I have 200 coins to put into 4 bags I put the coins into each bag so that each bag has 2 mote coins than the one before How many coins are on each bag

Answers

Answer 1

First bag has 47 coins and second bag has 49 coins and third bag has 51 coins and fourth bag has 53 coins

Solution:

Given that,

Total number of coins = 200

Number of bags = 4

I put the coins into each bag so that each bag has 2 more coins than the one before

Therefore,

Each bag has 2 more coins than the one before. Based on this we can say,

Let "x" be the number of coins put in first bag

Then, x + 2 is the number of coins put in second bag

Then, x + 4 is the number of coins put in third bag

Then, x + 6 is the number of coins put in fourth bag

We know that,

Total number of coins = 200

[tex]x + x + 2 + x + 4 + x + 6 = 200\\\\4x + 12 = 200\\\\4x = 200-12\\\\4x = 188\\\\x = 47[/tex]

Thus,

Coins put in first bag = x = 47

Coins put in second bag = x + 2 = 47 + 2 = 49

Coins put in third bag = x + 4 = 47 + 4 = 51

Coins put in fourth bag = x + 6 = 47 + 6 = 53

Thus number of coins in each bag are found

Answer 2

Final answer:

By setting up an algebraic equation to distribute 200 coins into 4 bags with each bag having 2 more coins than the previous one, we find the number of coins in each bag are 47, 49, 51, and 53, respectively.

Explanation:

The question involves distributing 200 coins into 4 bags so that each subsequent bag has 2 more coins than the previous one. To find out how many coins are in each bag, let's denote the number of coins in the first bag as x. Consequently, the second bag would have x + 2 coins, the third bag x + 4 coins, and the fourth bag x + 6 coins. The total number of coins across all bags would be x + (x + 2) + (x + 4) + (x + 6) = 200.

Simplifying the equation, we get 4x + 12 = 200, which simplifies further to 4x = 188. Dividing both sides by 4 yields x = 47. Therefore, the number of coins in each bag, starting from the first to the fourth, are 47, 49, 51, and 53, respectively.


Related Questions

A college faculty consists of 400 men and 250 women. The college administration wants to draw a sample of 65 faculty members to ask their opinion about a new parking fee. They draw a simple random sample of 40 men and another simple random sample of 25 women. What type of sample is this?

Answers

Answer:

The type of sample is Stratified sampling.

Step-by-step explanation:

Consider the provided information.

Types of sampling.

Random sampling is similar to placing the name of everyone in a hat and pulling out a few names.In Systematic sampling, we list of elements is counted off. Convenience sampling: data which is readily available is used. That is, the first people are running into by the surveyor.In Cluster sampling, we divide the population into groups, usually geographically. In Stratified sampling we divide population into groups called strata. but this time population might be separated into males and females.

Here the population is divided into groups of males and females therefore it is stratified sampling.

Hence, the type of sample is Stratified sampling.

In March, Delphine's house had 40% more snowfall than in February. Delphine's house had f centimeters of snowfall in February.A. 40 f. B. 40+f C. 1.4f D. 40f+f

Answers

A. 40 f because you wanna multiple since it said 40% more than in February

Answer:

It's A

Step-by-step explanation:

Trust Me

Max is a diver. He uses positive numbers to represent elevations above the water's surface and negative numbers to represent elevations below the water's surface. Max is standing on the springboard. He represent his location as 3 meters. He lets a ring drop to the bottom of the pool. He represents its location at the bottom of the pool as -4 meters. How many meters below the surface of the water is the ring? A. Less than 4 meters B. More than 4 meters C. Exactly 4 meters D. Exactly 3 meters Please help: :)

Answers

C. Exactly 4 Meters

This is one of those questions that sounds difficult, but it is very simple(almost like a trick question). They tell u anything below the surface of the water is a negative #. Then they tell u he lets a ring drop to the bottom of a pool which is 4meters. They just just told you that the bottom of the pool from surface down is -4 meters. Well they basically are telling u it doesn’t matter if he is on the side of the pool and tosses the ring in, or if he is on a 3 or 10 meter board. They just gave u the answer—look at they gave you, they tell u anything “below the waters surface is a negative #?and the answer for the rings location they tell u 2 things it’s at the bottom of the pool and it is also -4 meters. This is how you know the pool is -4 meters deep.

Lilla read 1/5 of her book last week. This week she read 3 times as much as she read last week. a. Write an expression to show how much of her book Lilla has left to read. Then simplify the expression. _______________________________________________________ _______________________________________________________ b. There are 75 pages in Lilla's book. How many pages does she have left to read? Show your work. Solution:___________________________________________________

Answers

Answer: she has 30 pages left to read.

Step-by-step explanation:

Let x represent the total number of pages in the book which Lilla is reading.

Lilla read 1/5 of her book last week. This means that the number of pages that she read last week is

1/5 × x = x/5

This week she read 3 times as much as she read last week. This means that the number of pages that she read this week is

3 × x/5 = 3x/5

The number of pages that she has left to read would be

x - 3x/5

= (5x - 3x)/5 = 2x/5

b. There are 75 pages in Lilla's book. It means that the number of pages that she has left to read would be

(2 × 75)/5 = 150/5

= 30

Final answer:

Lilla read 4/5 of her book after two weeks and has 1/5, or 15 pages, left to read of her 75-page book.

Explanation:

Lilla read 1/5 of her book last week. This week she read 3 times as much as she read last week. To express how much of her book Lilla has left to read, let us denote the total amount of the book as 1 (or 100%).

a. The amount she read this week would be 3 times 1/5, which is 3/5. Thus, the total amount Lilla read over the two weeks is 1/5 + 3/5, which simplifies to 4/5 of the book. Therefore, the expression for the amount of the book Lilla has left to read is 1 - 4/5, which simplifies to 1/5 of the book.

b. Lilla's book has 75 pages. To find out how many pages she has left to read, we calculate 1/5 of 75. This is done by multiplying 75 by 1/5:

75  imes 1/5 = 75/5 = 15 pages

Therefore, Lilla has 15 pages left to read.

Mrs Klein made fruit buns. She sold 3/5 of it in morning and 1/4 in the afternoon. If she sold 200 more buns in the morning than afternoon, how many buns did she make?

Answers

Answer:

The total number of buns Mrs Klein made = 400

Step-by-step explanation:

Question

Mrs Klein made fruit buns. She sold 3/5 of it in morning and 1/4 of the remaining in the afternoon. If she sold 200 more buns in the morning than afternoon, how many buns did she make?

Given:

Mrs Klein sold  [tex]\frac{3}{5}[/tex]  of the buns in the morning.

Mrs Klein sold [tex]\frac{1}{4}[/tex]  of the remaining buns in the evening.

She sold 200 more buns in the morning than afternoon.

To find the total number of buns she make.

Solution:

Let the total number of buns be  =  [tex]x[/tex]

Number of buns sold in the morning will be given as =  [tex]\frac{3}{5}x[/tex]

Number of buns remaining = [tex]x-\frac{3}{5}x[/tex]

Number of buns sold in the evening will be given as =  [tex]\frac{1}{4}(x-\frac{3}{5}x)[/tex]

Difference between the number of buns sold in morning and evening = 200

Thus, the equation to find [tex]x[/tex] can be given as:

[tex]\frac{3}{5}x-\frac{1}{4}(x-\frac{3}{5}x)=200[/tex]

Using distribution:

[tex]\frac{3}{5}x-\frac{1}{4}x+(\frac{1}{4}.\frac{3}{5}x)=200[/tex]

[tex]\frac{3}{5}x-\frac{1}{4}x+\frac{3}{20}x=200[/tex]

Multiplying each term with the least common multiple of the denominators to remove fractions.

The L.C.M. of 4, 5 and 20  = 20.

Multiplying each term with 20.

[tex]20\times \frac{3}{5}x-20\times\frac{1}{4}x+20\times\frac{3}{20}x=20\times 200[/tex]

[tex]12x-5x+3x=4000[/tex]

[tex]10x=400[/tex]

Dividing both sides by 10.

[tex]\frac{10x}{10}=\frac{4000}{10}[/tex]

∴ [tex]x=400[/tex]

Thus, total number of buns Mrs Klein made = 400

Emil's backpack weighs six and three eights pounds. He removes a book that weighs three fourth pound. Then he removes a book that weighs one half pound .How much does Emil's back pack weigh now

Answers

Answer:

Emil's back pack weigh now [tex]5\frac{1}{8}\ pounds[/tex].

Step-by-step explanation:

Given:

Total Weight of backpack = [tex]6\frac{3}{8}\ pounds[/tex]

[tex]6\frac{3}{8}\ pounds[/tex] can be Rewritten as [tex]\frac{51}{8}\ pounds[/tex]

Weight of backpack =  [tex]\frac{51}{8}\ pounds[/tex]

Weight of Book 1 = [tex]\frac{3}{4}\ pound[/tex]

Weight of Book 2 = [tex]\frac{1}{2}\ pound[/tex]

We need to find weight of back pack after removing books.

Solution:

Now we can say that;

weight of back pack after removing books can be calculated by Subtracting Weight of Book 1 and Weight of Book 2 from Total Weight of backpack.

framing in equation form we get;

weight of back pack after removing books = [tex]\frac{51}{8}-\frac{3}{4}-\frac{1}{2}[/tex]

Now to solve the equation we will first make the denominator common using LCM.

weight of back pack after removing books =[tex]\frac{51\times1}{8\times1}-\frac{3\times2}{4\times2}-\frac{1\times4}{2\times4}=\frac{51}{8}-\frac{6}{8}-\frac{4}{8}[/tex]

Now the denominators are common so we will solve the numerator.

weight of back pack after removing books = [tex]\frac{51-6-4}{8}=\frac{41}{8}\ pounds \ \ OR \ \ 5\frac{1}{8}\ pounds[/tex]

Hence Emil's back pack weigh now [tex]5\frac{1}{8}\ pounds[/tex].

A building was created from two stories. From a point 87 feet from the base of the building, the angle of elevation to the top of the first floor is 25° and the angle of elevation to the top of the second floor is 40°. To the nearest tenth of a foot, what is the height of the second floor?

Answers

- We´re gonna work with two separate triangles:

-The first one is the larger triangle (40º angle) and a vertical side that represents the ENTIRE height, b, of the tower.

Larger triangle with height b: tan 40°= [tex]\frac{b}{87}[/tex] ; .8390996312 = [tex]\frac{b}{87}[/tex];  b≈73.00166791

-The second one the smaller triangle (25º angle) and a vertical side, a, that represents the height of the first (bottom) section of the tower.

Smaller triangle with height a: tan 25°= [tex]\frac{a}{87}[/tex] ; ..4663076582 = [tex]\frac{a}{87}[/tex];  a≈40.56876626

-Then you need to solve for the vertical heights (b and a) in the two separate triangles.

-The needed height, x, of the second (top) section of the tower will be the difference between the ENTIRE height, b, and the height of the first (bottom) section, a. You will need to subtract.

In both triangles, the solution deals with "opposite" and "adjacent" making it a tangent problem.

Difference (b - a): 73.00166791 - 40.56876626 = 32.43290165 ≈ 32 feet

A local salesman receives a base salary of $925 monthly. He also receives a commission of 6% on all sales over $1700. How much would he have to sell in a month if he needed to have a monthly income of $2600?

Answers

Final answer:

To have a monthly income of $2600, the salesman needs to make total sales of $29,616.67, considering his base salary of $925 and a 6% commission for sales over $1700.

Explanation:

The question asks us to calculate how much a local salesman needs to sell to have a monthly income of $2600. The salesman receives a base salary of $925 and earns a commission of 6% for all sales over $1700.

To solve this, we need to figure out the total sales that would give the salesman an extra $1675 ($2600 total desired income minus the $925 base salary), knowing that he only gets a commission on the amount over $1700.

Let's denote the total amount in sales that the salesman needs to make as S.

The commission is only applied to the amount exceeding $1700, so the equation can be set up as follows:

0.06(S - $1700) = $1675. Solving this equation, we find that S - $1700 = $1675 / 0.06, which means S - $1700 = $27,916.67. Adding $1700 to both sides, we get S = $27916.67 + $1700, which equals $29,616.67.

Therefore, the salesman would need to sell $29,616.67 worth of goods in a month to have a total monthly income of $2600.

A cardboard box manufacturing company is building boxes with length represented by x+ 1, width by 5- x, and height by x -1. The volume of the box is modeled by the function below V(x) 18 14 10 6 24 X 5 6 2 2 3 -2 -6 Over which interval is the volume of the box changing at the fastest average rate? [1,2] A. [1,3.5 B. C. [1,5] r0,3.51 D

Answers

Answer:

a. [1,2]

[tex] m= \frac{9-0}{2-1}=9[/tex]

b. [1,3.5]

[tex] m =\frac{17-0}{3.5-1}=6.8[/tex]

c. [1,5]

[tex] m =\frac{0-0}{5-1}=0[/tex]

d. [0,3.5]

[tex] m =\frac{17-(-5)}{3.5-0}=6.29[/tex]

So then we can conclude that the highest slope is for the interval [1,2] and that would be our solution for the fastest average rate.

a. [1,2]

[tex] m= \frac{9-0}{2-1}=9[/tex]

Step-by-step explanation:

Assuming that we have the figure attached for the function. For this case we just need to quantify the slope given by:

[tex] m = \frac{\Delta y}{\Delta x}[/tex]

For each interval and the greatest slope would be the interval on which the volume of the box is changing at the fastest average rate

a. [1,2]

[tex] m= \frac{9-0}{2-1}=9[/tex]

b. [1,3.5]

[tex] m =\frac{17-0}{3.5-1}=6.8[/tex]

c. [1,5]

[tex] m =\frac{0-0}{5-1}=0[/tex]

d. [0,3.5]

[tex] m =\frac{17-(-5)}{3.5-0}=6.29[/tex]

So then we can conclude that the highest slope is for the interval [1,2] and that would be our solution for the fastest average rate.

a. [1,2]

[tex] m= \frac{9-0}{2-1}=9[/tex]

The correct answer is A. [1,2].

To determine over which interval the volume of the box changes at the fastest average rate, we need to find the average rate of change of the volume function ( V(x) ) over the given intervals and compare them.
The volume ( V(x) ) of the box is given by:
[tex]\[ V(x) = (x + 1)(5 - x)(x - 1) \][/tex]
We first need to express ( V(x) ) in a simplified form. Let's expand the expression:
[tex]\[ V(x) = (x + 1)(5 - x)(x - 1) \]\[ V(x) = (x + 1)(x^2 - 6x + 5) \]\[ V(x) = x(x^2 - 6x + 5) + 1(x^2 - 6x + 5) \]\[ V(x) = x^3 - 6x^2 + 5x + x^2 - 6x + 5 \]\[ V(x) = x^3 - 5x^2 - x + 5 \][/tex]
Now, we calculate the average rate of change over each interval. The average rate of change of ( V(x) ) over an interval ([a, b]) is given by:
[tex]\[ \text{Average Rate of Change} = \frac{V(b) - V(a)}{b - a} \][/tex]
We need to compute this for each interval provided.
1. Interval [1, 2]:
[tex]\[ V(1) = (1 + 1)(5 - 1)(1 - 1) = 0 \]\[ V(2) = (2 + 1)(5 - 2)(2 - 1) = 3 \times 3 \times 1 = 9 \]\[ \text{Average Rate of Change} = \frac{V(2) - V(1)}{2 - 1} = \frac{9 - 0}{2 - 1} = 9 \][/tex]
2. Interval [1, 3.5]:
[tex]\[ V(1) = 0 \]\[ V(3.5) = (3.5 + 1)(5 - 3.5)(3.5 - 1) = 4.5 \times 1.5 \times 2.5 = 16.875 \]\[ \text{Average Rate of Change} = \frac{V(3.5) - V(1)}{3.5 - 1} = \frac{16.875 - 0}{3.5 - 1} = \frac{16.875}{2.5} = 6.75 \][/tex]
3. Interval [1, 5]:
[tex]\[ V(1) = 0 \]\[ V(5) = (5 + 1)(5 - 5)(5 - 1) = 6 \times 0 \times 4 = 0 \]\[ \text{Average Rate of Change} = \frac{V(5) - V(1)}{5 - 1} = \frac{0 - 0}{5 - 1} = 0 \][/tex]
4. Interval [0, 3.5]:
[tex]\[ V(0) = (0 + 1)(5 - 0)(0 - 1) = 1 \times 5 \times -1 = -5 \]\[ V(3.5) = 16.875 \]\[ \text{Average Rate of Change} = \frac{V(3.5) - V(0)}{3.5 - 0} = \frac{16.875 - (-5)}{3.5 - 0} = \frac{16.875 + 5}{3.5} = \frac{21.875}{3.5} \approx 6.25 \][/tex]
Comparing these average rates of change:
[tex]\([1, 2]\): 9\\ \([1, 3.5]\): 6.75\\ \([1, 5]\): 0\\ \([0, 3.5]\): 6.25[/tex]
The interval where the volume of the box is changing at the fastest average rate is [tex]\([1, 2]\)[/tex], with an average rate of change of 9.
Therefore, the correct answer is: A.[tex]\([1, 2]\)[/tex].

Complete question :

A null and alternative hypothesis are given. Determine whether the hypothesis test is​ left-tailed, right-tailed, or​ two-tailed. Upper H 0​: p less than or equals 0.6 Upper H Subscript a​: p greater than 0.6 What type of test is being conducted in this​ problem?

Answers

Answer: right-tailed

Step-by-step explanation:

By considering the given information , we have

Null hypothesis : [tex]H_0: p\leq0.6[/tex]

Alternative hypothesis : [tex]H_a: p>0.6[/tex]

The kind of test (whether  left-tailed, right-tailed, or​ two-tailed.) is based on alternative hypothesis.

Since the given alternative hypothesis([tex]H_a[/tex]) is right-tailed , so out test is a right-tailed test.

Hence, the correct answer is "right-tailed".

(Score for Question 2: ___ of 6 points)
2. Solve each given equation and show your work. Tell whether it has one solution, an infinite number of
solutions, or no solutions, and identify each equation as an identity, a contradiction, or neither.
(c) 6x + 4x - 6 = 24 + 9x
(d) 25 - 4x = 15 - 3x + 10 - X
(e) 4x + 8 = 2x + 7 + 2x - 20
Answer:

Answers

Answer:

The answer to your question is below

Step-by-step explanation:

c)  6x + 4x - 6 = 24 + 9x

     6x + 4x - 9x = 24 + 6

     x = 30                       This equation has one solution, it's an identity

d) 25 - 4x = 15 - 3x + 10 - x

    -4x + 3x + x = 15 + 10 - 25

   0 = 0                           It has infinite number of solutions, it is an identity

e)  4x + 8 = 2x + 7 + 2x - 20

    4x - 2x - 2x = 7 - 20 + 8

                  0 = -5          It has no solution it is a contradiction

Find four numbers that form a geometric progression such that the third term is greater than the first by 12 and the fourth is greater than the second by 36.

Answers

Answer:

5 , 4.5, 13.5 and 40.5

Step-by-step explanation:

Since the numbers are in geometric progression, their form is essentially:

a, ar, ar^2 and ar^3

Where a and r are first term and common ratio respectively.

From the information given in the catalog:

Third term is greater than the first by 12 while fourth is greater than second by 36.

Let’s now translate this to mathematics.

ar^2 - a = 12

ar^3 - ar = 36

From 1, a(r^2 - 1) = 12 and 2:

ar(r^2 - 1) = 36

From 2 again r[a(r^2 -1] = 36

The expression inside square bracket looks exactly like equation 1 and equals 12.

Hence, 12r = 36 and r = 3

Substituting this in equation 1,

a( 9 - 1) = 12

8a = 12

a = 12/8 = 1.5

Thus, the numbers are 1.5, (1.5 * 3) , (1.5 * 9), (1.5 * 27) = 1.5 , 4.5, 13.5 and 40.5

Final Answer:

The four numbers forming the geometric progression are 1.5, 4.5, 13.5, and 40.5.

Explanation:

Let's start by defining what a geometric progression (GP) is. A geometric progression is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio.
Let's denote the four numbers in the GP as a, ar, ar², and ar³, where:
- a is the first term,
- r is the common ratio.
We've been given two conditions:
1. The third term is greater than the first by 12, which gives us the equation:
  ar² = a + 12
2. The fourth term is greater than the second by 36, which leads us to:
  ar³ = ar + 36
We need to solve this system of equations to find the values of a and r.
Starting with the first equation:
ar² = a + 12
We can subtract 'a' from each side to get:
ar - a = 12
Factor out 'a' from the left side:
a(r² - 1) = 12
Now notice that r² - 1 is a difference of squares and can be factored to (r + 1)(r - 1):
a(r + 1)(r - 1) = 12
This equation tells us that the product of 'a' and (r + 1)(r - 1) is 12. For now, let's keep this equation aside and look at the second condition.
Proceeding with the second equation:
ar = ar + 36
Subtract 'ar' from each side:
ar³ - ar = 36
Factor out 'ar':
ar(r² - 1) = 36
Again, we recognize a difference of squares in the parentheses, so we factor it:
ar(r + 1)(r - 1) = 36
This equation relates 'ar', and (r + 1)(r - 1), and tells us the product is 36.
Now, because we have a similar term in both equations, (r + 1)(r - 1), we can set the products equal to each other to find a relationship between 'a' and 'ar':
From the first equation, we have a(r + 1)(r - 1) = 12,
From the second equation, we have ar(r + 1)(r - 1) = 36.
Dividing the second equation by the first one gives us:
ar(r + 1)(r - 1) / a(r + 1)(r - 1) = 36 / 12
ar / a = 36 / 12
r = 3
Now that we have the value of 'r', let's substitute it back into either of the original equations to find 'a'. Let's use the first equation:
a(r² - 1) = 12
a(3² - 1) = 12
a(9 - 1) = 12
a(8) = 12
a = 12 / 8
a = 3 / 2
a = 1.5
Now we have both 'a' and 'r', which allows us to determine the four numbers in the GP:
The first number, a, is 1.5.
The second number, ar, is 1.5 * 3 = 4.5.
The third number, ar², is 4.5 * 3 = 13.5.
The fourth number, ar², is 13.5 * 3 = 40.5.
So, the four numbers forming the geometric progression are 1.5, 4.5, 13.5, and 40.5.

Find DC

HELP PLEASE!! :(
using sine cosine or tangent

Answers

DC=14

Explanation

consider triangle ADB

<BAD=54°

sin<BAD=opposite side/ hypotenuse

sin 54°=BD/BA

BD=BA sin 54°=20*0.8=16

consider triangle BDC

cos <BCD=adjacent side/hypotenuse

=DC/BC

cos 28°=DC/BC

DC=cos28°  *BC

=0.88*16=14.08

F(x)=-1/4x-3, find the value of x for which f(x)=x

Answers

Answer:

  x = -2.4

Step-by-step explanation:

  f(x) = -1/4x -3

  x = -1/4x -3 . . . . .  the desired value of f(x)

  5/4x = -3 . . . . . . . add 1/4x

  x = -12/5 . . . . . . . multiply by 4/5, the inverse of 5/4

__

Check

  -1/4(-2.4) -3 = 0.6 -3 = -2.4 = x . . . . answer checks OK

A body of constant mass m is projected vertically upward with an initial velocity v0 in a medium offering a resistance k|v|, where k is a constant. Neglect changes in the gravitational force. a. Find the maximum height xm attained by the body and the time tm at which this maximum height is reached.

Answers

Answer:

tm = tₐ = -m/k ㏑{ [mg/k] / [v₀ + mg/k] }

Xm = Xₐ = (v₀m)/k - ({m²g}/k²) ㏑(1+{kv₀/mg})

Step-by-step explanation:

Note, I substituted maximum time tm = tₐ and maximum height Xm = Xₐ

We will use linear ordinary differential equation (ODE) to solve this question.

Remember that Force F = ma in 2nd Newton law, where m is mass and a is acceleration

Acceleration a is also the rate of change in velocity per time. i.e a=dv/dt

Therefore F = m(dv/dt) = m (v₂-v₁)/t

There are two forces involved in this situation which are F₁ and F₂, where F₁ is the gravitational force and F₂ is the air resistance force.

Then, F = F₁ + F₂ = m (v₂-v₁)/t

F₁ + F₂ = -mg-kv = m (v₂-v₁)/t

Divide through by m to get

-g-(kv/m) = (v₂-v₁)/t

Let (v₂-v₁)/t be v¹

Therefore, -g-(kv/m) = v¹

-g = v¹ + (k/m)v --------------------------------------------------(i)

Equation (i) is a inhomogenous linear ordinary differential equation (ODE)

Therefore let A(t) = k/m and B(t) = -g --------------------------------(ia)

b = ∫Adt

Since A = k/m, then

b = ∫(k/m)dt

The integral will give us b = kt/m------------------------------------(ii)

The integrating factor will be eᵇ = e ⁽k/m

The general solution of velocity at any given time is

v(t) = e⁻⁽b⁾ [ c + ∫Beᵇdt ] --------------------------------------(iiI)

substitute the values of b, eᵇ, and B into equation (iii)

v(t) = e⁻⁽kt/m⁾ [ c + ∫₋g e⁽kt/m⁾dt ]

Integrating and cancelling the bracket, we get

v(t) = ce⁻⁽kt/m⁾ + (e⁻⁽kt/m⁾ ∫₋g e⁽kt/m⁾dt ])

v(t) = ce⁻⁽kt/m⁾ - e⁻⁽kt/m⁾ ∫g e⁽kt/m⁾dt ]

v(t) = ce⁻⁽kt/m⁾ -mg/k -------------------------------------------------------(iv)

Note that at initial velocity v₀, time t is 0, therefore v₀ = v(t)

v₀ = V(t) = V(0)

substitute t = 0 in equation (iv)

v₀ = ce⁻⁽k0/m⁾ -mg/k

v₀ = c(1) -mg/k = c - mg/k

Therefore c = v₀ + mg/k  ------------------------------------------------(v)

Substitute equation (v) into (iv)

v(t) = [v₀ + mg/k] e⁻⁽kt/m⁾ - mg/k ----------------------------------------(vi)

Now at maximum height Xₐ, the time will be tₐ

Now change V(t) as V(tₐ) and equate it to 0 to get the maximum time tₐ.

v(t) = v(tₐ) = [v₀ + mg/k] e⁻⁽ktₐ/m⁾ - mg/k = 0

to find tₐ from the equation,

[v₀ + mg/k] e⁻⁽ktₐ/m⁾ = mg/k

e⁻⁽ktₐ/m⁾ = {mg/k] / [v₀ + mg/k]

-ktₐ/m = ㏑{ [mg/k] / [v₀ + mg/k] }

-ktₐ = m ㏑{ [mg/k] / [v₀ + mg/k] }

tₐ = -m/k ㏑{ [mg/k] / [v₀ + mg/k] }

Therefore tₐ = -m/k ㏑{ [mg/k] / [v₀ + mg/k] } ----------------------------------(A)

we can also write equ (A) as tₐ = m/k ㏑{ [mg/k] [v₀ + mg/k] } due to the negative sign coming together with the In sign.

Now to find the maximum height Xₐ, the equation must be written in terms of v and x.

This means dv/dt = v(dv/dx) ---------------------------------------(vii)

Remember equation (i) above  -g = v¹ + (k/m)v

Given that dv/dt = v¹

and -g-(kv/m) = v¹

Therefore subt v¹ into equ (vii) above to get

-g-(kv/m) = v(dv/dx)

Divide through by v to get

[-g-(kv/m)] / v = dv / dx -----------------------------------------------(viii)

Expand the LEFT hand size more to get

[-g-(kv/m)] / v = - (k/m) / [1 - { mg/k) / (mg/k + v) } ] ---------------------(ix)

Now substitute equ (ix) in equ (viii)

- (k/m) / [1 - { mg/k) / (mg/k + v) } ] = dv / dx

Cross-multify the equation to get

- (k/m) dx = [1 - { mg/k) / (mg/k + v) } ] dv --------------------------------(x)

Remember that at maximum height, t = 0, then x = 0

t = tₐ and X = Xₐ

Then integrate the left and right side of equation (x) from v₀ to 0 and 0 to Xₐ respectively to get:

-v₀ + (mg/k) ㏑v₀ = - {k/m} Xₐ

Divide through by - {k/m} to get

Xₐ = -v₀ + (mg/k) ㏑v₀ / (- {k/m})

Xₐ = {m/k}v₀ - {m²g}/k² ㏑(1+{kv₀/mg})

Therefore Xₐ = (v₀m)/k - ({m²g}/k²) ㏑(1+{kv₀/mg}) ---------------------------(B)

Final answer:

The question is about an object projected upwards under gravity and a certain resistance. The equations of motion will be non-linear due to the nature of the resistance. Solving these equations metaphorically or numerically will yield the maximum height and time taken to reach that height.

Explanation:

The subject matter here is mechanics which falls under Physics. Given that there is a body of constant mass m projected upwards with an initial velocity v0 and the medium being passed through provides a resistance of k|v|, the equations of motion under this resistance will be non-linear.

The question here pertains to the calculations related to an object moving upwards under a given resistance and gravity. To obtain the maximum height achieved by the body xm and the time taken to reach that tm, we employ the trick of non-dimensionalisation. First, we observe the units of all physical quantities and using this, we can introduce reduced physical quantities which are dimensionless.

Unfortunately, these non-linear equations don’t have a neat analytical solution, and methods of approximation or numerical techniques might be necessary to solve them for particular initial conditions.

Learn more about Mechanics here:

https://brainly.com/question/35147838

#SPJ3

A, B, and C are collinear, and B is between A and C. The ratio of AB to AC is 4:5. If A is at (-3,7) and B is at (1,-5), what are the coordinates of point C?

Answers

Answer:

Step-by-step explanation:

AB:AC=4:5

AB:BC=4:5-4 OR 4:1

So B divides AC in the ratio 4:1

The shape of France's production possibilities frontier (PPF) should reflect the fact that as France produces more cars and fewer trucks, the opportunity cost of producing each additional car?

Answers

Answer:

the opportunity cost of producing each additional car REMAINS CONSTANT

The amount of time workers spend commuting to their jobs each day in a large metropolitan city has a mean of 70 minutes and a standard deviation of 20 minutes. Assuming the distribution of commuting times is known to be mound-shaped and symmetric, what percentage of these commuting times are between 50 and 110 minutes?

Answers

Answer:

81.85% of the workers spend between 50 and 110 commuting to work

Step-by-step explanation:

We can assume that the distribution is Normal (or approximately Normal) because we know that it is symmetric and mound-shaped.

We call X the time spend from one worker; X has distribution N(μ = 70, σ = 20). In order to make computations, we take W, the standarization of X, whose distribution is N(0,1)

[tex] W = \frac{X-μ}{σ} = \frac{X-70}{20} [/tex]

The values of the cummulative distribution function of the standard normal, which we denote [tex] \phi [/tex] , are tabulated. You can find those values in the attached file.

[tex]P(50 < X < 110) = P(\frac{50-70}{20} < \frac{X-70}{20} < \frac{110-70}{20}) = P(-1 < W < 2) = \\\phi(2) - \phi(-1)[/tex]

Using the symmetry of the Normal density function, we have that [tex] \phi(-1) = 1-\phi(1) [/tex] . Hece,

[tex]P(50 < X < 110) = \phi(2) - \phi(-1) = \phi(2) - (1-\phi(1)) = \phi(2) + \phi(1) - 1 = \\0.9772+0.8413-1 = 0.8185[/tex]

The probability for a worker to spend that time commuting is 0.8185. We conclude that 81.85% of the workers spend between 50 and 110 commuting to work.

Can Anyone answer this equation??
It's pretty hard. And I don't get it whatsoever.

Answers

Answer: Angle P (choice 4)

=======================================

The tangent of an angle is the ratio of the opposite over adjacent sides.

tan(angle) = opposite/adjacent

tan(theta) = 4/3

This means that

opposite = 4 and adjacent = 3

This only happens when angle P is the reference angle. In other words,

tan(P) = 4/3

There is not one particular frequency distribution that is​ correct, but there are frequency distributions that are less desirable than others

1. True
2. False

Answers

ANSWER: True

EXPLANATION:

The statement is true. Any correctly constructed frequency distribution is valid. However, some choices for the categories or classes give more information about the shape of the distribution.

Choose the correct solution graph for the inequality.

Answers

The correct answer is: Option number 4 (Last Option)

Step-by-step explanation:

Given inequality is:

-6x > 42

In order to solve the inequality,

Dividing both sides by 6

[tex]-\frac{6x}{6} > \frac{42}{6}\\-x > 7[/tex]

Multiplying by -1

[tex]x<7[/tex]

As the solution is x<7, this means that the number 7 will not be included in the solution and all numbers less than 7 will be a part of the solution.

The number which is not included in the solution is marked by a shallow circle on the number line.

Hence,

The correct answer is: Option number 4 (Last Option)

Keywords: Number line, inequality

Learn more about inequality at:

brainly.com/question/899976brainly.com/question/884169

#LearnwithBrainly

A salesman packed 3 shirts and 5 ties. With one shirt, he could wear all 5 ties. With another shirt, he could wear 4 ties. With the third shirt, he could wear only 2 ties. How many different combinations did he have? a) 40 b) 22 c) 11 d) 10

Answers

Answer:

11 different combinations

Step-by-step explanation:

A salesman packed 3 shirts and 5 ties.

With one shirt, he could wear all 5 ties = 5 combinations

With another shirt, he could wear 4 ties  = 4 combinations

With the third shirt, he could wear only 2 ties= 2 combinations

number of different combinations= [tex]5+4+2=11[/tex]

so answer is 11

am i correct on this equation??
-- need honest answers!!! --

Answers

Unfortunately you are incorrect. The answer is actually tan(y) = 20/21

The tangent of an angle is the ratio of the opposite and adjacent sides.

tan(angle) = opposite/adjacent

tan(K) = JL/LK

tan(y) = 20/21

----------------------

Side note: the tangent of angle x would be the reciprocal of this fraction since the opposite and adjacent sides swap when we move to angle J

tan(angle) = opposite/adjacent

tan(J) = LK/JL

tan(x) = 21/20

Is √m+n = √m + √n for all values of m and n? Explain why or why not.

Answers

Step-by-step explanation:

√(m + n) = √m + √n

Square both sides:

m + n = m + 2√(mn) + n

Simplify:

0 = 2√(mn)

mn = 0

The equation is only true if either m or n (or both) is 0.

Final answer:

The square root of the sum of two numbers is not equal to the sum of the square roots of those numbers.

Explanation:

No, √m+n is not equal to √m + √n for all values of m and n. This is because of the nature of square roots and how they interact with addition. Taking the square root of a sum is not the same as the sum of the square roots. For example, for m = 4 and n = 9, √4 + √9 = 2 + 3 = 5, but √(4 + 9) = √13, which is not equal to 5. This example illustrates how the two expressions yield different results, emphasizing the importance of understanding the properties of square roots in mathematical operations.

Given the pay rate and hours worked, determine the gross earnings. Make sure to include decimals and appropriate zeros. rate 6.50 hours 40

Answers

The gross earnings, we obtain solving (6.50*40) the result is $260

Final answer:

To determine the gross earnings for 40 hours worked at a pay rate of $6.50 per hour, multiply the pay rate by hours. The gross earnings would be $260.00.

Explanation:

To calculate the gross earnings given the pay rate and hours worked, we use a simple multiplication. However, there is an additional consideration mentioned in Exercise 3.1, which states that the employee should receive 1.5 times the hourly rate for hours worked above 40 hours. Therefore, the calculation involves two steps if the number of hours exceeds 40.

Calculation:

If hours ≤ 40, the formula is:
Gross Earnings = Pay Rate × Hours WorkedIf hours > 40, the formula is:
Gross Earnings = Pay Rate × 40 + (Pay Rate × 1.5 × (Hours Worked - 40))

In this particular case, the student only worked 40 hours at a pay rate of $6.50 per hour. Using the first formula, the gross earnings would be:
Gross Earnings = $6.50/hour × 40 hours = $260.00

What is the median value of the set R, if for every term in the set, [tex]R_n = R_{n-1} + 3[/tex]? (1) The first term of set R is 15. (2) The mean of set R is 36.

Answers

Answer:

36

Step-by-step explanation:

Given that

[tex]R_n = R_{n+1} +3[/tex] is given

First term is 15

This is an arithmetic series with a =15 and d =3

If n is the number of terms, then we have

Sum of n terms = 36 xn = 36n

But as per arithmetic progression rule

[tex]S_n = \frac{n}{2} [2a+(n-1)d]\\= \frac{n}{2} [30+(n-1)3]=36n[/tex]

[tex]72 = 30+3n-3\\n-=15[/tex]

When there are n terms we have middle term is the 8th term

Hence median is 8th term

=[tex]a_8 = 15+7(3) \\=36[/tex]

Marcelo had $49.13 in his bank account. He paid two fees of $32.50 each, and then he made two deposits of $74.25 each. What is the balance in dollars in Marcelo's account now?

Answers

Answer:

Current balance in Marcelo's account = $132.63

Step-by-step explanation:

Given:

Initial amount in Marcelo's bank account = $49.13

Amount paid in two fees = $32.50 each

Amount added by two deposits = $74.25 each

To find balance in dollars in Marcelo's account.

Solution:

Total amount paid in fees = [tex]2\times \$32.50=\$65[/tex]

Total amount deposited = [tex]2\times \$74.25=\$148.50[/tex]

The balance in Marcelo's account can be represented as:

Initial balance - Amount given in fees + Amount deposited

⇒ [tex]\$49.13-\$65+\$148.50[/tex]

⇒ [tex]\$132.63[/tex]

Thus, balance in Marcelo's account now = $132.63

Answer: 132.63

Step-by-step explanation:

I copied the other guy lol thanks for the points

In the context of the BCG (Boston Consulting Group) matrix, the _____ is a poor performer that has only a small share of a slow-growth market. a. cash cow b. question mark c. star d. dog

Answers

Answer:

d. dog

Step-by-step explanation:

The BCG matrix is a tool used to assess the performance of the products of an organization on the basis of market share and market growth.

Basically there are 4 classes of products namely; Star, cash cow, question mark and dog.

Dogs are product with low market share and low growth.

Question mark have high growth but low market share while cash cows are the products with high mark share but low growth.

Stars are products with high market share and high market growth.

Hence dog is a poor performer that has only a small share of a slow-growth market. Option d.

A Ferris wheel has a diameter of 42 feet. It rotates 3 times per minute. Approximately how far will a passenger travel during a 5-minute ride?a. 132 feet
b. 659 feet
c. 1,978 feet
d. 3,956 feet

Answers

Option C is the correct answer.

Step-by-step explanation:

Diameter, D = 42 feet

Circumference = πD = π x 42 = 131.95 feet

Number of rotations per minute = 3

Total time = 5 minutes

Total rotations = 5 x 3 = 15

Distance traveled per rotation = 131.95 feet

Distance traveled in 15 rotations = 15 x 131.95 = 1978 feet

Option C is the correct answer.

A company's annual profit, P, is given by P=−x2+195x−2175, where x is the price of the company's product in dollars. What is the company's annual profit if the price of their product is $32?

Answers

Answer: the company's annual profit if the price of their product is $32 is $3041

Step-by-step explanation:

A company's annual profit, P, is given by P = −x²+ 195x − 2175, where x is the price of the company's product in dollars.

To determine the company's annual profit if the price of their product is $32, we would substitute x = 32 into the given equation. It becomes

P = −32²+ 195 × 32 − 2175

P = −1024 + 6240 − 2175

P = $3041

Other Questions
An analyst selects a model as a champion because it shows better model fit than a competing model with more predictors. Which statistic justifies this rationale? The Sea World animal trainers use rewards (reinforcements) to teach whales, sea lions and dolphins to perform tricks. These training techniques are based on principles from which early school of psychology?A. Functionalism B. Structuralism C. Behaviorism D. Cognitive Tour Corp., which had earnings and profits of $400,000, made a nonliquidating distribution of property to its shareholders during the current year. This property, which had an adjusted basis of $30,000 and a fair market value of $20,000 at date of distribution, did not constitute assets used in the active conduct of Tour's business. How much loss did Tour recognize on this distribution? The unit weight of a soil is 96 lb/ft3 . The moisture content if this soil is 17% when the degree of saturation is 60%. Determine: a. Void ratio b. Specific gravity of solids c. Saturated unit weight. Are these equivalent 3r-18 and 3(r-6) When a hydrogen atom covalently bonds to another atom, how many electrons associated with this hydrogen atom become involved in such a bond? The formula for wind chill C (in degrees Fahrenheit) is given by C = 35.74 + 0.6215T - 35.75v^0.16 + 0.4275Tv^0.16 where v is the wind speed in miles per hour and T is the temperature in degrees Fahrenheit. The wind speed is 23 3 miles per hour and the temperature is 8 1. Use dC to estimate the maximum possible propagated error and relative error in calculating the wind chill. A geothermal pump is used to pump brine whose density is 1050 kg/m3 at a rate of 0.3 m3/s from a depth of 200 m. For a pump efficiency of 90 percent, determine the required power input to the pump. Disregard frictional losses in the pipes, and assume the geothermal water at 200 m depth to be exposed to the atmosphere. Which shows the expression below in simplified form?( 7 10 ) ( 5 10 )A. 3.5 100B. 3.5 103C. 3.5 102D. 12 101Please explain how. 5.Plot the following combinations of good X and good Y on the graph below.Plot all points and connect them with a smooth curve.Good X? Determine whether the two given lines l1 and l2 are parallel, skew, or intersecting. If they intersect, find the point of intersection. l1 : x = t y = 1 + 2t z = 2 + 3t l2 : x = 3 4s y = 2 3s z = 1 + 2s 2. A brewery produces cans of beer that are supposed to contain exactly 12 ounces. But owing to the inevitable variation in the filling equipment, the amount of beer in each can is actually a random variable with a normal distribution. It has a mean of 12 ounces and a standard deviation of 0.30 ounce. If you bought a six-pack of their beer what is the probability that you are going to actually get less than or equal to a total of 72 ounces of beer in your six-pack? How do you find the difference never 6/8 - 1/7 a company saw a drop in sales after negative publicity around a scandal involving safetry reports. the strategic changes the company makes to deal with this situation are reactive changes. The board of directors of a corporation must select a president, a secretary, and a treasurer. In how many possible ways can this be accomplished if there are 21 members on the board of directors? You have identified your product to be butylnapthyl ether and recrystallize it. The initial mass of the the crude ether was 141 mg. The mass after recrystallization was 121 mg. Calculate the percent recovery from recrystallization. Which is an example of a conflict in Frankenstein that drives the storyforward?OA. Alphonse takes Victor away to Belrive to try to make him happyagain.OB. The monster observes a family living in a cottage.Oc. Victor sees the monster while exploring the mountains.OD. The monster learns to speak Victor's language fluently. Which of the following must be done before you can install the Intel Core i7-7700 processor on the Gigabyte GA-H110M-S2 motherboard? Select all that apply. A. Flash BIOS/UEFI.B. Install motherboard drivers.C. Clear CMOS RAM.D. Exchange the LGA1151 socket for one that can hold the new processor Participants in the following surveys are guaranteed that their answers will remain confidential and anonymous. In which case are survey respondents least likely to shade the truth?a. A survey regarding personal displays of racial prejudiceb. A survey regarding sexual infidelityc. A survey regarding preferences as to online news sourcesd. A survey regarding the purchase, sale, or use of illegal drugs will mark brainliest Steam Workshop Downloader