I need help please​

 I Need Help Please

Answers

Answer 1

Answer:

b

Step-by-step explanation:

it makes sense because they all are going down by 1 side each time

Answer 2

B) the triangle because each figure is loosing one side


Related Questions

Find the value of x.

Answers

Answer:

This is a right triangle, so we know that:

h² = b' · c'

which is this case can be specificly written as:

BD² = AD · CD

BD² = 7 · 3 = 21

BD = √21

Now that we can also notice that ΔADB is also a right triangle, therefore we can apply the pythagorean theorem:

AD² + BD² = AB²

7² + (√21)² = x²

x²               = 49 + 21 = 70

x                 = √70

I need help on this quick

Answers

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

I'm sorry but I feel ur question is incomplete

a 15 foot lamp casts a 9-ft shadow if the streetlamp is near a 70 ft tall building find the length of the shadow cast by the building​

Answers

Answer:

42 feet

Step-by-step explanation:

This is a ratio question. The ratio of the height of the lamp to its shadow is the same as the ratio of the height of the building to its shadow.

So, 15/9 = 70/x, where x is the building's shadow.

Cross mutiply and solve for x.

15x = 630

x=42

Using the concept of similar triangles, we set up a proportion comparing the heights and shadow lengths of the lamp and building. After solving the proportion 15/9 = 70/x, we find that the shadow cast by the 70-foot tall building is 42 feet long.

To find the length of the shadow cast by the building, we can use the concept of similar triangles. The lamp and its shadow form one triangle, and the building and its shadow form a second triangle. These two triangles are similar because the angles are the same, meaning they have the same shape but are of different sizes.

Given that a 15-foot lamp casts a 9-ft shadow, we can set up the following proportion:
Lamp Height / Lamp Shadow = Building Height / Building Shadow, which simplifies to 15/9 = 70/x, where x is the length of the building's shadow we are trying to find.

By cross-multiplying, we get 15x = 9 * 70, which simplifies to 15x = 630. Dividing both sides by 15 gives us x = 42, so the shadow cast by the building is 42 feet long.

Write the equation of the parabola with a vertex at (-3,-10) and y-intercept of (0,-1)

Answers

Answer:

y = (x+ 3)^2 - 10.

Step-by-step explanation:

Vertex form is

y =  a(x - b)^2 + c

Here b = -3 and c = -10 so we have

y = a(x + 3)^2 - 10   where a is some constant.

The y intercept is (0, -1)  so substituting:

-1 = a * 3^2 - 10

-1 + 10 = 9a

9a = 9

a = 1

So the required parabola is (x+ 3)^2 - 10.

find the radius of a sphere with volume 580mm^3, correct to 2 decimal places.

Answers

Answer:

11.77

Step-by-step explanation:

Volume of sphere = [tex]\frac{4}{3}[/tex] × π × r²

580 mm³ =  [tex]\frac{4}{3}[/tex] × π × r²

( Divide both sides by  [tex]\frac{4}{3}[/tex] )

435 mm³ = π × r²

( Divide both sides by π )

138.4648005 = r²

( Square root both sides )

11.76710672 = r

Simplify the expression cos x csc x tan x

Answers

The simplified expression for cos x csc x tan x is 1 .

Sure, let's simplify the expression step by step:

Given expression:[tex]\( \cos(x) \csc(x) \tan(x) \)[/tex]

We know that:

[tex]- \( \csc(x) = \frac{1}{\sin(x)} \)[/tex]

[tex]- \( \tan(x) = \frac{\sin(x)}{\cos(x)} \)[/tex]

So, we substitute these into the expression:

[tex]\( \cos(x) \cdot \frac{1}{\sin(x)} \cdot \frac{\sin(x)}{\cos(x)} \)[/tex]

Now, we cancel out the common terms:

[tex]\( \frac{\cos(x) \cdot \sin(x)}{\sin(x) \cdot \cos(x)} \)[/tex]

Now, we can see that the numerator and the denominator cancel each other out:

[tex]\( \frac{1}{1} = \boxed{1} \)[/tex]

In conclusion, the simplified expression is ( 1 ).

We start by using the trigonometric identities to express [tex]\( \csc(x) \) and \( \tan(x) \) in terms of \( \sin(x) \) and \( \cos(x) \)[/tex]. Then, we substitute these expressions into the given expression. Next, we cancel out the common terms in the numerator and denominator, resulting in a simplified expression of 1. This simplification demonstrates the relationship between the trigonometric functions and highlights their interconnectedness through fundamental trigonometric identities.

Complete question:

Simplify the expression cos x csc x tan x

combine like terms . what is 43z + 15z + 7z + 5z + 46z + 14z? ​

Answers

Basically just add them all together like normal addition except there is a z attached to each number:

43z + 15z + 7z + 5z + 46z + 14z

58z+ 7z + 5z + 46z + 14z

65z + 5z + 46z + 14z

70z + 46z + 14z

116z + 14z

130z

Hope this helped!

Answer:

130z

Step-by-step explanation:

43z + 15z + 7z + 5z + 46z + 14z

Since the all have z with a coefficient, they are all like terms

Factor out a z

(43 + 15 + 7 + 5 + 46 + 14 ​ )z

Then add all the coefficients together

(130)z

The total is 130z

Match each set of points with the quadratic function whose graph passes through those points.
f(x) = x2 − 2x − 15
f(x) = -x2 − 2x + 15
f(x) = -x2 + 2x − 15

(0,-15), (1,-14), (2,-15)
(-2,15), (-1,16), (0,15)
(-3,0), (0,-15), (5,0)

Answers

Answer:

f(x) = x² - 2x - 15 passes through (-3 , 0) , (0 , -15) , (5 , 0)

f(x) = -x² - 2x + 15 passes through (-2 , 15) , (-1 , 16) , (0 , 15)

f(x) = -x² + 2x - 15 passes through (0 , -15) , (1 , -14) , (2 , -15)

Step-by-step explanation:

* Lets explain how to solve this question

- To find the points whose graph passes through them substitute the

  x-coordinate in the function if the answer is the same with the

  y-coordinate of the point then the graph passes through this point

  lets do that

- Check the first set of points with the first function

# Pint (0 , -15)

∵ f(x) = x² - 2x - 15

∴ f(0) = (0)² - 2(0) - 15 = -15 ⇒ same value of y-coordinate

∴ The graph of the function passes through point (0 , -15)

# Pint (1 , -14)

∵ f(x) = x² - 2x - 15

∴ f(0) = (1)² - 2(1) - 15 = -16 ⇒ not same value of y-coordinate

∴ The graph of the function does not pass through point (1 , -14)

∴ The graph does not pass through this set of points

- Check the second set of points with the first function

# Pint (-2 , 15)

∵ f(x) = x² - 2x - 15

∴ f(0) = (-2)² - 2(-2) - 15 = 4 + 4 - 15 -7 ⇒ not same value of y-coordinate

∴ The graph of the function does not pass through point (-2 , 15)

∴ The graph does not pass through this set of points

- Check the third set of points with the first function

# Pint (-3 , 0)

∵ f(x) = x² + 2x - 15

∴ f(0) = (-3)² - 2(-3) - 15 = 9 + 6  -15 = 0 ⇒ same value of y-coordinate

∴ The graph of the function passes through point (-3 , 0)

# Pint (0 , -15)

∵ f(x) = x² - 2x - 15

∴ f(0) = (0)² - 2(0) - 15 = -15 ⇒ same value of y-coordinate

∴ The graph of the function passes through point (0 , -15)

# Pint (5 , 0)

∵ f(x) = x² + 2x - 15

∴ f(0) = (5)² - 2(5) - 15 = 25 - 10  -15 = 0 ⇒ same value of y-coordinate

∴ The graph of the function passes through point (5 , 0)

∴ The graph passes through this set of points

* f(x) = x² - 2x - 15 passes through (-3 , 0) , (0 , -15) , (5 , 0)

- Check the first set of points with the second function

# Pint (0 , -15)

∵ f(x) = -x² - 2x + 15

∴ f(0) = -(0)² - 2(0) + 15 = 15 ⇒ not same value of y-coordinate

∴ The graph of the function does not passes through point (0 , -15)

∴ The graph does not pass through this set of points

- Check the second set of points with the second function

# Pint (-2 , 15)

∵ f(x) = -x² - 2x + 15

∴ f(0) = -(-2)² - 2(-2) + 15 = -4 + 4 + 15 = 15 ⇒ same value of y-coordinate

∴ The graph of the function passes through point (-2 , 15)

# Pint (-1 , 16)

∵ f(x) = -x² - 2x + 15

∴ f(0) = -(-1)² - 2(-1) + 15 = -1 + 2 + 15 = 16 ⇒ same value of y-coordinate

∴ The graph of the function passes through point (-1 , 16)

# Pint (0 , 15)

∵ f(x) = -x² - 2x + 15

∴ f(0) = -(0)² - 2(0) + 15 = 15 ⇒ same value of y-coordinate

∴ The graph of the function passes through point (0 , 15)

The graph passes through this set of points

* f(x) = -x² - 2x + 15 passes through (-2 , 15) , (-1 , 16) , (0 , 15)

- Now we have the first set of points and the third function

The graph passes through this set of points

∴ f(x) = -x² + 2x - 15 passes through (0 , -15) , (1 , -14) , (2 , -15)

Find the common ratio for the following geometric sequence 5, 8.5, 14.45, 24.565

Answers

Answer:

r = 17/10

Step-by-step explanation:

Let the common ratio be r.  Then 5r = 8.5, and r = 17/10.

Answer:

1.7

Step-by-step explanation:

how does -48/4 = -12 I need a step-by-step explanation please

Answers

Answer:

-12

Step-by-step explanation:

think of it like this

Do -48/2 which equals -24 then cut that in half which equals -12 and thats your answer

Find the probability of at least three
successes in six trials of a binomial
experiment in which the probability of
success is 50%.
Round to the nearest tenth of a
percent.

Answers

Answer:

[tex]\dfrac{21}{32}=0.65625[/tex]

Step-by-step explanation:

If the probability of success is 50%, then p=0.5 and q=1-0.5=0.5.

At least three successes in six trials of a binomial experiment means that favorable are 3 successes, 4 successes, 5 successes and 6 successes.

1. 3 successes:

[tex]Pr_1=C^3_6p^3q^{6-3}=\dfrac{6!}{3!(6-3)!}\cdot (0.5)^3\cdot (0.5)^3=20\cdot \dfrac{1}{2^6}=\dfrac{5}{16}[/tex]

2. 4 successes:

[tex]Pr_2=C^4_6p^4q^{6-4}=\dfrac{6!}{4!(6-4)!}\cdot (0.5)^4\cdot (0.5)^2=15\cdot \dfrac{1}{2^6}=\dfrac{15}{64}[/tex]

3. 5 successes:

[tex]Pr_3=C^5_6p^5q^{6-5}=\dfrac{6!}{5!(6-5)!}\cdot (0.5)^5\cdot (0.5)^1=6\cdot \dfrac{1}{2^6}=\dfrac{3}{32}[/tex]

4. 6 successes:

[tex]Pr_4=C^6_6p^6q^{6-6}=\dfrac{6!}{6!(6-6)!}\cdot (0.5)^6\cdot (0.5)^1=1\cdot \dfrac{1}{2^6}=\dfrac{1}{64}[/tex]

Now, the probability of at least three successes in six trials of a binomial experiment is

[tex]Pr=Pr_1+Pr_2+Pr_3+Pr_4=\dfrac{5}{16}+\dfrac{15}{64}+\dfrac{3}{32}+\dfrac{1}{64}=\dfrac{20+15+6+1}{64}=\dfrac{42}{64}=\dfrac{21}{32}=0.65625[/tex]

To find the probability of at least three successes in six trials of a binomial experiment where the success rate is 50%, we'll need to consider the complement of this event, which is easier to calculate in this situation. The complement consists of the probability of either 0, 1, or 2 successes in the six trials. By finding the sum of these probabilities, we can subtract it from 1 to find the probability of the original event (3 or more successes).

First, let's recall the formula for the binomial distribution:

P(X = k) = C(n, k) * p^k * (1 - p)^(n - k)

where:
- P(X = k) is the probability of k successes in n trials,
- C(n, k) is the number of combinations of n items taken k at a time, it can be calculated using the formula C(n, k) = n! / (k! * (n - k)!),
- p is the probability of success for each trial,
- (1 - p) is the probability of failure for each trial,
- n is the number of trials, and
- k is the number of successes.

Since the success probability is 50%, or 0.5, and the complement includes the probability of 0, 1, or 2 successes, we can calculate each of these probabilities.

For k = 0 (zero successes):
P(X = 0) = C(6, 0) * (0.5)^0 * (0.5)^(6 - 0)
P(X = 0) = (6! / (0! * 6!)) * 1 * (0.5)^6
P(X = 0) = 1 * (0.5)^6
P(X = 0) = (1/64)

For k = 1 (one success):
P(X = 1) = C(6, 1) * (0.5)^1 * (0.5)^(6 - 1)
P(X = 1) = (6! / (1! * 5!)) * (0.5) * (0.5)^5
P(X = 1) = 6 * (0.5) * (0.5)^5
P(X = 1) = 6 * (1/64)

For k = 2 (two successes):
P(X = 2) = C(6, 2) * (0.5)^2 * (0.5)^(6 - 2)
P(X = 2) = (6! / (2! * 4!)) * (0.5)^2 * (0.5)^4
P(X = 2) = (15) * (0.25) * (0.0625)
P(X = 2) = 15 * (1/64)

Now we sum up these probabilities to get the complement:
P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)
P(X < 3) = (1/64) + 6*(1/64) + 15*(1/64)
P(X < 3) = (1 + 6 + 15) / 64
P(X < 3) = 22 / 64
P(X < 3) = 11 / 32

Now to find the probability of at least three successes (P(X >= 3)), we subtract the complement from 1:
P(X ≥ 3) = 1 - P(X < 3)
P(X ≥ 3) = 1 - (11 / 32)
P(X ≥ 3) = (32 / 32) - (11 / 32)
P(X ≥ 3) = 21 / 32

Converting this to a percentage and rounding to the nearest tenth of a percent:
P(X ≥ 3) ≈ (21 / 32) * 100
P(X ≥ 3) ≈ 65.625%

Rounded to the nearest tenth of a percent, the probability is 65.6%.

On a number line what is the difference between -3/7 and -2/3?

Answers

Answer:  -5/21

Step-by-step explanation:

-3/7 & -4/6

common detonator is 42

-3/7 = -18/42 reduced to -9/21

-4/6 = -28/42 reduced to -14/21

difference between -9/21 and -14/21 = -5/21

positive skewness of a distribution could be caused by which of the following choices:
A. an extremely low value
B. an extremely high value
C. a value close to the mean
D. a value close to the median

Answers

Answer:

C. a value close to the mean

Step-by-step explanation:

The positive skewness of distribution could be caused by a value close to the mean. Thus, option C is correct.

What is a normal distribution?

The normal distribution is somewhat similar where the main observation (mean or its surrounding) occurs frequently and as we go far from the mean, its chances decrease.

Normal distribution of proportion: The sampling distribution of the proportion we're talking about should be normally distributed.

A skewed distribution is a distribution having bias on one of the two sides (either left or right).

The positive skewness of distribution could be caused by a value close to the mean.

Thus, option C is correct.

Learn more about normal distribution here:

https://brainly.com/question/15395456

#SPJ2


Based on the table, which best predicts the end behavior of the graph of f(x)?

As x → ∞, f(x) → ∞, and as x → –∞, f(x) → ∞.
As x → ∞, f(x) → ∞, and as x → –∞, f(x) → –∞.
As x → ∞, f(x) → –∞, and as x → –∞, f(x) → ∞.
As x → ∞, f(x) → –∞, and as x → –∞, f(x) → –∞.

Answers

Answer:

B) As x → ∞, f(x) → ∞, and as x → –∞, f(x) → –∞.

Step-by-step explanation:

What rotation was applied to triangle DEF to create triangle D’E’F’
A. 90° clockwise
B. 180°
C. None of the above
D. 90° counterclockwise

Answers

The answer to the rotation of triangle def is B)

Answer:

B. 180°

Step-by-step explanation:

To create triangle D'E'F', you need to rotate triangle DEF 180°, which results a figure with an opposite position, like a mirror. A 180° rotation always gives an opposite position, a mirror effect.

Please Simplify. -2+-6+7

Answers

First add -2 and -6 together

Since these are both negitive signs you will add normally and and a negitive sign to the answer

-8

so you have...

-8 + 7

Since there is a negative (-8) and a positive (7) you will treat this as a normal subtraction problem, except your answer will have the sign of the biggest number

8 - 7 = 1

8 is the bigger number and has a negative sign therefore the answer is a negative number

so...

-8 + 7 = -1

-1

Hope this helped!

~Just a girl in love with Shawn Mendes

I need help solving for the angle ??

Answers

Answer: 5. 24.04

6. 30

7. 49.45

Step-by-step explanation:

use the law of sines for 5 and 6,

law of cosine for 7

5-6= opp/hyp.

7= adj/hyp

5. Let x be the missing angle.

We have the hypotenuse of the given right angle triangle to be 27 units.

The opposite side to the missing angle is 11 units.

We use the sine ratio to obtain:

[tex]\sin x=\frac{Opposite}{Hyppotenuse}[/tex]

[tex]\sin x=\frac{11}{27}[/tex]

[tex]x=\sin^{-1}(\frac{11}{27})[/tex]

[tex]x=24.04\degree[/tex] to the nearest hundredth.

6. Let y represent the missing angle.

We have the hypotenuse of the given right angle triangle to be 24 units.

The opposite side to the missing angle is 12 units.

We use the sine ratio to obtain:

[tex]\sin y=\frac{Opposite}{Hyppotenuse}[/tex]

[tex]\sin y=\frac{12}{24}[/tex]

[tex]y=\sin^{-1}(\frac{1}{2})[/tex]

[tex]y=30\degree[/tex].

7. Let the missing angle be z.

This time we have the adjacent side to be 13 units and the hypotenuse is 20 units.

We use the cosine ratio to obtain:

[tex]\cos z=\frac{Adjacent}{Hypotenuse}[/tex]

This implies that:

[tex]\cos z=\frac{13}{20}[/tex]

[tex]z=\cos ^{-1}(\frac{13}{20})[/tex]

[tex]z=49.46\degree[/tex] to the nearest hundredth

A line passes through the point (4,-8) and has a slope of 5/2. Write the equation in point slope form.

Answers

y- -8=(5/2)(x-4)

so is y+8=(5/2)(x-4)

which of the following are the exact same distance from a parabola? A.Locus and Directix B.Axis and vertex C.Directix and Focus or D.Vertex and Locus

Answers

Answer:

C. Directrix and Focus

Step-by-step explanation:

Given choices are :

A. Locus and Directrix

B. Axis and vertex

C. Directrix and Focus or

D. Vertex and Locus

Now we need to find about which of the above choices are the exact same distance from a parabola.

By definition of parabola, vertex lies at equal distance from directrix and focus.

Hence choice  C. Directrix and Focus  is correct.

Answer:

C.Directix and Focus

Step-by-step explanation:

The directrix and the focus are both parts of the parabola that are the exact same distance form the vertex ot he parabola, the only difference is that they are in opposite directions, the focus of the parabola is always found inside of the parabola and in the axis of symmetry, on the same axis of symmetry both on the outside of the parabola, the same distance from the vertex than the focus you can find the directrix, which is a straight line that is perpendicular to the axis of symmetry.

Find the total surface area of a cuboid 7.5cm 2.3cm 5cm

Answers

Answer:

132.5 cm²

Step-by-step explanation:

A cuboid has 3 pairs of identical faces.

So the surface area is 2(L×W) + 2(L×H) + 2(W×H)

the calculation is 34.5 + 75 + 23 = 132.5 cm²

Final answer:

The total surface area of a cuboid with dimensions 7.5cm, 2.3cm, and 5cm is 132.5 cm², calculated using the formula for the surface area of a cuboid being 2lw + 2lh + 2wh.

Explanation:

The subject of this question concerns the calculation of the total surface area of a cuboid. A cuboid has six rectangular faces. To find the total surface area of the cuboid, we need to calculate the area of all six faces. The formula to find the surface area of a cuboid is 2lw + 2lh + 2wh, where l is the length, w is the width, and h is the height.

In this case, we substitute the given dimensions into the formula to get: 2(7.5)(2.3) + 2(7.5)(5) + 2(2.3)(5) = 34.5 + 75 + 23 = 132.5 cm².

The total surface area of the cuboid is therefore 132.5 cm².

Learn more about Surface Area of Cuboid here:

https://brainly.com/question/35910811

#SPJ11

Describe the relationship between the circumference and the diameter of a circle.
a. Pi times half the diameter equals the circumference.
b. Pi times the diameter equals the circumference.
c. The circumference divided by half the radius equals Pi.
d. The circumference times the diameter equals Pi .​

Answers

Answer:

B

Step-by-step explanation:

Picture shows the formula to find the circumference of a circle

Final answer:

The circumference of a circle is calculated by multiplying the diameter by the mathematical constant π, typically approximated as 3.14159. This relationship is captured by the formula C = πd, which is fundamental in the study of geometry.

Explanation:

The relationship between the circumference and the diameter of a circle is described by the mathematical constant π (pi). The circumference (C) of a circle can be calculated by multiplying the diameter (d) of the circle by π. Therefore, the correct equation is b. Pi times the diameter equals the circumference, which can be expressed as C = πd.

This relationship is a fundamental aspect of Euclidean geometry. It is interesting to note that the diameter of the circle is twice the radius (d = 2r), so the circumference can also be calculated by the formula C = 2πr, where r is the radius. This equation highlights that the circumference is proportional to the diameter, with π serving as the constant of proportionality.

Determine whether the given linear equations are parallel, perpendicular, or neither.
Y = 1/9x+8
y=-9x +11
A. Perpendicular
B. Neither
C. Not enough information to determine
D. Parallel

Answers

Answer:

A. Perpendicular

Step-by-step explanation:

Lines are perpendicular if their slopes are opposite reciprocals of each other. Opposite, meaning if positive, the other slope is negative, and if negative, the other slope is positive. Reciprocal meaning, the number is flipped upside down, turning fractions into whole numbers and vice versa.

1/9  

-1/9

-9

The slopes are perpendicular

find the complete factored form of the polynomial: a8b4+a2b2​

Answers

Both terms [tex]a^8b^4[/tex] and [tex]a^2b^2[/tex] contain some powers of a and b. So, we can factor the occurrences with the smallest exponent:

[tex]a^8b^4+a^2b^2 = a^2b^2(a^6b^2+1)[/tex]

The complete factored form of the polynomial [tex]a^{8}b^{4} +a^{2}b^{2}[/tex]  is  [tex]a^{2}b^{2} (a^{6}b^{2} + 1 )[/tex] .

What is a complete factored form?

A complete factored form of expression is the result expression of the polynomial which is expressed as the product of its smallest factor format. We always get a simplified expression of the polynomial in the complete factored form.

How to solve the given expression in factored form?

The given expression is -  [tex]a^{8}b^{4} +a^{2}b^{2}[/tex]

Taking the term [tex]a^{2}b^{2}[/tex]  common to express the polynomial in factored form,

[tex]a^{8}b^{4} +a^{2}b^{2}[/tex]  =  [tex]a^{2}b^{2} (a^{6}b^{2} + 1 )[/tex]

Thus, the complete factored form of the polynomial [tex]a^{8}b^{4} +a^{2}b^{2}[/tex]  is  [tex]a^{2}b^{2} (a^{6}b^{2} + 1 )[/tex] .

To learn more about complete factored form, refer -

https://brainly.com/question/3024511

#SPJ2

Drag the tiles to the correct boxes to complete the pairs.Not all tiles will be used match the equations representing parabolas with their directrixes

Answers

Answer:

[tex]y=-8.08[/tex] -------> [tex]y+8=3(x+2)^{2}[/tex]

[tex]y=14.25[/tex] -------> [tex]y-14=-(x-3)^{2}[/tex]

[tex]y=-7.625[/tex] -----> [tex]y+7.5=2(x+2.5)^{2}[/tex]

[tex]y=17.25[/tex] -------> [tex]y-17=-(x-3)^{2}[/tex]

[tex]y=-7.25[/tex] -------> [tex]y+7=(x-4)^{2}[/tex]

[tex]y=6.25[/tex] -------> [tex]y-6=-(x-1)^{2}[/tex]

Step-by-step explanation:  

we know that

The standard form of a vertical parabola is equal to

[tex](x-h)^{2}=4p(y- k)[/tex]

where

(h,k) is the vertex

the focus is (h, k + p)

and

the directrix is y = k - p

Part 1) we have

[tex]y+8=3(x+2)^{2}[/tex]

Convert to standard form

[tex](x+2)^{2}=(1/3)(y+8)[/tex]

The vertex is the point [tex](-2,-8)[/tex]

[tex]h=-2,k=-8[/tex]

[tex]4p=1/3[/tex]

[tex]p=1/12[/tex]

the directrix is equal to

[tex]y = k-p[/tex] -----> [tex]y=-8-(1/12)=-8.08[/tex]

Part 2) we have

[tex]y-14=-(x-3)^{2}[/tex]

Convert to standard form

[tex](x-3)^{2}=-(y-14)[/tex]

The vertex is the point [tex](3,14)[/tex]

[tex]h=3,k=14[/tex]

[tex]4p=-1[/tex]

[tex]p=-1/4[/tex]

the directrix is equal to

[tex]y = k-p[/tex] -----> [tex]y = 14-(-1/4)=14.25[/tex]

Part 3) we have

[tex]y+7.5=2(x+2.5)^{2}[/tex]

Convert to standard form

[tex](x+2.5)^{2}=(1/2)(y+7.5)[/tex]

The vertex is the point [tex](-2.5,-7.5)[/tex]

[tex]h=-2.5,k=-7.5[/tex]

[tex]4p=1/2[/tex]

[tex]p=1/8[/tex]

the directrix is equal to

[tex]y = k-p[/tex] -----> [tex]y=-7.5-(1/8)=-7.625[/tex]

Part 4) we have

[tex]y-17=-(x-3)^{2}[/tex]

Convert to standard form

[tex](x-3)^{2}=-(y-17)[/tex]

The vertex is the point [tex](3,17)[/tex]

[tex]h=3,k=17[/tex]

[tex]4p=-1[/tex]

[tex]p=-1/4[/tex]

the directrix is equal to

[tex]y = k-p[/tex] -----> [tex]y = 17-(-1/4)=17.25[/tex]

Part 5) we have

[tex]y+7=(x-4)^{2}[/tex]

Convert to standard form

[tex](x-4)^{2}=(y+7)[/tex]

The vertex is the point [tex](4,-7)[/tex]

[tex]h=4,k=-7[/tex]

[tex]4p=1[/tex]

[tex]p=1/4[/tex]

the directrix is equal to

[tex]y = k-p[/tex] -----> [tex]y=-7-(1/4)=-7.25[/tex]

Part 6) we have

[tex]y-6=-(x-1)^{2}[/tex]

Convert to standard form

[tex](x-1)^{2}=-(y-6)[/tex]

The vertex is the point [tex](1,6)[/tex]

[tex]h=1,k=6[/tex]

[tex]4p=-1[/tex]

[tex]p=-1/4[/tex]

the directrix is equal to

[tex]y = k-p[/tex] -----> [tex]y=6-(-1/4)=6.25[/tex]

Final answer:

The parabolas represented by y + 8 = 3(x+2)², y - 14 = -(x-3)², y - 17 = -(x-3)², and y - 6 = -(x-1)² match with the directrixes y = -7.25, y = 14.25, y = 17.25, and y = 6.25 respectively.

Explanation:

To match the equations representing parabolas with their directrixes, we need to use the fact that the equation of a parabola is given by y - k = a(x-h)², where (h,k) is the vertex of the parabola and the directrix is given by y = k - 1/4a.

Given this, we can match the equations as follows:
1. y + 8 = 3(x+2)² matches with y = -7.25
2. y - 14 = -(x-3)² matches with y = 14.25
3. y + 7.5 = 2(x+2.5)² there isn't a match in column B
4. y - 17 = -(x-3)² matches with y = 17.25
5. y + 7 = (x-4)² there isn't a match in column B
6. y - 6 = -(x-1)² matches with y = 6.25.

Learn more about Parabolas here:

https://brainly.com/question/4074088

#SPJ3

The complete question here:

Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used

match the equations representing parabolas with their directrixes

Column A.

y+8=3(x+2)^2

y-14=-(x-3)^2

y+7.5=2(x+2.5)^2

y-17=-(x-3)^2

y+7=(x-4)^2

y-6=-(x-1)^2

Column B.

y=-7.25

y=6.25

y=17.25

y=14.25

What is the perimeter of ALMN?
O 8 units
O 9 units
O 6+ V10 units
O 8+ V10 units

Answers

- The perimeter for it is 8+V10 Units.

The perimeter of the triangle LMN is 8 + √10 units.

What is Perimeter?

Perimeter of a straight sided figures or objects is the total length of it's boundary.

Given is a triangle LMN in the coordinate plane.

The coordinates of the vertices are L(2, 4), M(-2, 1) and N(-1, 4).

We have to find the length of each sides.

Using the distance formula,

LM = [tex]\sqrt{(-2-2)^2+(1-4)^2}[/tex] = √(16 + 9) = √25 = 5

MN = [tex]\sqrt{(-1--2)^2+(4-1)^2}[/tex] = √10

LN = [tex]\sqrt{(-1-2)^2+(4-4)^2}[/tex] = √9 = 3

Perimeter = LM + MN + LN = 8 + √10

Hence the perimeter is 8 + √10 units.

Learn more about Perimeter here :

https://brainly.com/question/6465134

#SPJ7

Your question is incomplete. The complete question is as given below.

the sum of 2 numbers is 17 and there product is 66 what are the two numbers

Answers

The answer is 11 and 6.

Hope this helps!

Final answer:

The two numbers which sum up to 17 and have a product of 66 are 6 and 11. This was found by using algebra to set up and solve two simultaneous equations.

Explanation:

The question can be resolved using a little bit of algebra. Let's assign the values x and y to these two numbers. We know two things: x + y = 17 (because their sum is 17) and xy = 66 (because their product is 66).

First, you will make y the subject of the first equation making it y = 17 - x. Replace y in the second equation with 17 - x so we will now have x(17 - x) = 66 or 17x - x^2 = 66. Rearranging the equation gives x^2 - 17x + 66 = 0. This equation can be factored to solve for x giving (x - 11)(x - 6) = 0. Therefore, x could be base on the equation 11 or 6.

If x is 11, y will be 6 (because 17 - 11 = 6) and if x is 6, y is 11 (17 - 6 = 11). Therefore, the two numbers are 6 and 11.

Learn more about Algebra here:

https://brainly.com/question/24875240

#SPJ3

A bag contains only red and blue counters.
The probability that a counter is blue is 0.58
A counter is picked at random.
What is the probability that it is red?

Answers

Answer:

0.42% Chance Of The Counters Being Red

Step-by-step explanation:

1.00

-0.58

=0.42% Probability

Final answer:

The probability that a randomly picked counter from a bag containing only red and blue counters is red, given that the probability the counter is blue is 0.58, is 0.42.

Explanation:

The subject here is

probability

, which in

mathematics

is a measure of the likelihood that a particular event will occur. The problem states that the

probability

that a counter is blue is 0.58. Since we only have red and blue counters in the bag, and the probabilities of all possible outcomes must add up to 1, the

probability

that a counter picked at random is red is 1 - the

probability

that the counter is blue. So, to find the

probability

that the counter is red, subtract 0.58 from 1. The resulting

probability

that a randomly picked counter is red is therefore 0.42.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

What is the value of 3x^2+4y^2 if x=2,y=1 and z=-3

Answers

ANSWER

16

EXPLANATION

The given expression is;

[tex]3 {x}^{2} + 4 {y}^{2} [/tex]

If x=2, y=1 and z=-3, we substitute the values into the expression and solve.

We substitute to obtain;

[tex]3 {(2)}^{2} + 4 {(1)}^{2} [/tex]

We evaluate to get;

[tex]3 {(4)} + 4 {(1)}[/tex]

We multiply out to get:

[tex]12+ 4 = 16[/tex]

Therefore the value of the given expression is with the given values is 16

Which of the following is the graph of f(x)= |x| translated 2 units right, 2 units up, and dilated by a factor of 1/3?

Answers

Answer:

See attachment.

Step-by-step explanation:

The parent function is [tex]f(x)=|x|[/tex]

When this function is translated 2 units to the right, the new equation becomes; [tex]g(x)=|x-2|[/tex].

Another translation of 2 units up gives  [tex]h(x)=|x-2|+2[/tex].

A final dilation by a factor of [tex]\frac{1}{3}[/tex] gives  [tex]i(x)=\frac{1}{3}|x-2|+2[/tex].

The graph of this function is shown in the attachment.

Answer:

Its C

Step-by-step explanation:

On Edge

What is the area of a circle with radius of 1 foot

Answers

Answer:

pift^2(or your third option) is the area of a circle with a radius of 1.

Other Questions
A circuit has a 20-ohm resistor, and a current of 2 amps flows through it. What must be the battery voltage? A jacket is on sale for 70% of the original price. If the discount saves $45 what was the original price of the jacket? What is the sale price? The distance between the two points pictured is d = Use the distance formula to find n. d = n = What is the standard deviation of the following data set rounded to the nearest tenth?30, 26, 28, 32, 28, 30 In a certain game, a player can solve easy or hard puzzles. A player earns 30 points for solving an easy puzzle and 60 points for solving a hard puzzle. Tina solved a total of 50 puzzles playing this game, earning 1,950 points in all. How many hard puzzles did Tina solve?10152535 The Lopez family is moving to another city. An online budget estimator says their required monthly income will be $5,900. How much more per month will they need to live in the new city?$300$400$500$600PLEASE HELP! AND SHOW WORK! A lightbulb has a power of 100 W and is used for 4 hours. A microwave has a power of 1200 W and is used for 5 minutes. How much energy is used by the lightbulb? How much energy is used by the microwave? The lightbulb has an efficiency of 1.8%. How much heat energy does the lightbulb produce in 4 hours? A lifeguard at a swimming pool gives one-hour swim lessons to children in the morning before the pool is open to the public. She earns four dollars per class and fifty cents per swimmer. The minimum wage in her state is $7.25. She hopes to earn more than that amount of money during each class. Write an inequality that models the situation and find the minimum number of students she must teach in each class so that her earnings for that hour exceeds the minimum wage in her state. Please help me out please PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! What is the mass in grams of 0.000142 mole of vitamin C Anyone? i dont understand Can someone please help me with this? When using literary material as evidence to support your argument, you cannot do which of the below.summarize the feelings expressed in the stsory, poem, or playparaphrase the scene or dialog from the story or playquote directly a section of description from the work of literature, whether a story, a poem, or a playadd detail that the author did not include but which you, the critic, know should be included in the story, poem, or playquote dialog directly from the story, poem, or play, including any "directions" governing the dialog or the behaviors of the speakers of the dialog. If a sound is refracted away from the surface of the earth, this indicates that the A. air is cooler than the ground. B. wind is blowing in the direction of the sound. C. ground is cooling faster than the air. D. air has high humidity. Why does the narrator take down her guardian angel picture gravity Each end zone is 10 yard long. What is the perimeter of the entire football field in feet Which equation represents a line that passes through (4, ) and has a slope of ? y = (x 4)y = (x 4)y = 4(x )y 4 = (x ) when the chaldeans conquered the the assyrians they abolished all the cruel laws . true or false Let B = [-1 3 6 -3]. Find -4B.a. [-4 12 24 -12]b. [4 3 6 -3]c. [-3 1 4 -5]d. [4 -12 -24 12] Steam Workshop Downloader