -2.143e-02  2.588e-03  -8.282 6.10e-12 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##  

## Residual standard error: 0.05889 on 69 degrees of freedom

## Multiple R-squared:  0.9864, Adjusted R-squared:  0.986  

## F-statistic:  2494 on 2 and 69 DF,  p-value: < 2.2e-16

#time series plot of the standardized residuals

plot(y=rstandard(wages.qm), x=as.vector(time(wages)), type = 'o')

wages.qm = lm(wages ~ time(wages) + I(time(wages)^2))

summary(wages.qm)

##  

## Call:

## lm(formula = wages ~ time(wages) + I(time(wages)^2))

##  

## Residuals:

##       Min        1Q    Median        3Q       Max  

## -0.148318 -0.041440  0.001563  0.050089  0.139839  

##  

## Coefficients:

##                    Estimate Std. Error t value Pr(>|t|)    

## (Intercept)      -8.495e+04  1.019e+04  -8.336 4.87e-12 ***

## time(wages)       8.534e+01  1.027e+01   8.309 5.44e-12 ***

## I(time(wages)^2) -2.143e-02  2.588e-03  -8.282 6.10e-12 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##  

## Residual standard error: 0.05889 on 69 degrees of freedom

## Multiple R-squared:  0.9864, Adjusted R-squared:  0.986  

## F-statistic:  2494 on 2 and 69 DF,  p-value: < 2.2e-16

e. #time series plot of the standardized residuals

plot(y=rstandard(wages.qm), x=as.vector(time(wages)), type = 'o')

Consider the following steady, two-dimensional velocity field: V→(u,v) = (0.46 + 2.1x)i→ + (−2.8 - 2.1y)j→ Calculate the location of the stagnation point. The location of the stagnation points are x = and y = .

Answers

Answer:

there is no stagnation point

Step-by-step explanation:

for the velocity field V→(u,v)= (0.46 + 2.1x)i→ + (−2.8 - 2.1y)j , the stagnation point is found when the velocity vectors converge in one point ( thus also stays in that place when the point is reached). Thus the stagnation point can be found when the divergence of the velocity field is <0 ( thus it does not diverge , but converges)

div(V) = ∇*V= d/dx (0.46 + 2.1x) + d/dy (−2.8 - 2.1y) = 0

2.1 - 2.1 = 0

since div(V) can never be  <0 , there is no stagnation point

Cholesterol levels for a group of women aged 30-39 follow an approximately normal distribution with mean 190.14 milligrams per deciliter (mg/dl). Medical guidelines state that women with cholesterol levels above 240 mg/dl are considered to have high cholesterol and about 9.3% of women fall into this category.

1. What is the Z-score that corresponds to the top 9.3% (or the 90.7-th percentile) of the standard normal distribution? Round your answer to three decimal places.

2. Find the standard deviation of the distribution in the situation stated above. Round your answer to 1 decimal place.

Answers

Answer:

Step-by-step explanation:

Hello!

X: Cholesterol level of a woman aged 30-39. (mg/dl)

This variable has an approximately normal distribution with mean μ= 190.14 mg/dl

1. You need to find the corresponding Z-value that corresponds to the top 9.3% of the distribution, i.e. is the value of the standard normal distribution that has above it 0.093 of the distribution and below it is 0.907, symbolically:

P(Z≥z₀)= 0.093

-*or*-

P(Z≤z₀)= 0.907

Since the Z-table shows accumulative probabilities P(Z<Z₁₋α) I'll work with the second expression:

P(Z≤z₀)= 0.907

Now all you have to do is look for the given probability in the body of the table and reach the margins to obtain the corresponding Z value. The first column gives you the integer and first decimal value and the first row gives you the second decimal value:

z₀= 1.323

2.

Using the Z value from 1., the mean Cholesterol level (μ= 190.14 mg/dl) and the Medical guideline that indicates that 9.3% of the women have levels above 240 mg/dl you can clear the standard deviation of the distribution from the Z-formula:

Z= (X- μ)/δ ~N(0;1)

Z= (X- μ)/δ

Z*δ= X- μ

δ=(X- μ)/Z

δ=(240-190.14)/1.323

δ= 37.687 ≅ 37.7 mg/dl

I hope it helps!

A river is 500 meters wide and has a current of 1 kilometer per hour. if tom can swim at a rate of 2 kilometers per hour at what angle to the shore should he swim if he wishes to cross the river to a point directly opposite bank

Answers

Answer:

[tex]63.44^{0}[/tex]

Step-by-step explanation:

Tom's resultant speed is calculated as [tex]\sqrt{1^{2}+2^{2} }[/tex]

= [tex]\sqrt{5}[/tex]

The distance tom swim is the hypotenuse of the right angle triangle.

sin = opposite/hypotenuse = [tex]\frac{1}{\sqrt{5} }[/tex]  = 1/5 = 0.2

arcsin (0.2) = [tex]26.56^{0}[/tex]

upstream angle =

[tex]90^{0} - 26.56^{0}[/tex] =

[tex]63.44^{0}[/tex]


please help i’m desperate smh

Answers

Just add them all up brother 60 +30 you’ll see because they are both the same shape

Answer: a) 2 miles

b) 4 miles

Step-by-step explanation:

There are two right angle triangles formed in the rectangle.

Taking 30 degrees as the reference angle, the length of the side walk, h represents the hypotenuse of the right angle triangle.

The width, w of the park represents the opposite side of the right angle triangle.

The length of the park represents the adjacent side of the right angle triangle.

a) to determine the width of the park w, we would apply

the tangent trigonometric ratio.

Tan θ, = opposite side/adjacent side. Therefore,

Tan 30 = w/2√3

1/√3 = w/2√3

w = 1/√3 × 2√3

w = 2

b) to determine the the length of the side walk h, we would apply

the Cosine trigonometric ratio.

Cos θ, = adjacent side/hypotenuse. Therefore,

Cos 30 = 2√3/h

√3/2 = 2√3/h

h = 2√3 × 2/√3

h = 4

A house is being purchased at the price of $138,000.00. The 30-year mortgage has a 10% down payment at an interest rate of 4.875% and a PMI payment of $25.88 each month for 77 months. The yearly taxes are $2400.00 and the insurance is $750.00 per year, which is to be placed into an escrow account. What is the total cost of the loan? Round your answer to the nearest one hundred dollars. Enter a number, such as $123,500.00.

Answers

Final answer:

The total cost of the loan, including down payment, PMI, mortgage payments, and yearly taxes and insurance over 30 years, for purchasing a house at $138,000 with specific conditions rounds to approximately $333,400.00.

Explanation:

To calculate the total cost of the loan for purchasing a house at $138,000.00 with a 10% down payment, an interest rate of 4.875%, PMI payments of $25.88 for 77 months, yearly taxes of $2400.00, and insurance of $750.00 per year, the following steps are undertaken:

Calculate the down payment: 10% of $138,000 is $13,800.Determine the loan amount: Subtract the down payment from the purchase price, which gives us $138,000 - $13,800 = $124,200.Calculate the monthly mortgage payment: Using an online mortgage calculator for a $124,200 loan at 4.875% interest over 30 years results in approximately $657.95 per month.PMI payments: $25.88 for 77 months adds up to $1,992.76 total.Calculate the total of monthly payments over 30 years: $657.95 * 360 months = $236,862.Add yearly taxes and insurance: $2400 (taxes) + $750 (insurance) = $3,150 per year. Over 30 years, this is $94,500.Add everything together: $236,862 (mortgage payments) + $1,992.76 (PMI) + $94,500 (taxes and insurance) = $333,354.76.

Rounding to the nearest hundred gives us a total cost of approximately $333,400.00.

The total number of parking spaces in a parking garage is calculated by adding the area of the lower level given by 22x2, the area of the upper level given by 20x2, and a compact car section given by 12x for a total of 414 parking spaces. Which equation could be used to solve for the number of compact car parking spaces?


A) 22x2 − 20 x2 − 12x = 414
B) 22x2 − 20 x2 + 12x = 414
C) 22x2 + 20 x2 − 12x = 414
D) 22x2 + 20 x2 + 12x = 414

Answers

C)22x2+20x2-12x = 414

Answer:

D

Step-by-step explanation:

A guidance counselor at a university career center is interested in studying the earning potential of certain college majors. He claims that the proportion of graduates with degrees in engineering who earn more than $75,000 in their first year of work is not 15%. If the guidance counselor chooses a 5% significance level, what is/are the critical value(s) for the hypothesis test? 2010 20.05 20.025 1.960 20.01 2.326 20.005 2.576 1.282 1.645 Use the curve below to show your answer. Select the appropriate test by dragging the blue point to a right, left- or two tailed diagram. The shaded area represents the rejection region. Then, set the critical value(s) on the z-axis by moving the slider.

Answers

Answer:

For the critical value we know that the significance is 5% and the value for [tex] \alpha/2 = 0.025[/tex] so we need a critical value in the normal standard distribution that accumulates 0.025 of the area on each tail and for this case we got:

[tex] Z_{\alpha/2}= \pm 1.96[/tex]

Since we have a two tailed test,  the rejection zone would be: [tex] z<-1.96[/tex] or [tex] z>1.96[/tex]

Step-by-step explanation:

Data given and notation

n represent the random sample taken

[tex]\hat p[/tex] estimated proportion of interest

[tex]p_o=0.15[/tex] is the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level

Confidence=95% or 0.95

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the proportion of graduates with degrees in engineering who earn more than $75,000 in their first year of work is not 15%.:  

Null hypothesis:[tex]p=0.15[/tex]  

Alternative hypothesis:[tex]p \neq 0.15[/tex]  

When we conduct a proportion test we need to use the z statistic, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

For the critical value we know that the significance is 5% and the value for [tex] \alpha/2 = 0.025[/tex] so we need a critical value in the normal standard distribution that accumulates 0.025 of the area on each tail and for this case we got:

[tex] Z_{\alpha/2}= \pm 1.96[/tex]

Since we have a two tailed test,  the rejection zone would be: [tex] Z<-1.96[/tex] or [tex] z>1.96[/tex]

A publisher reports that 49I% of their readers own a personal computer. A marketing executive wants to test the claim that the percentage is actually different from the reported percentage. A random sample of 200200 found that 42B% of the readers owned a personal computer. Determine the P-value of the test statistic. Round your answer to four decimal places.

Answers

Answer:

P-value of test statistics = 0.9773

Step-by-step explanation:

We are given that a publisher reports that 49% of their readers own a personal computer. A random sample of 200 found that 42% of the readers owned a personal computer.

And, a marketing executive wants to test the claim that the percentage is actually different from the reported percentage, i.e;

Null Hypothesis, [tex]H_0[/tex] : p = 0.49 {means that the percentage of readers who own a personal computer is same as reported 63%}

Alternate Hypothesis, [tex]H_1[/tex] : p [tex]\neq[/tex] 0.49 {means that the percentage of readers who own a personal computer is different from the reported 63%}

The test statistics we will use here is;

                T.S. = [tex]\frac{\hat p -p}{\sqrt{\frac{\hat p(1- \hat p)}{n} } }[/tex] ~ N(0,1)

where, p = actual % of readers who own a personal computer = 0.49

            [tex]\hat p[/tex] = percentage of readers who own a personal computer in a

                  sample of 200 = 0.42

            n = sample size = 200

So, Test statistics = [tex]\frac{0.42 -0.49}{\sqrt{\frac{0.42(1- 0.42)}{200} } }[/tex]

                             = -2.00

Now, P-value of test statistics is given by = P(Z > -2.00) = P(Z < 2.00)

                                                                        = 0.9773 .

4.
A rectangular prism is shown. Find the surface area of this prism.
1 foot
8 feet
10 feet​

Answers

Surface area of this rectangular prism is A=2(1x10+8x10+8x1) so the area for this one is 196 ft

Consider a prolific breed of rabbits whose birth and death rates, β and δ, are each proportional to the rabbit population P = P(t), with β > δ.
Show that:
P(t)= P₀/(1−kP₀t)
with k constant. Note that P(t) → +[infinity] as t→1/(kP₀). This is doomsday.

Answers

Answer:

(P(t)) = P₀/(1 - P₀(kt)) was proved below.

Step-by-step explanation:

From the question, since β and δ are both proportional to P, we can deduce the following equation ;

dP/dt = k(M-P)P

dP/dt = (P^(2))(A-B)

If k = (A-B);

dP/dt = (P^(2))k

Thus, we obtain;

dP/(P^(2)) = k dt

((P(t), P₀)∫)dS/(S^(2)) = k∫dt

Thus; [(-1)/P(t)] + (1/P₀) = kt

Simplifying,

1/(P(t)) = (1/P₀) - kt

Multiply each term by (P(t)) to get ;

1 = (P(t))/P₀) - (P(t))(kt)

Multiply each term by (P₀) to give ;

P₀ = (P(t))[1 - P₀(kt)]

Divide both sides by (1-kt),

Thus; (P(t)) = P₀/(1 - P₀(kt))

(P(t)) = P₀/(1 - P₀(kt))

Proportional

According to the, since β and also δ are both proportional to P, we can deduce the following equation ;

Then dP/dt = k(M-P)P

Then dP/dt = (P^(2))(A-B)

Now, If k = (A-B);

After that dP/dt = (P^(2))k

Thus, we obtain;

Now dP/(P^(2)) = k dt

((P(t), P₀)∫)dS/(S^(2)) = k∫dt

Thus; [(-1)/P(t)] + (1/P₀) = kt

Simplifying,

Then 1/(P(t)) = (1/P₀) - kt

Multiply each term by (P(t)) to get ;

After that 1 = (P(t))/P₀) - (P(t))(kt)

Multiply each term by (P₀) to give ;

Now P₀ = (P(t))[1 - P₀(kt)]

Then Divide both sides by (1-kt),

Thus; (P(t)) = P₀/(1 - P₀(kt))

Find out more information about proportional here:

https://brainly.com/question/13550871

A thin tube closed at the top and open to the atmosphere at the bottom contains a 12 cm high column of air trapped above a 20 cm column of mercury. If the tube is flipped so that the closed end is now at the bottom, what is the new height of the trapped column of air

Answers

Answer:

The column height of air after the inversion is 7 cm.

Step-by-step explanation:

The initial pressure balance is given as

P_1+20 cm=76 cm of Hg

P_1=76-20 cm of Hg

P_1=56 cm of Hg

The initial volume of the air with cross sectional area as 12 cm2 and the length of air column as 12 is given as V_1=12 cm *1 =12 cm3

After the inversion

P_2=20 cm+76 cm of Hg

P_2=96 cm of Hg

The volume of the air after the inversion with cross sectional area as 1 cm2 and the length of air column as x is given as V_2=x *1 =x cm3

Now as temperature is constant and the cross sectional area is also constant so

[tex]P_1V_1=P_2V_2\\56\times 12=96\times x\\x=\dfrac{56\times 12}{96}\\x=7 cm[/tex]

So the column height of air after the inversion is 7 cm.

Answer:

7cm

Step-by-step explanation:

P1 =H-h =76-20=56; P2 =H+h =96

P1V1 =P2V2

56x12=96xV2

V2 =56x12/96 = 7 cm

Ethan repairs household appliances like dishwashers and refrigerators. For each visit, he charges $25 plus $20 per hour of work. A linear equation that expresses the total amount of money Ethan earns per visit is y = 25 + 20x. What is the independent variable, and what is the dependent variable?

Answers

Answer:the independent variable is x, the number of hours of work.

The dependent variable is y, the total charge for x hours of work.

Step-by-step explanation:

A change in the value of the independent variable causes a corresponding change in the value of in dependent variable. Thus, the dependent variable is is output while the independent variable is the input

For each visit, he charges $25 plus $20 per hour of work. The linear expression that represents the total amount of money that Ethan earns per visit is y = 25 + 20x.

Since the total amount charged, y depends on the number of hours of work, x, it means that the dependent variable is y and the independent variable is x

Final answer:

In the equation y = 25 + 20x, x is the independent variable representing hours worked, and y is the dependent variable representing total earnings. The y-intercept is $25, the flat visit charge, and the slope is $20, the hourly charge.

Explanation:

In the equation y = 25 + 20x, which represents the total amount Ethan earns for each visit, the independent variable is the number of hours of work, denoted by x. The dependent variable is the total amount of money Ethan earns, represented by y. This is because Ethan's earnings depend on the amount of time he spends working.

The y-intercept is $25, which is the flat charge for Ethan's visit, regardless of the hours worked. The slope is $20, which represents the amount Ethan charges for each hour of work. Therefore, for each additional hour of work, Ethan will earn an additional $20.

A survey was done to determine the effect of students changing answers while taking a​ multiple-choice test on which there is only one correct answer for each question. Some students erase their initial choice and replace it with another. It turned out that 51​% of the changes were from incorrect answers to correct and that 27​% were from correct to incorrect. What percent of changes were from incorrect to​ incorrect?

Answers

Answer:

22%

Step-by-step explanation:

In the event of changing a test answer there are three possible outcomes, which should add up to 100%: changing from incorrect to correct (51%),  changing from correct to incorrect (27%) and  changing from incorrect to incorrect (X). Therefore, the percent of changes from incorrect to​ incorrect was:

[tex]100\% = 51\%+27\%+X\\X= 22\%[/tex]

22% of the changes were  from incorrect to​ incorrect.

Suppose that the lifetimes of TV tubes are normally distributed with a standard deviation of years. Suppose also that exactly of the tubes die before years. Find the mean lifetime of TV tubes. Carry your intermediate computations to at least four decimal places. Round your answer to at least one decimal place.

Answers

Answer:

[tex]P(X<4)=P(\frac{X-\mu}{\sigma}<\frac{4-\mu}{\sigma})=0.2[/tex]  

[tex]P(z<\frac{4-\mu}{\sigma})=0.2[/tex]

But we know which value of z satisfy the previous equation so then we can do this:

[tex]z=-0.842<\frac{4-\mu}{1.1}[/tex]

And if we solve for the mean we got

[tex]\mu =4 +0.842*1.1=4.926[/tex]

Step-by-step explanation:

Assuming this question "Suppose that the lifetimes of TV tubes are normally distributed with a standard deviation of 1.1 years. Suppose also that exactly 20% of the tubes die before 4 years. Find the mean lifetime of TV tubes. Carry your intermediate computations to at least four decimal places. Round your answer to at least one decimal place. ?

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the lifetimes of TV tubes of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(\mu,1.1)[/tex]  

Where [tex]\mu[/tex] and [tex]\sigma=1.1[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

For this part we know the following condition:

[tex]P(X>4)=0.8[/tex]   (a)

[tex]P(X<4)=0.2[/tex]   (b)

Both conditions are equivalent on this case. We can use the z score again in order to find the value a.  

As we can see on the figure attached the z value that satisfy the condition with 0.2 of the area on the left and 0.8 of the area on the right it's z=-0.842. On this case P(Z<-0.842)=0.2 and P(z>-0.842)=0.8

If we use condition (b) from previous we have this:

[tex]P(X<4)=P(\frac{X-\mu}{\sigma}<\frac{4-\mu}{\sigma})=0.2[/tex]  

[tex]P(z<\frac{4-\mu}{\sigma})=0.2[/tex]

But we know which value of z satisfy the previous equation so then we can do this:

[tex]z=-0.842<\frac{4-\mu}{1.1}[/tex]

And if we solve for the mean we got

[tex]\mu =4 +0.842*1.1=4.926[/tex]

Mean lifetime is 4.9 years. Found using z-score of -0.8416 with 20% dying before 4 years, [tex]\(\sigma = 1.1\)[/tex].

To find the mean lifetime of TV tubes, we will use the properties of the normal distribution and the given information. Here's the step-by-step solution:

1. Identify the given values:

  - Standard deviation [tex](\(\sigma\))[/tex]: 1.1 years

  - Percentage of tubes that die before 4 years: 20% (or 0.20)

2. Find the z-score corresponding to the given percentage:

  - Since the percentage is 20%, we need to find the z-score for which 20% of the area under the normal curve lies to the left.

  - Using a standard normal distribution table or a calculator, the z-score for 0.20 is approximately -0.8416.

3. Set up the z-score formula:

  The z-score formula is given by:

 [tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]

where [tex]\(X\)[/tex] is the value (4 years in this case), [tex]\(\mu\)[/tex] is the mean lifetime we want to find, and [tex]\(\sigma\)[/tex] is the standard deviation.

4. Substitute the known values into the z-score formula and solve for [tex]\(\mu\)[/tex]:

  [tex]\[ -0.8416 = \frac{4 - \mu}{1.1} \][/tex]

  Rearrange to solve for [tex]\(\mu\)[/tex]:

  [tex]\[ -0.8416 \times 1.1 = 4 - \mu \][/tex]

  [tex]\[ -0.92576 = 4 - \mu \][/tex]

  [tex]\[ \mu = 4 + 0.92576 \][/tex]

  [tex]\[ \mu \approx 4.9258 \][/tex]

5. Round the mean lifetime to one decimal place:

  [tex]\[ \mu \approx 4.9 \][/tex]

So, the mean lifetime of the TV tubes is approximately 4.9 years.

What is the equation of the quadratic function with a vertex at (2,-25) and an x-intercept at(7,0)

Answers

The equation of the quadratic function is [tex]y=(x-7)(x+3)[/tex]

Explanation:

The vertex form of the quadratic function is given by

[tex]y=a(x-h)^{2}+k[/tex]

It is given that the quadratic function has a vertex at [tex](2,-25)[/tex]

The vertex is represented by the coordinate [tex](h,k)[/tex]

Hence, substituting [tex](h,k)=(2,-25)[/tex] in the vertex form, we get,

[tex]y=a(x-2)^{2}-25[/tex]

Now, substituting the x - intercept [tex](7,0)[/tex] , we have,

[tex]0=a(7-2)^{2}-25[/tex]

[tex]0=a(5)^{2}-25[/tex]

[tex]25=a(25)[/tex]

 [tex]1=a[/tex]

Thus, the value of a is 1.

Hence, substituting [tex]a=1[/tex], [tex](h,k)=(2,-25)[/tex] in the vertex form [tex]y=a(x-h)^{2}+k[/tex] , we get,

[tex]y=1(x-2)^{2}-25[/tex]

[tex]y=(x-2)^{2}-25[/tex]

[tex]y=x^2-2x+4-25[/tex]

[tex]y=x^2-2x-21[/tex]

[tex]y=(x-7)(x+3)[/tex]

Thus, the equation of the quadratic function is [tex]y=(x-7)(x+3)[/tex]

Answer:

the answer is d

Step-by-step explanation:

A website manager has noticed that during the evening​ hours, about 5 people per minute check out from their shopping cart and make an online purchase. She believes that each purchase is independent of the others and wants to model the number of purchases per minute. ​a) What model might you suggest to model the number of purchases per​ minute? ​b) What is the probability that in any one minute at least one purchase is​ made? ​c) What is the probability that seven people make a purchase in the next four ​minutes?

Answers

Answer:

a) Poisson distribution

b) 99.33% probability that in any one minute at least one purchase is​ made

c) 0.05% probability that seven people make a purchase in the next four ​minutes

Step-by-step explanation:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given time interval.

5 people per minute check out from their shopping cart and make an online purchase.

This means that [tex]\mu = 5[/tex]

a) What model might you suggest to model the number of purchases per​ minute? ​

The only information that we have is the mean number of an event(purchases) in a time interval. Each event is also independent fro each other. So you should suggest the Poisson distribution to model the number of purchases per​ minute.

b) What is the probability that in any one minute at least one purchase is​ made? ​

Either no purchases are made, or at least one is. The sum of the probabilities of these events is 1. So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

We want to find [tex]P(X \geq 1)[/tex]

So

[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]

In which

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-5}*(5)^{0}}{(0)!} = 0.0067[/tex]

1 - 0.0067 = 0.9933.

99.33% probability that in any one minute at least one purchase is​ made

c) What is the probability that seven people make a purchase in the next four ​minutes?

The mean is 5 purchases in a minute. So, for 4 minutes

[tex]\mu = 4*5 = 20[/tex]

We have to find P(X = 7).

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-20}*(20)^{7}}{(7)!} = 0.0005[/tex]

0.05% probability that seven people make a purchase in the next four ​minutes

The Poisson distribution model is used when the data consist of counts of occurrences.

a) The Poisson distribution model is used when the data consist of counts of occurrences.

b) Given that: λ (mean number of occurrence) = 5 people per minute, hence:

[tex]P(X\ge 1)=1-P(X=0)=1-\frac{e^{-\lambda }\lambda^x}{x!}= 1-\frac{e^{-5 }5^0}{5!}=0.9999[/tex]

The probability that in any one minute at least one purchase is​ made is 0.9999.

Find out more at: https://brainly.com/question/17280826

A={a,b,c,1,2,3,octopus,∅,0} B=N C={0} For each of the following statements, select either True or False. a) A∩B={0,1,2,3} Answer 1 b) C−A=∅ Answer 2 c) B∪P(C)=B Answer 3 d) C∈P(C) Answer 4

Answers

Answer:a)False b)True c)False d)True

Step-by-step explanation:

Let's consider first that for us the set of the natural numbers is the set of the positive integers and the set of the non-negative numbers is know as the whole number or with notation [tex]N_0[/tex]. Then for

a) the N={1,2,3,...} and therefore the common members with A are only {1,2,3} making the statement false, only if stated to consider the set N as all the non-negative numbers the answer would be true, but otherwise it is standarized to understand N as the positive integers and [tex]N_0[/tex] as the non-negative integers.

b)The difference of sets is taking the elements in the first that do not belong to the second, then it would be to withdraw the only element C has, since 0 belongs to A, and therefore C would turn to be an empty set.

c)The set powers of a given set S, denoted P(S), is a set with sets as elements, every subset of S is an element of P(S). Then P(S) is always non-empty, since at least S belongs to P(S). Here [tex]P(C)=\{C, \emptyset \}[/tex], then [tex]P(C)\cup B=\{C, \emptyset ,1,2,3,\ldots \}\ne B[/tex], therefore the statement is false.

d)As explained in c) [tex]P(C)=\{C, \emptyset \},[/tex] then clearly C is an element of P(C), thus the affirmation is true.

Find the surface area of the triangular prism

Answers

The surface area of the triangular prism is 1664 square inches.

Explanation:

Given that the triangular prism has a length of 20 inches and has a triangular face with a base of 24 inches and a height of 16 inches.

The other two sides of the triangle are 20 inches each.

We need to determine the surface area of the triangular prism.

The surface area of the triangular prism can be determined using the formula,

[tex]SA= bh+pl[/tex]

where b is the base, h is the height, p is the perimeter and l is the length

From the given the measurements of b, h, p and l are given by

[tex]b=24[/tex] , [tex]h= 16[/tex] , [tex]l=20[/tex] and

[tex]p=20+20+24=64[/tex]

Hence, substituting these values in the above formula, we get,

[tex]SA= (24\times16)+(64\times20)[/tex]

Simplifying the terms, we get,

[tex]SA=384+1280[/tex]

Adding the terms, we have,

[tex]SA=1664 \ square \ inches[/tex]

Thus, the surface area of the triangular prism is 1664 square inches.

What is the probability that in group of 10 random people, at least two of them have the same letter in initials (such as LMS for Laurel Marie Sander), assuming that each triple of initials is equally likely.

Answers

Answer:

So the probability is P=0.00256.

Step-by-step explanation:

We have 26 letters, so the probability that the first letter in the name is the same is 1/26.

The probability that the second letter in the name is the same is 1/26 and the probability that the third letter in the name is the same is 1/26.

Out of ten people we choose 2.

So the probability is:

[tex]P=C_2^{10}\left(\frac{1}{26}\right)^3\\\\P=\frac{10!}{2!(10-2)!}\cdot \left(\frac{1}{26}\right)^3\\\\P=\frac{45}{17576}\\\\P=0.00256\\[/tex]

So the probability is P=0.00256.

A local board of education conducted a survey of residents in the community concerning a property tax levy on the coming local ballot. They randomly selected 850 residents in the community and contacted them by telephone. Of the 850 residents surveyed, 410 supported the property tax levy. Let p represent the proportion of residents in the community that support the property tax levy.

A 90% confidence interval for p is (Use decimal notation. Give value to four decimal places and "z" value to three decimal places.)

A. 0.4489 to 0.5159.
B. 0.4542 to 0.5105.
C. 0.4487 to 0.5161.
D. 0.4463 to 0.5185.

Answers

Answer:

B. 0.4542 to 0.5105

Step-by-step explanation:

A 90% confidence interval for p is calculated as:

[tex]p-z_{\alpha /2}\sqrt{\frac{p(1-p)}{n} }\leq p\leq p+z_{\alpha /2}\sqrt{\frac{p(1-p)}{n} }[/tex]

This apply if n*p≥5 and n*(1-p)≥5

Where p is the proportion of sample, n is the size of the sample and [tex]z_{\alpha /2}[/tex] is equal to 1.645 for a 90% confidence.

Then, in this case p, n*p and n*(1-p) are calculated as:

[tex]p=\frac{410}{850} =0.4824[/tex]

n*p = (850)(0.4824) = 410

n*(1-p) = (850)(1-0.4824) = 440

So, replacing values we get:

[tex]0.4824-1.645\sqrt{\frac{0.4824(1-0.4824)}{850} }\leq p\leq 0.4824+1.645\sqrt{\frac{0.4824(1-0.4824)}{850} }[/tex]

[tex]0.4824-0.0282\leq p\leq 0.4824+0.0282[/tex]

[tex]0.4542\leq p\leq 0.5105[/tex]

It means that a  90% confidence interval for p is 0.4542 to 0.5105

Answer:

The correct answer in the option is;

B. 0.4542 to 0.5105.

Step-by-step explanation:

To solve the question, we note that

Total number of residents, n = 850

Number supporting property tax levy = 410

Proportion supporting tax levy, p = [tex]\frac{410}{850}[/tex] = 0.48235

The formula for confidence interval is

[tex]p +/-z*\sqrt{\frac{p(1-p)}{n} }[/tex]

Where

z = z value

The z value from the tables at 90 % = 1.64

Therefore we have

The confidence interval given as

[tex]0.48235 +/-1.64*\sqrt{\frac{0.48235(1-0.48235)}{850} }[/tex] = 0.48235 ± 2.811 × 10⁻²

= 0.4542 to 0.5105

The confidence interval is 0.4542 to 0.5105.

The article "Calibration of an FTIR Spectrometer" (P. Pankratz, Statistical Case Studies for Industrial and Process Improvement, SIAM-ASA, 1997: 19–38) describes the use of a spectrometer to make five measurements of the carbon content (in ppm of a certain silicon wafer whose true carbon content was known to be 1.1447 ppm. The measurements were 1.0730, 1.0825, 1.0711.1.0870, and 1.0979.

a. Is it possible to estimate the uncertainty .in these measurements? If so, estimate it. If not, explain why not.
b. Is it possible to estimate the bias in these measurements? If so. estimate it. If not. explain why not.

Answers

Answer:

a) 0.011

b) -0.0624

Step-by-step explanation:

See attached pictures.

Final answer:

Uncertainty in the FTIR spectrometer measurements can be estimated as the standard deviation of the measurements, yielding 0.0109 ppm. Bias is estimated as the difference between the mean of the measurements (1.0823 ppm) and the true value (1.1447 ppm), resulting in a bias of -0.0624 ppm.

Explanation:

To address the student's question regarding the calibration of an FTIR spectrometer and the estimation of uncertainty and bias in measurements, we shall consider the given data.

Uncertainty in measurements can be estimated using the standard deviation of the measurements, which provides an indication of the spread of the data around the mean. To calculate the uncertainty:

Find the mean (μ) of the measurements.Subtract the mean from each measurement to find the deviation of each measurement.Square each deviation.Sum all the squared deviations.Divide by the number of measurements minus one to find the variance.Take the square root of the variance to find the standard deviation (SD), which represents the uncertainty.

Using the provided measurements of carbon content, we calculate the uncertainty as follows:

μ = (1.0730 + 1.0825 + 1.0711 + 1.0870 + 1.0979) / 5 = 1.0823 ppmDeviations: [-0.0093, 0.0002, -0.0112, 0.0047, 0.0156]Squared deviations: [8.649E-05, 4.00E-08, 1.254E-04, 2.209E-05, 2.436E-04]Sum of squared deviations = 4.758E-04Variance = 4.758E-04 / (5-1) ≈ 1.190E-04 ppm²SD = √(1.190E-04) ≈ 0.0109 ppm

This standard deviation represents the uncertainty in the measurements.

Estimation of Bias

Bias in the measurements can be estimated as the difference between the mean of the measurements and the true value. Thus, the bias is calculated by subtracting the true carbon content from the mean measurement:

Bias = Mean - True value = 1.0823 ppm - 1.1447 ppm = -0.0624 ppm

The negative sign indicates that the measurements are, on average, lower than the true value.

Among the equation students taking a graduate statistics class, equation are master students and the other equation are doctorial students. A random sample of equation students is going to be selected to work on a class project. Use equation to denote the number of master students in the sample. Keep at least 4 decimal digits if the result has more decimal digits.

Answers

Answer:

a) P=0.2861

b) P=0.0954

c) P=0.3815

d) P=0.6185

Step-by-step explanation:

The question is incomplete:

Among the N=16 students taking a graduate statistics class, A=10 are master students and the other N-A=6 are doctorial students. A random sample of n=5 students is going to be selected to work on a class project. Use X to denote the number of master students in the sample. Keep at least 4 decimal digits if the result has more decimal digits.

a) The probability that exactly 4 master students are in the sample is closest to?

b) The probability that all 5 students in the sample are master students is closest to?

c) The probability that at least 4 students in the sample are master students is closest to?

d) The probability that at most 3 students in the sample are master students is closest to?

We use a binomial distribution with n=5, with p=10/16=0.625 (proportion of master students).

a)

[tex]P(k=4)=\binom{5}{4}p^4q^1=5*0.625^4*0.375=5*0.1526*0.3750\\\\P(k=4)=0.2861[/tex]

b)

[tex]P(k=5)=\binom{5}{5}p^5q^0=1*0.625^5*1=\\\\P(k=4)=0.0954[/tex]

c)

[tex]P(k\geq4)=P(k=4)+P(k=5)=0.2861+0.0954=0.3815[/tex]

d)

[tex]P(k\leq3)=1-P(x\geq4)=1-0.3815=0.6185[/tex]

Other Questions
3) That's why 13-year-old Matt suddenly finds himself in an workhouse for kids. What change, if any, is needed in sentence 3? Question 2 options: A insert a comma after workhouse B change an to a C change That's to Thats D make no change A proton (????p = +????, mp = 1.0 u; where u = unified mass unit 1.66 1027kg), a deuteron (???????? = +????, m???? = 2.0 u) and an alpha particle (???????? = +2????, m???? = 4.0 u) are accelerated from rest through the same potential difference ????, and then enter the same region of uniform magnetic field ???? , moving perpendicularly to the direction of the magnetic field. a. What is the ratio of the protons kinetic energy Kp to the alpha particles kinetic energy K????? b. What is the ratio of the deuterons kinetic energy K???? to the alpha particles kinetic energy K????? c. If the radius of the protons circular orbit ????p = 10 cm, what is the radius of the deuterons orbit ????????? d. What is the radius of the alpha particles orbit ????????? George weeded 1/5 of the garden and Summer weeded some too. When they were done 2/3 was left of the garden. How much did Summer weed. Twenty minus the product of 4 and a number is 4 Which of the following data could be graphed using a dot plot? Select all that apply. The piece of writing doesn't change if the topic or audience changes; the writer is in total control.TrueFalsePLEASE HELP HURRY The dimensions of a closed rectangular box are measured x, y and z as 100 cm, 70 cm, and 30 cm, respectively, with a possible error of 0.2 cm in each dimension. The surface area and the volume of the box is given by the equations S(x, y, z) = 2xy + 2xz + 2yz, V(x, y, z) = xyz Find the linear approximation of S at the point (96, 69, 29). b. Suppose the box has been measured with a ruler that has one centimeter gradation, find the actual maximum error in measuring the surface of the box. c. Find L(101,71,31) -L(100,70,30) d. Use differentials to estimate the error in the measurement of the surface area of the box. e. Compare the answers of parts c to d and the d to b. What do you conclude? f. A coat of paint of thickness 0.0002 cm is applied to the exterior surface of the box. Use differentials to estimate the amount of the paint needed. What was Eisenhower's "covert action policy? How many grams of magnesium are needed to completely reactwith 2.00 mol of O2 in the synthesis reaction that producesmagnesium oxide? Someone helpPlzzz I need an answer At a given temperature, 4.92 atm of Cl2 and 4.65 atm of Br2 are mixed and allowed to come to equilibrium. The equilibrium pressure of BrCl is found to be 1.597 atm. Calculate Kp for the reaction at this temperature. Cl2(g) + Br2(g) 2 BrCl(g). Give answer to 2 decimal places. Jack inherited a perpetuity-due, with annual payments of 15,000. He immediately exchanged the perpetuity for a 25-year annuity-due having the same present value. The annuity-due has annual payments of X. All the present values are based on an annual effective interest rate of 10% for the first 10 years and 8% thereafter. Calculate X. Which words are precise adjectives? Check all that apply.hidingmoistsweatercheckerboardredsee A shoe factory produces 20 units of output. Its average fixed cost (AFC) = $25, average total cost (ATC) = $35, and marginal cost (MC) = $15. The shoe factories average variable cost (AVC) is ________. Please hurry its urgent Blocks A (mass 2.00 kg) and B (mass 6.00 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is moving toward it at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is head-on, so all motion before and after the collision is along a straight line. (a) Find the maximum energy stored in the spring bumpers and the velocity of each block at that time. (b) Find the velocity of each block after they have moved apart. How were people who lived far away from the big cities able to stay up withcurrent fashions and trends? "To-do" lists should be used to __________. A. list yearly goals B. alphabetize items C. prioritize tasks D. set hourly schedules Please select the best answer from the choices provided. A B C D 1. Su inters por las letras y la literatura comenz desde muy pequeo. a. cierto b. falso 2. Fue una persona con muchas pasiones y realiz varios oficios en su vida. a. cierto b. falso 3. Fue conocido como un hombre muy trabajador. a .cierto b. falso 4. Durante gran parte de su vida se identific con la naturaleza. a. cierto b. falso 5. Comenz a escribir libros de carpintera y botnica, y luego escribi poesa. a. cierto b. falso 6. Cuentos de la selva es una coleccin de relatos para nios donde los animales son los protagonistas. a. cierto b. falso After rollercoaster years of success and decline, Apple has found itself once again on top of its game. However, rivals like Microsoft and Google are pushing competitiveness. In fact, many of Apples rivals have the same or similar product offerings. Apple has hired you as a futurist. Help the company continue to diversify its products and maintain strategic competitiveness through new innovations and improved technologies. Through which strategy should Apple pursue its next big hit.a. Unrelated Diversificationb. Related Diversification Steam Workshop Downloader