If 26.25 ml of 0.1850 m naoh solution reacts with 25.00 ml of h2so4, what is the molarity of the acid solution?

Answers

Answer 1

Explanation:

The given data is as follows.

       [tex]V_{NaOH}[/tex] = 26.25 ml,        [tex]M_{NaOH}[/tex] = 0.1850 m

       [tex]V_{H_{2}SO_{4}}[/tex] = 25.00 ml,   [tex]M_{NaOH}[/tex] = ?

It is known that normality is n times molarity where "n" signifies the number of hydrogen or hydroxide ions.

Therefore, normality of NaOH is calculated as follows.

           [tex]N_{NaOH} = n \times M_{NaOH}[/tex]

                                     = [tex]1 \times 0.1850[/tex]

                                     = 0.1850 N

Normality of [tex]H_{2}SO_{4}[/tex] is calculated as follows.

          [tex]N_{NaOH}V_{NaOH} = N_{H_{2}SO_{4}}V_{H_{2}SO_{4}}[/tex]

              [tex]0.1850 N \times 26.25 ml = N_{H_{2}SO_{4}} \times 25.00 ml[/tex]

                      [tex]N_{H_{2}SO_{4}}[/tex] = 0.194 N      

Hence, molarity of [tex]H_{2}SO_{4}[/tex] will be as follows.

                     [tex]N_{H_{2}SO_{4}} = n \times M_{H_{2}SO_{4}}[/tex]

                    [tex]M_{H_{2}SO_{4}} = \frac{N_{H_{2}SO_{4}}}{n}[/tex]

                                         = [tex]\frac{0.194 N}{2}[/tex]

                                         = 0.097 M

Thus, we can conclude that molarity of the acid solution is 0.097 M.


Related Questions

Container a holds 767 ml of ideal gas at 2.30 atm. container b holds 164 ml of ideal gas at 4.20 atm. if the gases are allowed to mix together, what is the resulting pressure?

Answers

Maybe 2.30 am not right I may be wrong
Final answer:

To find the resulting pressure, use the ideal gas law equation P1V1 + P2V2 = (n1 + n2)RT, where P is pressure, V is volume, n is the number of moles, R is the ideal gas constant, and T is temperature. Plug in the given values and solve for (n1 + n2). Divide the total number of moles by the total volume to find the resulting pressure.

Explanation:

In order to find the resulting pressure, you need to use the ideal gas law equation: PV = nRT. Since the containers are allowed to mix and there is no change in volume, the equation becomes P1V1 + P2V2 = (n1 + n2)RT. Plugging in the given values, we have (2.30 atm)(767 ml) + (4.20 atm)(164 ml) = (n1 + n2)(0.0821 atm L/mol K)(273 K). Solve for (n1 + n2) to find the total number of moles and then divide by the total volume to find the resulting pressure.

How many grams of caf2 would be needed to produce 1.29 moles of f2?

Answers

*Given: 
    1.29 moles F2

*Information needed in calculation
     CaF2 molar mass - 78.07 g/mol
     F2 molar mass - 38.00 g/mol

*Solution



Answer is: 100.72 grams of calcium fluoride.

Balanced chemical reactions:

1) CaF₂ + H₂SO₄ → 2HF + CaSO₄.

2) 2HF → F₂ + H₂.

1) From chemical reaction 2: n(F₂) : n(HF) = 1 : 2.

n(HF) = 2 · 1.29 mol.

n(HF) = 2.58 mol.

2) From chemical reaction 1: n(HF) : n(CaF₂) = 2 : 1.

n(CaF₂) = 2.58 mol ÷ 2.

n(CaF₂) = 1.29 mol; amount of substance.

m(CaF₂) = n(CaF₂) · M(CaF₂).

m(CaF₂) = 1.29 mol · 78.08 g/mol.

m(CaF₂) = 100.72 g.

Name two elements in which the last electrons to be added are placed into s subshells

Answers

Lithium and Sodium both have their last elections added to s subshells. All alkali and alkali earth metals have their last electrons placed in s subshells.

Determine the energy in joules of a photon whose frequency is 3.55 x10^17 hz

Answers

The equation for energy of a photon is E=hv where v equals frequency and h equals the Planck constant (6.626X10^-34). So since you've been given frequency you can just plug in frequency to find the total energy in joules.

E=(3.55X10^17)(6.626X10^-34)
E=2.35223X10^-16

Not sure how many significant figures you needed. Hope this helped.


A gas mixture contains twice as many moles of o2 as n2. addition of 0.200 mol of argon to this mixture increases the pressure from 0.800 atm to 1.10 atm. how many moles of o2 are in the mixture?

Answers

number of moles of oxygen = x

number of moles of nitrogen = y

x = 2y

initial pressure, p1 = 0.8 atm

final pressure, p2 = 1.10 atm

At constant volume and temperature p1 / n1 = p2 / n2

=> p1 / p2 = n1 / n2

n1 = x + y = 2y + y = 3y

n2 = 0.2 + 3y

=> p1 / p2 = 3y / (0.2 + 3y)

=> 0.8 / 1.10 = 3y / (0.2 + 3y)

=> 0.8 (0.2 + 3y) = 1.10 (3y)

0.16 + 2.4y = 3.3y

=> 3.3y - 2.4y = 0.16

=> 0.9y = 0.16

=> y = 0.16 / 0.9

=. x = 2*0.16/0.9 = 0.356

Answer: 0.356 moles O2
Final answer:

The gas mixture before the addition of argon contained 1.78 moles of O2. This is calculated by first determining the combined moles of O2 and N2 using the pressure increase upon addition of argon and the information that the pressure due to moles of a gas is directly proportional to its mole count. Having the total moles, we then take the 2/3 share for O2 as stated in the problem.

Explanation:

We're dealing with a gas mixture where the total pressure of the mixture depends on the moles of each gas present. According to the ideal gas law, the total pressure exerted by the mixture is the sum of the partial pressures of each gas, with each partial pressure corresponding to the number of moles of that gas.

When the 0.200 mol of argon is added, the pressure of the gas mixture increases from 0.800 atm to 1.10 atm, a change of 0.30 atm. This change is due to the argon added, so it means that 0.200 mol of gas contributes to a pressure of 0.30 atm.

Given that 0.200 mol of argon contributes 0.30 atm pressure, and considering that initially the mixture had a pressure of 0.800 atm, we can infer that the total moles of oxygen and nitrogen before the argon addition was (0.800 atm ÷ 0.30 atm/mol) = 2.67 mol. Since the problem outlines that the gas mixture contains twice as many moles of O2 as N2, therefore the number of moles of O2 is 2/3 of the total original moles, which is (2/3 x 2.67 mol) = 1.78 mol O2.

Learn more about Moles of Gas here:

https://brainly.com/question/23205388

#SPJ11

Which statement best describes the role that gravity played in the formation of our solar system?
a*Gravity allowed the nebula to expand and move outward
b*Gravity caused the nebula to cool enough for planets to form
c*Gravity removed excess gas and dust from the cores of the planets
d*Gravity pulled particles of dust and gas together to form planets.

Answers

d*Gravity pulled particles of dust and gas together to form planets.

hope this helps

The correct answer is D. Gravity pulled particles of dust and gas together to form planets.

Explanation:

Gravity is a force of attraction that acts in all universe, and makes objects with more matter attract objects with less matter. This force played an important role in the formation of our solar system. Because it is believed after the big bang occurred, there was a massive cloud of dust, gas, and particles (nebula) and due to the force exerted by gravity, these particles were pulled together forming clumps of different sizes and characteristics that were later the planets, moons and other structures that remain until today. Also due to the force of gravity the sun was formed and planets orbit around it. According to this, the role of gravity in the formation of our solar system was gravity pulled particles of dust and gas together to form planets.

Compare and contrast the outer core and the inner core.

Answers

Outer Core:The outer part of the core is liquid and hot.It gets hotter the deeper you go (around 9000 degrees F in the center - your oven only goes to about 600 degrees F)It's so hot that rock melts. Melted rock is called magma.It's 1400 miles thick,and Earth's magnetic field results from movements in the outer core.Inner Core:It is only 800 miles to the center. It's shaped like a ball, or a sphere,And it's solid.They both have the same composition, which is Fe-Ni alloy. They are both high in temperature.

Answer:

hope this helps

Explanation:The earth’s inner core is a solid ball of iron, nickel and other metals, while the outer core is liquid metal composed of iron and nickel as well. The temperature of the inner core is estimated to be about 5,400 degrees C or 9,800 degrees F, far beyond iron’s melting point.                                                                            

hope this helps you from a newbe

How many moles of oxygen are required to produce 37.15 g CO2?

Answers

Carbon = 12.010. Oxygen = 15.999 x 2 15.999 x 2 = 31.998 + 12.010 = 44.008 \frac{37.15 grams * 1 mole CO2}{44.008 grams}
1.407.........................................................

If 26.35 ml of a standard 0.1650 m naoh solution is required to neutralize 35.00 ml of h2so4, what is the molarity of the acid solution?

Answers

Answer : The molarity of the [tex]H_2SO_4[/tex] is, 0.06211 M

Explanation :

Using neutralization law,

[tex]n_1M_1V_1=n_2M_2V_2[/tex]

where,

[tex]n_1[/tex] = basicity of an acid [tex](H_2SO_4)[/tex] = 2

[tex]n_2[/tex] = acidity of a base [tex](NaOH)[/tex] = 1

[tex]M_1[/tex] = concentration or molarity of [tex]H_2SO_4[/tex] = ?

[tex]M_2[/tex] = concentration of NaOH = 0.1650 M

[tex]V_1[/tex] = volume of [tex]H_2SO_4[/tex] = 35.00 mL

[tex]V_2[/tex] = volume of NaOH = 26.35 mL

Now put all the given values in the above law, we get the concentration of the [tex]H_2SO_4[/tex].

[tex]2\times M_1\times 35.00mL=1\times 0.1650M\times 26.35mL[/tex]

[tex]M_1=0.06211M[/tex]

Therefore, the molarity of the [tex]H_2SO_4[/tex] is, 0.06211 M

Final answer:

The molarity of the sulfuric acid solution is calculated using the volume and molarity of a sodium hydroxide solution used in titration. After determining the moles of NaOH and using the stoichiometric relationship, we find the moles of H₂SO₄ and divide by the volume of the acid solution to get the molarity, which is approximately 0.0621 M.

Explanation:Calculating the Molarity of an H₂SO₄ Solution

To determine the molarity of the sulfuric acid solution, we'll need to use the concept of titration and the stoichiometry of the reaction that occurs between sulfuric acid (H₂SO₄) and sodium hydroxide (NaOH). Here's the balanced chemical equation for the reaction:

H₂SO₄ (aq) + 2NaOH(aq) → Na₂SO₄ (aq) + 2H₂O (l)

According to the equation, one mole of H₂SO₄ reacts with two moles of NaOH. First, we calculate the moles of NaOH used:


 Moles of NaOH = Volume of NaOH × Molarity of NaOH
 Moles of NaOH = 0.02635 L × 0.1650 M = 0.00434775 moles

Since the molar ratio of NaOH to H₂SO₄ is 2:1, we divide the moles of NaOH by 2 to get the moles of H₂SO₄:


 Moles of H₂SO₄ = Moles of NaOH / 2
 Moles of H₂SO₄ = 0.00434775 moles / 2 = 0.002173875 moles

Finally, we calculate the molarity of the H₂SO₄:


 Molarity of H₂SO₄ = Moles of H₂SO₄ / Volume of H₂SO₄ in liters
 Molarity of H₂SO₄ = 0.002173875 moles / 0.03500 L = 0.0621107 M

Therefore, the molarity of the acid solution is approximately 0.0621 M.

Learn more about Molarity of Sulfuric Acid here:

https://brainly.com/question/15399469

#SPJ3

Type in the correct values to correctly represent the valence electron configuration of magnesium: AsB A = B =

Answers

The correct answer would be,
A= 3 
B=2
Answer : The correct answer will be A =3 and B =2 as the electron configuration of Mg will be as [tex] [Ne] 3s^{2}[/tex] where A is 3 and B is 2.Explanation :

Magnesium has atomic number as 12. The complete electron configuration will be as [tex] 1s^{2}2s^{2}2p^{6}3s^{2}[/tex].

which can be abbreviated as[tex][Ne] 3s^{2}[/tex] as the electron configuration resembles to that of neon element.

In the outermost shell the electron in 3 s orbital is only 2. So, therefore 3 is the orbital of S and there are 2 electrons in it.

Will bromine react with sodium? Explain your answer.

Answers

Sodium metal reacts vigorously with all the halogens to form sodium halides. So, it reacts with fluorine, then forms form respectively sodium
Hope this helped :)

Dinosaur fossils are often dated by using an element other than carbon, like potassium-40, that has a longer half life (in this case, approximately 1.25 billion years). suppose the minimum detectable amount is 0.1% and a dinosaur is dated with 40k to be 67 million years old. is this possible?

Answers

The equation relating radioactive decay is:

N(i) = N(o) * exp(-0.693*t / t(half))

The fraction:
N(i)/N(o) represents the fraction of original substance present after t years and a half-life of t(half). Substituting the values,

N(i)/N(o) = exp((-0.693 * 67)/(1,250))

N(i)/N(o) = 0.964 or 96.4%

This means that the amount is far above the minimum detectable amount, so this method is feasible.

draw a transition state for the reaction between ethyl iodide and sodium acetate

Answers

The reaction between ethyl iodide and sodium acetate is a substitution reaction, likely involving an SN2 (nucleophilic substitution bimolecular) mechanism.

In the transition state for an SN2 reaction, the nucleophile (acetate ion) is attacking the substrate (ethyl iodide) from the backside, leading to inversion of configuration. The reaction between ethyl iodide and sodium acetate is a substitution reaction, with an SN2 (nucleophilic substitution bimolecular) mechanism most likely at work.

In the transition state:

The leaving group (iodide in this case) is partially leaving.

The nucleophile (acetate ion) is partially bonded to the carbon, approaching from the backside.

The carbon undergoing substitution is in a tetrahedral arrangement with the nucleophile, the leaving group, and two other substituents.

When a hammer strikes a compound formed by covalent bonds, what will most likely happen to the compound?

It will break into many pieces
It will reform into a new shape
It will spread out and then return to it's original shape
It will stay solid and resist the force of the hammer

Answers

Answer: Option (a) is the correct answer.

Explanation:

A compound formed by sharing of electrons is known as a covalent compound.

A covalent compound has weak intermolecular forces due to which it is brittle in nature. Hence, when we hit hammer on a covalent compound then it breaks easily.

Thus, we can conclude that when a hammer strikes a compound formed by covalent bonds, then most likely it will break into many pieces.

Answer:

option A.

Explanation:

have a good day.

:)

You have 1.0 mole of each compound below. which has the greatest mass?
a. iron(iii) sulfate
b. sodium hydroxide
c. barium carbonate
d. ammonium nitrate
e. lead(iv) oxide

Answers

(a) Iron (iii) sulphate:
From the periodic table:
mass of iron = 55.845 grams
mass of sulphur = 32.065 grams
mass of oxygen = 16 grams
Iron (iii) sulphate has the formula: Fe2(SO4)3
molar mass = 2(55.845) + 3(32.065) + 3(4)(16) = 399.885 grams

(b) Sodium hydroxide:
From the periodic table:
mass of sodium = 22.989 grams
mass of oxygen = 16 grams
mass of hydrogen = 1 gram
Sodium hydroxide has the formula: NaOH
molar mass = 22.989 + 16 + 1 = 39.989 grams

(c) Barium carbonate
From the periodic table:
mass of barium = 137.327 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Barium carbonate has the formula: BaCO3
molar mass = 137.327 + 12 + 3(16) = 197.327 grams

(d) ammonium nitrate:
From the periodic table:
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of oxygen = 16 grams
Ammonium nitrate has the formula: NH4NO3
molar mass = 14 + 4(1) + 14 + 3(16) = 80 grams

(e) Lead (iv) oxide
From the periodic table:
mass of lead = 207.2 grams
mass of oxygen = 16 grams
Lead (iv) oxide has the formula: PbO2
molar mass = 207.2 + 2(16) = 239.2 grams

From the above calculations, we can see that:
Iron (iii) sulphate has the greatest mass.

In process in which An animal's cells use oxygen and digested food molecules to release the energy in food is called

Answers

In process in which An animal's cells use oxygen and digested food molecules to release the energy in food is called

cellular respiration
it's known as cellular respiration

Draw the lewis dot structure for se2−. to change the symbol of an atom, double-click on the atom and enter the letter of the new atom. show the formal charge of the atom

Answers

First of all, Se has 6 valence electrons, so its Lewis structure has 6 dots.

Symbolize the valence electrons as *, then the Lewis struecture for Se is:

     **
** Se **

Now, Se 2-, means Se atom has two more electrons, which means that the atom completes the octete rule (eight electrons in the outer shell).

This is the structe fo Se 2-

     **
** Se **   draw big square bracketts around that structre and write 2- at the upper right corner as a superscript.
     **

To begin with the Lewis dot structure,

Se possesses six valence electrons, resulting in a Lewis structure with six dots.Now, Se 2- denotes that the Se atom has two additional electrons, completing the octet rule (eight electrons in the outer shell).Make a huge square bracket around that structure and write 2- as a superscript in the upper right corner.

[tex]**\\ **Se^{2-} **\\ **[/tex]

Thus, the structure has 8 electrons represented by *.

:earn more about Lewis dot structure: https://brainly.com/question/19550931

what is the mass in grams of 10l of methane at stp

Answers

To answer this item, it is assumed that methane behaves ideally such that it follows the equation,
  
    PV = nRT

where P is pressure, V is volume, R is the universal gas constant, and T is temperature. Solving for the value of n,

      n = PV / RT

At STP condition, T is equal to 0°C (273.15 K) and P is equal to 1 atm. Substituting the known values,

     n = (1 atm)(10 L) / (0.0821 L.atm/mol.K)(273.15 K)

        n = 0.446 mol

Then, multiply the number of moles by the molar mass of methane, 16 g/mol.

      
M = (0.446 mol)(16 g/mol) = 7.13 g

ANSWER: 7.13 g

How many liters of water are required to dissolve 1.00 g of barium chromate? express your answer in liters to three significant figures?

Answers

Assuming the water is present at 20 °C, the solubility of barium chromate is 0.2275 mg/100 mL

Converting this to mg/L, we get:

2.275 mg/L

Converting this value again, to grams per liter, we get:

0.002275 g/L

To dissolve one gram, we require:

1/0.002275 = 439.56044

440 liters of water.

The solubility  Barium chromate in grams per liter = 2.78 . 10⁻³ grams/L

359 liters of water are required to dissolve 1.00 g of Barium chromate

Further explanation

Solubility is the maximum amount of a substance that can dissolve in some solvents. Factors that affect solubility

1. Temperature: 2. Surface area: 3. Solvent type: 4. Stirring process:

Ksp is an ion product in equilibrium

Solubility relationships and solubility constants (Ksp) of the AxBa solution can be stated as follows.

AₓBₐ (s) ← ⎯⎯⎯⎯ → x Aᵃ⁺ (aq) + a Bˣ⁻ (aq)

s                             xs               as

Ksp = [Aᵃ⁺] ˣ [Bˣ⁻] ᵃ

Ksp = (xs) ˣ (as) ᵃ

Solubility units in the form of mol / liter or gram / liter

At 25.°C, the molar solubility of Barium chromate  BaCrO₄ in water is 1.10. 10⁻⁵M.

to change units to grams / liter, we multiply by molar mass:

M BaCrO₄ = Ba + Cr + 4. Ar O

M BaCrO₄ = 137 + 52 + 4.16

M BaCrO₄ = 253

So the solubility is in grams / liter

= 1.10 . 10⁻⁵ mol / liter x 253 grams / mol

=  278.3 .10⁻⁵ = 2.78 . 10⁻³ grams/L

(3 significant numbers, 2.7 and 8)

If we dissolve 1 gram of Barium chromate into the solution, we need water :

= 1 grams / 2.78 . 10⁻³ grams / liter

= 359 liters

(3 significant numbers, 3.5 and 9)

Learn more

the rate of solubility

https://brainly.com/question/9551583

influencing factors are both solubility and the rate of dissolution

https://brainly.com/question/2393178

The solubility of a substance

https://brainly.com/question/2847814

Keywords: solubility, silver chromate, a significant number

Calculate and compare the [h+] and ph for a 0.100 m solution of hclo4 and a 0.100 m solution of hclo (ka = 2.9 × 10–8).

Answers

[H+] for HClO(this is a weak acid so it requires an I.C.E. table to solve):


(I=initial amount. C=change in amount. E= amount at equilibrium.)
I.C.E. table
HClO. H2O. >>> H3O+ ClO4-
I. 0.100M. N/A. 0. 0
C. -x. N/A. +x. +x
E. 0.1-x. N/A. x. x.
(we don't consider water because it is not an aqueous solution)

ka=(x^2)/(0.1-x)
(2.9×10^-8)= (x^2)/(0.1-x)
(0.1-x)(2.9×10^-8) = x^2
(3.0×10^-9) - ((2.9×10^-8)x) = x^2

x^2+(2.9×10^-8)x-(3×10^-9)

a=1
b=(2.9×10^-8)
c= -(3×10^-9)

plug those values into the quadratic formula:

x= (-b +(√((b^2)-4ac))))/2a

I got x= 0.000053837

x= [H+] =0.000053837



[H+] for 0.100 M HClO4:
because HClO4 is a strong acid, it dissociates completely. Meaning that it's [H+] =0.1

HClO₄ has a higher [H⁺] than HClO (0.100 M vs. 5.4 × 10⁻⁵ M).

HClO₄ has a lower pH than HClO (1.00 vs. 4.3).

Classification of acids according to their strengthWeak acids: dissociate partially in water.Strong acids: dissociate completely in water.

HClO₄ is a strong acid. Thus, of HClO₄ is 0.100 M, H⁺ will be 0.100 M as well. We can use this value to calculate the pH for this acid.

pH = -log [H⁺] = -log 0.100 = 1.00

HClO is a weak acid. Thus, [H⁺] ≠ [HClO]. Given the acid dissociation constant (Ka) and the concentration of the acid (Ca), we can calculate [H⁺]  and pH using the following expressions.

[tex][H^{+} ] = \sqrt{Ca \times Ka } = \sqrt{0.100 \times (2.9 \times 10^{-8} ) } = 5.4 \times 10^{-5} \\\\pH = -log 5.4 \times 10^{-5} = 4.3[/tex]

HClO₄ has a higher [H⁺] than HClO (0.100 M vs. 5.4 × 10⁻⁵ M).

HClO₄ has a lower pH than HClO (1.00 vs. 4.3).

Learn more about acid strength here: https://brainly.com/question/14115968

Compound a, c12h22o, undergoes reaction with dilute h2so4 at 50°c to yield a mixture of two alkenes, b and c, c12h20. the major alkene product, b, gives only cyclohexanone after ozone treatment followed by reduction with zinc in acetic acid. draw the structure of the minor alkene product, compound
c.

Answers

2 years ago Structure A is
....H2
.....C-CH2
...../....\
H2C....C(OH)-Cy
.....\..../
.....C-CH2
.....H2

where Cy stands for cyclohexane. Upon dehydration from reaction with sulfuric acid you get a double bond between the two cyclohexyl groups and also:

....H2
.....C-CH2
...../....\
H2C....C-Cy
.....\....//
.....C-CH2
.....H2

Manganese(iv) oxide reacts with aluminum to form elemental manganese and aluminum oxide: 3mno2+4al→3mn+2al2o3part awhat mass of al is required to completely react with 30.0 g mno2?

Answers

Final answer:

To completely react with 30.0 g of MnO2, 107.92 g of aluminum is required.

Explanation:

To determine the mass of aluminum required to completely react with 30.0 g of MnO2, we need to use the balanced chemical equation and the molar mass of MnO2. In the balanced equation, the coefficient of MnO2 is 3, which means that 3 moles of MnO2 react with 4 moles of Al.

First, calculate the molar mass of MnO2:

Molar mass of Mn = 54.94 g/molMolar mass of O = 16.00 g/molMolar mass of MnO2 = (54.94 g/mol) + 2(16.00 g/mol) = 86.94 g/mol

Next, convert 30.0 g of MnO2 to moles:

Moles of MnO2 = Mass of MnO2 / Molar mass of MnO2 = 30.0 g / 86.94 g/mol = 0.344 moles

Using the mole ratio from the balanced equation, we can calculate the moles of Al required:

Moles of Al = (3/3) x 4 moles of Al = 4 moles of Al

Finally, convert moles of Al to mass:

Mass of Al = Moles of Al x Molar mass of Al = 4 moles x 26.98 g/mol = 107.92 g

The mass of aluminum required to completely react with 30.0 g of MnO2 is 107.92 g.

Learn more about Reacting Manganese(IV) Oxide with Aluminum here:

https://brainly.com/question/33537347

#SPJ12

Final answer:

To completely react with 30.0 g of MnO2, 12.4 g of Al is required.

Explanation:

To determine the mass of aluminum required to completely react with 30.0 g of MnO2, we need to use the balanced equation for the reaction:

3MnO2 + 4Al -> 3Mn + 2Al2O3

From the equation, we can see that the mole ratio of MnO2 to Al is 3:4. We can use this ratio to calculate the mass of Al.

First, convert the mass of MnO2 to moles using its molar mass. Then, use the mole ratio to find the moles of Al. Finally, convert the moles of Al back to mass using its molar mass.

Let's calculate:

Convert the mass of MnO2 to moles: (30.0 g MnO2) / (86.94 g/mol MnO2) = 0.345 mol MnO2Using the mole ratio, calculate the moles of Al: 0.345 mol MnO2 * (4 mol Al / 3 mol MnO2) = 0.460 mol AlConvert the moles of Al to mass: 0.460 mol Al * (26.98 g/mol Al) = 12.4 g Al

Therefore, 12.4 grams of Al are required to completely react with 30.0 grams of MnO2.

Learn more about stoichiometry here:

https://brainly.com/question/30218216

#SPJ2

2.5 million atoms of a particular element have a mass of 8.33 x 10-16 grams. what is this element

Answers

To determine the element, the mass in grams is converted to atomic mass units using the known mass of an atomic mass unit. The calculated atomic mass matches the approximate atomic masses of elements like Neon or Calcium. However, a precise identification may require isotopic composition.

The student is asking about the identity of an element based on a given mass and number of atoms. To find the answer, we use the concept of atomic mass units (u) and Avogadro's number. The mass of a single atomic mass unit is 1.661 × 10-24 grams. With 2.5 million atoms having a mass of 8.33 × 10-16 grams, we can calculate the average atomic mass of an individual atom.

First, we divide the total mass by the number of atoms:

8.33 × 10-16 g / 2.5 million atoms = 3.332 × 10-22 g/atom.

Next, we convert this mass into atomic mass units by dividing by the mass of one atomic mass unit:

3.332 × 10-22 g/atom / 1.661 × 10-24 g/u = 20.04 u/atom.

This calculated value can be compared to the atomic mass or atomic weight of elements listed in the periodic table to identify the element. The mass is approximately 20 u, which suggests the element could be Neon (Ne) with an atomic mass of approximately 20.18 u or Calcium (Ca) with an atomic mass of 40.08 u considering the natural abundance of isotopes. For a more precise identification, additional information such as isotopic composition would be needed.

How does most of the water in the water cycle move from lakes and rivers directly back into the atmosphere?

Answers

It goes from lakes and as the temp rises, it evaporates into clouds. from there, the clouds get heavy, and it produces rain, and the rain forms rivers and then back into lakes.
It happens through precipitation when water evaporates from the suns rays and rises into the atmosphere

Why can a silver electrode be used as an indicator electrode for ag and halides?

Answers

Final answer:

A silver electrode can be used as an indicator for Ag and halides due to silver's ability to participate in different reactions, such as forming solid silver chloride from dissolved chloride and silver ions, and forming complex ions with ammonia.

Explanation:

A silver electrode can be used as an indicator electrode for silver (Ag) and halides due to the specific chemistry involved with silver and halide compounds.

When used as a cathode in an electrochemical cell, the reaction Ag+ (aq) + e¯ -> Ag(s) occurs, with the net result being the transfer of silver metal from the anode to the cathode.

In a solution containing halides, solid silver chloride (AgCl) can be formed from dissolved chloride and silver ions, as indicated by the net equation: Cl(aq) + Ag+ (aq) -> AgCl(s). The dissolution of silver chloride can also produce free Ag+ ions, which can form complex ions with ammonia, effectively reducing the concentration of free Ag+ ions in the solution.

In conclusion, the ability of silver to participate in these different reactions makes it a useful indicator electrode in the detection of silver ions and halides in a solution.

Learn more about Silver Electrode Use here:

https://brainly.com/question/6680673

#SPJ12

Calculate the ph for a 0.3 m solution of (a) sodium leucinate

Answers

To get the pH value for a certain aqueous solution, the concentration of the hydronium ions (in moles per liter) should be know. This concentration is also known as the "molarity".
pH = -log [H3O+]

We are given that the molarity = 0.3 m
Therefore,
pH = -log[0.3] = 0.5228787

Which unit abbreviation is a measurement of force?



m/s



m/s2



N



N/s

Answers

So,

Recall Newton's Second Law of Motion: force = mass x acceleration

Also recall:

acceleration = velocity/time
velocity = distance/time

Distance is expressed in meters.
Time is expressed in seconds.
Mass is expressed in kilograms.

v = m/s
a = m/s^2
F = m * a
F = kg * m/s^2

[tex]F= \frac{kg*m}{s^2} [/tex]

The unit for force is the Newton (N).

Answer:

Newton is the unit of force, abbreviated as "N"

Explanation:

Let us understand the given units:

a) m/s: it is meter per second. It is SI unit of speed or velocity.

b) m/s: it is meter per second square. It is SI unit of acceleration (velocity per second).

c) N : it is unit of force. It stands for Newton.It is equal to 1 kilogram meter per second squared.

d) N/s: it is newton per second. It is unit of momentum.

The diagram shows the movement of particles from one end of the container to the opposite end of the container.

mc011-1.jpg

Which event is most likely occurring?
diffusion because particles move from regions of high concentration to regions of low concentration
diffusion because particles move from regions of low concentration to regions of high concentration
effusion because there is a movement of a gas through a small opening into a larger volume
effusion because there is a movement of a gas through a large opening into a smaller volume

Answers

The correct option is this: EFFUSION BECAUSE THERE IS A MOVEMENT  OF A GAS THROUGH A SMALL OPENING INTO A LARGER VOLUME.
Effusion refers to the movement of gas particles through a small hole. According to Graham's law, the effusion rate of a gas is inversely proportional to the square root of the mass of its particles.

Answer: C

Explanation:

Is Fluorine malleable, ductile or brittle?

Is Fluorine a conductor of heat and electricity?

What does Fluorine combine with or react with?

What family does Fluorine come from? Alkali metals, Alkaline Earth, Transition metals, non-metal, metalloid, noble gas?

Answers

Fluorine is an element which is an halogen. It is BRITTLE when solid. All halogens are brittle. It is a non-metal. Its symbol is F. It is pale yellow or colorless gas.

Since Fluorine is a non metal, IT IS A POOR CONDUCTOR OF HEAT AND ELECTRICITY. NO, IT IS NOT A CONDUCTOR OF HEAT AND ELECTRICITY. All halogens have this feature.

Fluorine can react with other halogens such as chlorine, bromine, iodine, etc to form respective compounds. It is very reactive and reacts with glass, water and other metals. It is so reactive that it is not found in its elemental form in the nature. Generally fluorine reacts with other elements to form FLUORIDES. For example, fluorine reacts with hydrogen to form hydrogen fluoride (HF). 

Fluorine comes from HALOGEN and NON-METAL family. It is chemically very reactive and forms compounds with other molecules. It is the first element of its family.

Explain the differences between an ignition transformer and a solid state igniter.

Answers

An ignition transformer ups the voltage that was received from an electric utility to create sparks that bridges between ignition electrodes whereas igniter is a departure from transformers covering their shortcomings. Igniter uses tank mechanism that helps to maintain a constant output even when input voltage decreases.

Ignition transformers use electromagnetic induction to convert low voltage into high voltage for igniting fuel, whereas solid state igniters use semiconductor electronics for the same purpose. Solid state igniters are typically more reliable and longer-lasting as they have no moving parts. The key differences lie in their underlying technologies and operational principles.

Differences Between an Ignition Transformer and a Solid State Igniter

Both ignition transformers and solid state igniters are crucial components in ignition systems, but they operate differently.

Ignition Transformer

An ignition transformer is a type of step-up transformer. It works on the principle of electromagnetic induction to convert a low-voltage electrical input into a high-voltage output needed to ignite a fuel source. Usually, it steps up a 120V input to thousands of volts. This high voltage creates a spark across the electrodes in a burner or engine ignition system, igniting the fuel-air mixture.

For example, the ignition circuit of an automobile which is powered by a 12V battery uses an ignition transformer to generate the large voltages necessary for spark plugs.

Solid State Igniter

In contrast, a solid state igniter uses semiconductor technology to create high-voltage discharges. It uses electronic components such as transistors and capacitors to generate these voltages without moving parts. Solid state igniters are often more reliable and have a longer lifespan compared to traditional ignition transformers as they don't rely on coil-based mechanics.

Key Differences

Technology: Ignition transformers use step-up transformer technology, while solid state igniters use semiconductor electronics.Reliability: Solid state igniters tend to be more durable and reliable since they have no moving parts.Operation: Ignition transformers rely on electromagnetic induction, whereas solid state igniters rely on electronic circuitry.
Other Questions
What was the problem with the gautreaux assisted housing program? if a man has brown eye with the recessive gene for blue eyes (Bb), each of his sex cells will have Write five sentences in Spanish using "-ir" verbs. Only choose from these regular verbs to make your sentences: abrir, asistir, decidir, descubrir, escribir, ocurrir, permitir, recibir, or vivir.Use a different verb for each sentence. Be sure to conjugate your verbs correctly. Your sentences can be short and simple. If necessary, feel free to use a dictionary for one or two words that you may need but don't know yet. Example:Yo vivo en California. (I live in California.) What was the commercial revolution? The strikers will return to work when the union representatives have completed their negotiations in the 1800 how long did it take for ships to travel across Atlantic ocean How does a growing embryo inside a seed obtain food?1) It uses food stored within the seed. 2) It undergoes photosynthesis to make its own food.3) It absorbs food from the outside environment.4) It takes in food provided by the seed coat. When rani was having problems at school, she often talked things over with her grandfather. her grandfather, who always smoked a pipe, was warm, reassuring, and always supportive. years later, rani still finds the smell of pipe tobacco soothing. in classical conditioning terms, rani's fondness for the smell of pipe tobacco may be described as a(n):? How did women's rights differ in Greek and Persian civilizations during the classical era? A.Persian women were considered inferior to men, while Greek women were not. B.Persian women were allowed to own property, while Greek women were not. C.Persian women were allowed to practice religion, while Greek women were not. D.Persian women were able to vote for their leaders, while Greek women were not. Your textbook describes a field experiment using guppies that was conducted to test natural selection. complete the sentences about this experiment with the correct terms. How does mitosis in plant cells differ from that in animal cells? A. Plant cells lack a cell membrane. B. Plant cells lack spindle fibers. C. Animal cells lack a cell plate. D. Animal cells lack cytokinesis Bob recently made a phone call that required fifteen minutes of hold time. Luckily, the hold music was a piece he recognized, but after just a couple of minutes he tucked the phone under his chin and began to answer his e-mail. Bob was using ____ listening while he waited. In biology class one day, Mrs. Chabon wrote six physiological functions on the board. Then, she asked groups of students to each choose the three functions that are purposes of the excretory system. These are the lists they made. Group 1: maintaining pH level of blood; transporting hormones throughout the body; regulating growth Group 2: removing wastes from the body; digesting solid foods; maintaining salt and water balance Group 3: maintaining salt and water balance; maintaining pH level of blood; regulating growth Group 4: removing wastes from the body; maintaining pH level of blood; maintaining salt and water balance Which group correctly listed the functions of the excretory system? group 1 group 2 group 3 group 4 During the late 19th century, urban political "machines" and those that ran them Read this students summary of O. Henrys The Last Leaf. Sue and Johnsy are artists who live together in New York City. One winter, Johnsy is struck with pneumonia. She makes up her mind to die as soon as the last leaf falls from the ivy plant growing outside her window. As the winter wind blows and the rain falls, Sue helplessly watches her friends life ebb away. And there seems no way to stop the last leaf from falling. In the surprise ending, an old man makes the ultimate sacrifice for Johnsy. Like all the artists in the building, he always hoped to someday paint a masterpiece. One night, he braves the cold and rain to paint a single leaf on the wall outside Johnsys window to such perfection that she cannot tell the last leaf has fallen. In time, hope is revived and, with it, Johnsys will to live. However, the old man falls sick and soon dies. But he has realized his dream and has painted his masterpiece. How does the old mans deed reveal the theme of the story? A. It shows that death has no power where there is love. B. It shows that something to hope for is essential to happiness. C. It shows that success can be measured by the obstacles we overcome. D. It shows that our greatest achievement may not be one that brings fame and fortune. Which field of study in the late nineteenth century was discussed in Robert Louis Stevenson's The Strange Case of Dr. Jekyll and Mr. Hyde?A. electrochemistryB. radiologyC. paleontologyD. psychopathology What specific audience does Braille writing target?? What is 67.50 with 5 percent sales tax The civil war and reconstruction amendments were passed between the years 1865 and _____. who was the first to write about nerves in the teeth Steam Workshop Downloader