How much heat (in J) must be added to raise the temperature of 2.70 mol of air from 22.0°C to 32.0°C at constant volume? Assume air is completely diatomic.

Answers

Answer 1

Answer:

Heat required to raise the temperature will be 563.625 J

Explanation:

We have given number of moles n = 2.70 mole

Temperature is raises from 22°C to 32°C

So increase in temperature [tex]\Delta T=32-22=10^{\circ}C[/tex]

It is given that air is diatomic so [tex]c_v=\frac{5}{2}R=2.5\times 8.314=20.875[/tex]

We know that heat is given by [tex]Q=nc_v\Delta T[/tex]

So heat will be equal to [tex]Q=2.70\times 20.875\times 10=563.625J[/tex]

So heat required to raise the temperature will be 563.625 J


Related Questions

Calculate the linear momentum per photon,energy per photon, and the energy per mole of photons for radiation of wavelength; (a) 600 nm (red), (b) 550 nm (yellow), (c) 400 nm (violet), (d) 200 nm (ultraviolet), (e) 150 pm (X-ray), and (f ) 1.0 cm (microwave).

Answers

Answer:

The detailed explanations is attached below

Explanation:

What is applied is the De brogile equation and the equation showing a relationship between Energy, speed of light and wavelength.

The explanation is as attached below.

Consider two charges placed a fixed distance apart.If the charge on each of two small spheres is halved, the force of attraction between the spheres will be ___________.
A. doubled.
B. quadrupled.
C. halved.
D. quartered.
E. the same as before.

Answers

Final answer:

When the charge on each of two small spheres is halved, the force of attraction between them, according to Coulomb's Law, will be quartered (Option D). This is because the force is proportional to the product of the charges, which would be reduced to a quarter.

Explanation:

The question is related to Coulomb's Law, which describes the electrostatic force between two charges. According to Coulomb's Law, the force F between two charges is proportional to the product of the charges (q1 and q2) and inversely proportional to the square of the distance (r^2) between them: F = k * (q1*q2) / r^2, where k is Coulomb's constant.

If the charge on each of the two small spheres is halved, we have new charges q1/2 and q2/2. Substituting these into the formula, we get the new force F' as F' = k * ((q1/2)*(q2/2)) / r^2. Simplifying this, F' = (1/4) * k * (q1*q2) / r^2, which is one quarter of the original force F. Therefore, the force of attraction between the spheres will be quartered when the charge on each sphere is halved.

The top of a swimming pool is at ground level. If the pool is 2.40 m deep, how far below ground level does the bottom of the pool appear to be located for the following conditions? (The index of refraction of water is 1.333.)

Answers

Answer:

1.80 Meter

Explanation:

The bottom of a water (liquid) container appears to be raised up in comparison to its actual depth because of the refraction. How shallow will the bottom appear depends on the refractive index of the liquid.

The refractive index(n) and apparent and real depth are related as given below:

[tex]n = \frac{Real Depth}{Apparent Depth}[/tex]

[tex]Apparent Depth = \frac{Real Depth}{n}[/tex]

Given,

n = 1.333

Real depth = 2.40 m

[tex]Apparent Depth = \frac{2.40}{1.33}[/tex]

Thus, Apparent depth = 1.80 Meter

The small piston of a hydraulic lift has a cross-sectional of 3 00 cm2 and its large piston has a cross-sectional area of 200 cm2. What downward force of magnitude must be applied to the small piston for the lift to raise a load whose weight is Fg = 15.0 kN?

Answers

Q: The small piston of a hydraulic lift has a cross-sectional of 3.00 cm2 and its large piston has a cross-sectional area of 200 cm2. What downward force of magnitude must be applied to the small piston for the lift to raise a load whose weight is Fg = 15.0 kN?

Answer:

225 N

Explanation:

From Pascal's principle,

F/A = f/a ...................... Equation 1

Where F = Force exerted on the larger piston, f = force applied to the smaller piston, A = cross sectional area of the larger piston, a = cross sectional area of the smaller piston.

Making f the subject of the equation,

f = F(a)/A ..................... Equation 2

Given: F = 15.0 kN = 15000 N, A = 200 cm², a = 3.00 cm².

Substituting into equation 2

f = 15000(3/200)

f = 225 N.

Hence the downward force that must be applied to small piston = 225 N

The downward force of magnitude must be applied to the small piston for the lift to raise a load whose weight is Fg = 15.0 kN is 225N.

Given that,

The small piston of a hydraulic lift has a cross-sectional of 3.00 cm^2.And its large piston has a cross-sectional area of 200 cm^2.

Based on the above information, the calculation is as follows:

Here we use the Pascal's principle,

[tex]F\div A = f\div a[/tex] ........... (1)

Here

 F denoted Force exerted on the larger piston,

f denoted force that applied to the smaller piston,

A denoted cross-sectional area of the larger piston,

And, a denoted cross-sectional area of the smaller piston.

Now

[tex]f = 15000 \times (3\div 200)[/tex]

=  225 N

Learn more: brainly.com/question/23334479

In a simple model of the hydrogen atom, the electron moves in a circular orbit of radius 0.053nm around a stationary proton.How many revolutions per second does the electron make? Hint: What must be true for a force that causes circular motion?Ans: ___ Hz

Answers

Answer:

Frequency, [tex]f=6.57\times 10^{15}\ Hz[/tex]

Explanation:

It is given that, the electron moves in a circular orbit of radius 0.053 nm around a stationary proton. The electric force acting on the electron is balanced by the centripetal force as :

[tex]\dfrac{kq^2}{r^2}=\dfrac{mv^2}{r}[/tex]

v is the speed of electron

[tex]v=\sqrt{\dfrac{ke^2}{mr}}[/tex]

[tex]v=\sqrt{\dfrac{9\times 10^9\times (1.6\times 10^{-19})^2}{9.1\times 10^{-31}\times 0.053\times 10^{-9}}}[/tex]

[tex]v=2.18\times 10^6\ m/s[/tex]

The speed of electron is given by :

[tex]v=\dfrac{2\pi r}{t}[/tex]

[tex]t=\dfrac{2\pi r}{v}[/tex]

[tex]t=\dfrac{2\pi \times 0.053\times 10^{-9}}{2.18\times 10^6}[/tex]

[tex]t=1.52\times 10^{-16}\ s[/tex]

We know that the number of revolutions per second is called frequency of electron. It is given by :

[tex]f=\dfrac{1}{t}[/tex]

[tex]f=\dfrac{1}{1.52\times 10^{-16}}[/tex]

[tex]f=6.57\times 10^{15}\ Hz[/tex]

So, the total number of revolutions per second make by the electron is [tex]f=6.57\times 10^{15}\ Hz[/tex]. Hence, this is required solution.

If the pressure of gas is doubled and its absolute temperature is quadrupled, the volume is what factor times the original?

a. 2

b. 1/2

c. 1/4

d. 4

Answers

Answer:

Volume will increase by factor 2

So option (A) will be correct answer  

Explanation:

Let initially the volume is V pressure is P and temperature is T

According to ideal gas equation [tex]PV=nRT[/tex], here n is number of moles and R is gas constant

So [tex]V=\frac{nRT}{P}[/tex]....................eqn 1

Now pressure is doubled and temperature is quadrupled

So new volume [tex]V_{new}=\frac{nR4T}{2P}=\frac{2nRT}{P}[/tex] ........eqn 2

Now comparing eqn 1 nad eqn 2

[tex]V_{new}=2V[/tex]

So volume will increase by factor 2

So option (A) will be correct answer

A Geiger–Muller tube is a type of gas‑filled radiation detector. It can detect particles like X‑rays, alpha particles, and beta rays (electrons). This is useful in quantizing the activity of a radioactive source or determining if an area containing radioactive material is safe to enter. Assuming that you have 1 mol of gas, if a Geiger counter is filled with 9846 Pa of argon gas at room temperature ( T = 21.1 °C ) , what is the density, rho , of the gas in this Geiger tube?

Answers

Answer:

[tex]0.16098\times 10^{-3}\ g/cm^3[/tex]

Explanation:

P =Pressure = 9846 Pa

V = Volume

n = Amount of substance = 1

T = Temperature = 21.1°C

[tex]\rho[/tex] = Density

R = Gas constant = 8.314 J/mol K

M = Molar mass of argon = 40 g/mol

From ideal gas law we have the relation

[tex]PV=nRT[/tex]

Multiply density on both sides

[tex]PV\rho=nR\rho T\\\Rightarrow PM=nR\rho T\\\Rightarrow \rho=\dfrac{PM}{nRT}\\\Rightarrow \rho=\dfrac{9846\times 40\times 10^{-3}}{8.314\times (21.1+273.15)}\\\Rightarrow \rho=0.16098\ kg/m^3\\\Rightarrow \rho=0.16098\times 10^{-3}\ g/cm^3[/tex]

The density of argon gas is [tex]0.16098\times 10^{-3}\ g/cm^3[/tex]

Final answer:

To find the density of argon gas inside a Geiger tube, we use the Ideal Gas Law and convert the given units, plugging in these values yields 1.65 g/L.

Explanation:

The density, ρ, of a gas can be calculated following the Ideal Gas Law formula, which is PV = nRT, where P is pressure, V is volume, n is the number of moles of the gas, R is the universal gas constant, and T is the temperature in Kelvin. To solve for density, we can use the equation ρ = m/V, where m is the mass of the gas and V is the volume. We can also express this in terms of the Ideal Gas Law, leading to ρ = (n×M)/(RT/P), where M is molar mass.

Given the molar mass of Argon is approximately 39.948 g/mol and the universal gas constant R is 8.314462618 J/(mol*K), first convert the temperature from Celsius to Kelvin (T = 21.1 °C + 273.15 = 294.25K), and the pressure from Pascal to atm (1 Pa = 0.00000986923 atm, thus 9846 Pa = 9846× 0.00000986923 = 0.0972 atm).

Plugging the values into the density formula, we get ρ = (1 mol× 39.948 g/mol) / ((8.314462618 J/(mol×K)×294.25K)/ 0.0972 atm) = 1.65 g/L.

Learn more about density of argon gas here:

https://brainly.com/question/35377554

#SPJ11

If the clock runs slow and loses 15 s per day, how should you adjust the length of the pendulum?

Answers

Answer:

L= 1 m,   ΔL = 0.0074 m

Explanation:

A clock is a simple pendulum with angular velocity

         w = √ g / L

Angular velocity is related to frequency and period.

         w = 2π f = 2π / T

We replace

        2π / T = √ g / L

        T = 2π √L / g

We will use the value of g = 9.8 m / s², the initial length of the pendulum, in general it is 1 m (L = 1m)

With this length the average time period is

           T = 2π √1 / 9.8

           T = 2.0 s

They indicate that the error accumulated in a day is 15 s, let's use a rule of proportions to find the error is a swing

           t = 1 day (24h / 1day) (3600s / 1h) = 86400 s

         e= Δt = 15 (2/86400) = 3.5 104 s

The time the clock measures is

           T ’= To - e

           T’= 2.0 -0.00035

           T’= 1.99965 s

Let's look for the length of the pendulum to challenge time (t ’)

           L’= T’² g / 4π²

           L’= 1.99965 2 9.8 / 4π²

           L ’= 0.9926 m

Therefore the amount that should adjust the length is

           ΔL = L - L’

           ΔL = 1.00 - 0.9926

           ΔL = 0.0074 m

An object falls a distance h from rest. If it travels 0.560h in the last 1.00 s, find (a) the time and (b) the height of its fall.

Answers

Answer:

(a) t = 2.97s

(b) h = 43.3 m

Explanation:

Let t be the time it takes to fall a distance h, then t - 1 (s) is the time it takes to fall a distance of h - 0.56h = 0.44 h

For the ball to fall from rest a distance of h after time t

[tex]h = gt^2/2[/tex]

Also for the ball to fall from rest a distance of 0.44h after time (t-1)

[tex]0.44h = g(t-1)^2/2[/tex]

We can substitute the 1st equation into the 2nd one

[tex]0.44gt^2/2 = g(t-1)^2/2[/tex]

and divide both sides by g/2

[tex]0.44t^2 = (t-1)^2[/tex]

[tex]0.44t^2 = t^2 - 2t + 1[/tex]

[tex]0.56t^2 - 2t + 1 = 0[/tex]

[tex]t= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]t= \frac{2\pm \sqrt{(-2)^2 - 4*(0.56)*(1)}}{2*(0.56)}[/tex]

[tex]t= \frac{2\pm1.33}{1.12}[/tex]

t = 2.97 or t = 0.6

Since t can only be > 1 s we will pick t = 2.97 s

(b) [tex]h = gt^2/2 = 43.3 m[/tex]

When you touch a friend after walking across a rug on a dry day, you typically draw a spark of about 1.89 mm. Calculate the potential difference between you and your friend just before the spark.

Answers

To solve this problem we will apply the concepts related to the magnitude of the electric field. Defined as the proportion of the electric potential per unit of distance, that is,

[tex]E = \frac{V}{d}[/tex]

Where E is the magnitude of the electric field between the plates, V is the potential difference between the plates, and d is the separation of the plates

The breakdown field of air is [tex]3.0*10^6[/tex] N/C.

Replacing we have that the Potential is

[tex]V = Ed[/tex]

[tex]V = (3.0*10^6)(1.89*10^{-3})[/tex]

[tex]V = 5670V[/tex]

Therefore the potential difference between you and your friend just before the spark is 5670V

A highway patrol car traveling a constant speed of 105 km/h is passed by a speeding car traveling 140 km/h. Exactly 1.00 s after the car passes, the highway patrol officer steps on the accelerator; of the patrolman's car accelerates at 3.50 m/s2, how much time passes after the car passes before the patrol car overtakes the speeder (assume the speeder is moving at constant speed)?

Answers

Answer:

The elapsed time from when the speeder passes the patrol car until it is caught is 9.24 s.

Explanation:

Hi there!

The position of the patrol car at a time "t" can be calculated using this equation:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the patrol car at a time "t"

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

For the speeding car, the equation is the same only that the acceleration is zero. Then, the equation gets reduced to this:

x = x0 + v · t

Where "v" is the constant velocity.

First, let´s convert the velocity units into m/s:

140 km/h · 1000 m / 1 km · 1 h / 3600 s = 38.9 m/s

105 km/h · 1000 m / 1 km · 1 h / 3600 s = 29.2 m/s

We have to find how much time it takes the patrol car to catch the speeder after the speeder passes the patrol car.

When the patrol car catches the speeder, the position of both cars is the same:

position of the patrol car = position of the speeder

x0 + v0 · t + 1/2 · a · t² = x0 + v · t

if we place the origin of the frame of reference at the point where the patrol car starts accelerating (1 s after the speeder passes the patrol car) then, the initial position of the patrol car will be zero, while the initial position of the speeder will be the traveled distance in 1 s:

x = v · t

x = 38.9 m/s · 1 s = 38.9 m

When the patrol car accelerates, the speeder is 38.9 m ahead of it. Then:

x0 + v0 · t + 1/2 · a · t² = x0 + v · t

0 + 29.2 m/s · t + 1/2 · 3.50 m/s² · t² = 38.9 m + 38.9 m/s · t

Let´s agrupate terms and equalize to zero:

-38.9 m - 38.9 m/s · t + 29.2 m/s · t + 1.75 m/s² · t² = 0

-38.9 m - 9.70 m/s · t + 1.75 m/s² · t² = 0

Solving the quadratic equation for t using the quadratic formula:

t = 8.24 s  (the other solution is discarded because it is negative)

The elapsed time from when the speeder passes the patrol car until it is caught is (8.24 s + 1.00) 9.24 s.

An Atwood machine is constructed using two
wheels (with the masses concentrated at the
rims). The left wheel has a mass of 2.5 kg and
radius 24.03 cm. The right wheel has a mass
of 2.3 kg and radius 31.38 cm. The hanging
mass on the left is 1.64 kg and on the right
1.27 kg
What is the acceleration of the system?
The acceleration of gravity is 9.8 m/s^2
Answer in units of m/s^2

Answers

Answer:

0.47 m/s²

Explanation:

Assuming the string is inelastic, m₃ will accelerate downward at a rate of -a, and m₄ will accelerate upward at a rate of +a.

Draw a four free body diagrams, one for each hanging mass and one for each wheel.

For m₃, there are two forces: weight force m₃g pulling down, and tension force T₃ pulling up.  Sum of forces in the +y direction:

∑F = ma

T₃ − m₃g = m₃(-a)

For m₄, there are two forces: weight force m₄g pulling down, and tension force T₄ pulling up.  Sum of forces in the +y direction:

∑F = ma

T₄ − m₄g = m₄a

For m₁, there are two forces: tension force T₃ pulling down, and tension force T pulling right.  Sum of the torques in the counterclockwise direction:

∑τ = Iα

T₃r₃ − Tr₃ = (m₁r₃²) (a/r₃)

T₃ − T = m₁a

For m₂, there are two forces: tension force T₄ pulling down, and tension force T pulling left.  Sum of the torques in the counterclockwise direction:

∑τ = Iα

Tr₄ − T₄r₄ = (m₂r₄²) (a/r₄)

T − T₄ = m₂a

We now have 4 equations and 4 unknowns.  Let's add the third and fourth equations to eliminate T:

(T₃ − T) + (T − T₄) = m₁a + m₂a

T₃ − T₄ = (m₁ + m₂) a

Now let's subtract the second equation from the first:

(T₃ − m₃g) − (T₄ − m₄g) = m₃(-a) − m₄a

T₃ − m₃g − T₄ + m₄g = -(m₃ + m₄) a

T₃ − T₄ = (m₃ − m₄) g − (m₃ + m₄) a

Setting these two expressions equal:

(m₁ + m₂) a = (m₃ − m₄) g − (m₃ + m₄) a

(m₁ + m₂ + m₃ + m₄) a = (m₃ − m₄) g

a = (m₃ − m₄) g / (m₁ + m₂ + m₃ + m₄)

Plugging in values:

a = (1.64 kg − 1.27 kg) (9.8 m/s²) / (2.5 kg + 2.3 kg + 1.64 kg + 1.27 kg)

a = 0.47 m/s²

The difference in torque and mass applied determines the acceleration of

the system.

The acceleration is approximately 0.4703 m/s²

Reasons:

The mass of the left wheel = 2.5 kg

Radius of the left wheel = 24.03 cm

Mass of the right wheel = 2.3 kg

Radius of the right wheel = 31.38 cm

Mass on the left = 1.64 kg

Mass on the right = 1.27 kg

Acceleration due to gravity, g ≈ 9.8 m/s²

Required:

The acceleration of the system

Solution:

The given acceleration of the

T₃ - m₃·g = m₃·(-a)...(1)

T₄ - m₄·g = m₄·a...(2)

[tex]T_3 \cdot r_1 - T \cdot r_1 = I \cdot \alpha = m_1 \cdot r_1^2 \times \dfrac{a}{r_1} = \mathbf{m_1 \cdot r_1 \cdot a}[/tex]

T₃ - T = m₁·a...(3)

[tex]T \cdot r_2 - T_4 \cdot r_2 = \mathbf{ I \cdot \alpha} = m_2 \cdot r_2^2 \times \dfrac{a}{r_2} = m_2 \cdot r_2 \cdot a[/tex]

T - T₄ = m₂·a...(4)

Add equation (3) to equation (4) gives;

T₃ - T + (T - T₄) = T₃ - T₄ = m₁·a + m₂·a

Subtracting equation (2) from equation (1) gives;

(T₃ - m₃·g) - (T₄ - m₄·g) = m₃·a + m₄·a

T₃ - T₄ = -m₃·a - m₄·a - (m₄·g - m₃·g)

Which gives;

m₁·a + m₂·a = -m₃·a - m₄·a - (m₄·g - m₃·g)

a·(m₁ + m₂) = -a·(m₃ + m₄) - (m₄·g - m₃·g)

-(m₄·g - m₃·g) = (m₃·g - m₄·g) = a·(m₃ + m₄) + a·(m₁ + m₂) = a·(m₃ + m₄ + m₁ + m₂)

[tex]a = \mathbf{\dfrac{m_3 \cdot g - m_4 \cdot g}{(m_3 + m_4 + m_1 - m_2)}}[/tex]

[tex]a = \dfrac{1.64 \times 9.8 - 1.27\times 9.8}{(1.27 +1.64 + 2.5 + 2.3)} \approx 0.4703[/tex]

The acceleration is a ≈ 0.4703 m/s²

Learn more here:

https://brainly.com/question/14970869

A 5.7 g bullet is fired into a 1.5 kg ballistic pendulum. The bullet emerges from the block with a speed of 154 m/s, and the block rises to a maximum height of 11 cm . Find the initial speed of the bullet. The acceleration due to gravity is 9.8 m/s 2 . Answer in units of m/s.

Answers

Answer:

540.8m/s

Explanation:

From the information giving, the total energy is conserved and the momentum is conserved.

To determine the speed of the ball after the collision, we use the energy conservation rule, I.e

Kinetic Energy of ball after collision = energy to rise to attain height

1/2mv²=mgh

where m,mass of ballistic pendulum=1.5kg,

v=velocity of ballistic pendulum after collision,

g=gravitational acceleration

h=height attain=11cm=0.11m

if we substitute we arrive at

v=√(2gh)

v=√(2*9.8*0.11)

v=1.47m/s.

since we have determine the velocity of the ballistic pendulum after collision, we now use conservation of momentum to determine the initial speed of the bullet.

since

initial momentum=final momentum

mₓ₁vₓ₁+mₐ₁vₐ₁=mₓ₂vₓ₂+mₐ₂vₐ₂

were mₓ₁vₓ₁,mₓ₂vₓ₂ =mass and velocity of ballistic pendulum before and after collision

mₐ₁vₐ₁,mₐ₂vₐ₂=mass and velocity of bullet before and after collision

if we substitute values,we arrive at

(1.5kg*0m/s)+(0.0057kg*vₐ₁)=(1.5kg*1.47m/s)+(0.0057kg*154m/s)

vₐ₁= 3.0828/0.0057

vₐ₁=540.8m/s

Rank these electromagnetic waves on the basisof their speed (in vacuum). Rank from fastest to slowest. To rank items as equivalent, overlap them.a. Yellow lightb. FM radio wavec. Green lightd. X-raye. AM radio wavef. Infrared wave

Answers

Answer: On the basis of speed they are all equivalent.

Yellow light = Fm radio wave = Green light = X-ray = AM radio wave = Infrared wave

Explanation:

Yellow light, Fm radio wave, Green light ,X-ray, AM radio wave and Infrared wave are all electromagnetic waves, and all electromagnetic waves move at the same vacuum speed which is the speed of light and is approximately 3.0x10^8 m/s.

They only differ in wavelength and frequency

c = λf

c (speed of light) = λ (wavelength) x f (frequency)

Therefore; on the basis of speed they are all equivalent.

Yellow light = Fm radio wave = Green light = X-ray = AM radio wave = Infrared wave

Final answer:

All electromagnetic waves, including yellow light, FM radio waves, green light, X-rays, AM radio waves, and infrared waves travel at the same speed in a vacuum, known as the speed of light, which is 3.00 × 10^8 m/s. Therefore, they are equivalent in speed.

Explanation:

The student has asked to rank various types of electromagnetic waves based on their speed in a vacuum. In a vacuum, all electromagnetic waves travel at the same speed, which is the speed of light, and is one of the fundamental constants of nature. The speed of light (c) in a vacuum is 3.00 × 108 meters per second (m/s).

Therefore, the ranking of the electromagnetic waves from fastest to slowest for yellow light, FM radio wave, green light, X-ray, AM radio wave, and infrared wave would be:

Yellow lightGreen lightX-rayInfrared waveFM radio waveAM radio wave

Since all of these waves travel at the same speed in a vacuum, they can be considered equivalent in terms of speed. However, they differ in wavelength and frequency.

Learn more about Speed of Electromagnetic Waves here:

https://brainly.com/question/2012069

#SPJ3

At a certain location, Earth has a magnetic field of 0.60 â 10â4 T, pointing 75° below the horizontal in a north-south plane. A 14.6 m long straight wire carries a 11 A current
a) If the current is directed horizontally toward the east, what are the magnitude and direction of the magnetic force on the wire?
b) What are the magnitude and direction of the force if the current is directed vertically upward?

Answers

Answer:

a)   [tex] = 9.30\times 10^{-3} N[/tex]

b) [tex]= 2.49\times 10^{-3} N[/tex]

Explanation:

Given data;

magnetic field [tex]= 0.60 \times 10^{-4}  T[/tex]

current I = 11 A

length of wire L = 14.6 m

Angle[tex] \theta = 75 A[/tex]

a) Magnetic force due to current

[tex]F = BIL sin \theta[/tex]

 [tex] = 0.60 \times 10^{-4} \times 11 \times 14.6 sin 75^o[/tex]

 [tex] = 9.30\times 10^{-3} N[/tex]

B) magnitude of force due upward current direction

[tex]F = BIL sin \theta[/tex]

  [tex]= 0.60 \times 10^{-4} \times 11 \times 14.6 sin (75^o + 90^o)[/tex]

[tex]= 2.49\times 10^{-3} N[/tex]

Final answer:

The magnetic force on a wire depends on the direction of the current relative to the Earth's magnetic field. In scenario (a), the force is calculated using an angle of 165° between the wire and magnetic field. For (b), the angle is 75°, and the force's magnitude is computed with the sin of that angle.

Explanation:

Magnetic Force on a Current-Carrying Wire

The magnetic force on a current-carrying wire is given by F = I x L x B x sin(θ), where I is the current, L is the length of the wire, B is the magnetic field strength, and θ is the angle between the wire and the direction of the magnetic field.

a) When the current is directed horizontally toward the east and the Earth's magnetic field is pointing 75° below the horizontal in a north-south plane, we can calculate the force using the cross product of the current direction and magnetic field. The angle between the wire and the magnetic field is 90° + 75° = 165°. Therefore, the magnitude of the force is F = 11 A * 14.6 m * 0.60 * 10^-4 T * sin(165°) and its direction is perpendicular to both the current and the magnetic field, following the right-hand rule.

b) If the current is directed vertically upward, the force is perpendicular to the wire and the magnetic field. The angle between the current direction and the magnetic field is now 75°, so the magnitude of the force is F = 11 A * 14.6 m * 0.60 * 10^-4 T * sin(75°), and its direction is again determined by the right-hand rule.

A mass of 13.9 kg bounces up and down from a spring with constant 9.3 N/m. Toward the bottom of its motion the mass dips into a pool of water and comes back out. The wave created by this process travels away at 5 m/s. What is the associated wavelength of this water wave measured in meters?

Answers

Answer:

[tex]\lambda_w=0.6509\ m[/tex]

Explanation:

Given:

mass oscillating with the spring, [tex]m=13.9\ kg[/tex]spring constant, [tex]k=9.3\ N.m^{-1}[/tex]wave velocity on the water surface, [tex]v_w=5\ m.s^{-1}[/tex]

Now the angular frequency of the spring oscillation:

[tex]\omega=\sqrt{\frac{k}{m} }[/tex]

[tex]\omega=\sqrt{\frac{9.3}{13.9} }[/tex]

[tex]\omega=0.81796\ rad.s^{-1}[/tex]

Now according to the question the wave is created after each cycle of the spring oscillation.

So the time period of oscillation:

[tex]T=\frac{\omega}{2\pi}[/tex]

[tex]T=\frac{0.81796}{2\pi}[/tex]

[tex]T=0.130182\ s[/tex]

Now the wave length of the water wave:

[tex]\lambda_w=v_w.T[/tex]

[tex]\lambda_w=5\times 0.130182[/tex]

[tex]\lambda_w=0.6509\ m[/tex]

Answer:

Wavelength will be 38.388 m

Explanation:

We have given mass m = 13.9 kg

Spring constant K= 9.3 N/m

Velocity v = 5 m /sec

Angular frequency is given by [tex]\omega =\sqrt{\frac{k}{m}}[/tex]

So [tex]\omega =\sqrt{\frac{9.3}{13.9}}=0.817[/tex]

Now we have to find frequency for further calculation

So frequency will be equal to [tex]f=\frac{\omega }{2\pi }=\frac{0.817}{2\times 3.14}=0.130Hz[/tex]

Now we have to find wavelength, it is ratio of velocity and frequency

There is a relation between frequency velocity and wavelength

[tex]v=f\lambda[/tex]

[tex]\lambda =\frac{v}{f}=\frac{5}{0.130}=38.388m[/tex]

(c) The driver of a car traveling at a speed of 17 m/s slams on the brakes and comes to a stop in 3 s. If we assume that the speed changed at a constant rate (constant net force), what was the average speed during this 3 s interval?

Answers

Answer:

[tex]v_{avg}=8.5\ m/s[/tex]

Explanation:

given,

initial speed of the car, v₁ = 17 m/s

final speed of the car, v₂ = 0 m/s

car stops in time = 3 s

we need to calculate average speed

[tex]v_{avg}=\dfrac{v_1 + v_2}{2}[/tex]

[tex]v_{avg}=\dfrac{17 + 0}{2}[/tex]

[tex]v_{avg}=\dfrac{17}{2}[/tex]

[tex]v_{avg}=8.5\ m/s[/tex]

average speed of the car during interval of 3 s is 8.5 m/s

A 1-kg rock is suspended by a massless string from one end of a

1-m measuring stick. What is the weight of the measuring stick if it is

balanced by a support force at the 0.25-m mark?

Answers

Final answer:

The weight of the measuring stick is balanced by the 1-kg rock suspended from it at the 0.75m mark according to the principle of torques. This results in the weight of the measuring stick being approximately 13.07 Newtons.

Explanation:

The problem you've asked falls right into the area of physics related to torques and forces. The 1-kg rock generates a force of approximately 9.8 N downwards (using the approximate gravity strength of 9.8 m/s^2). According to the principle of torques, for the stick to be balanced, the force at the 0.75m mark (1 - 0.25 = 0.75m), which is the weight of the stick, should balance the total torque generated by the weight of the rock. That means the weight of the stick (in Newtons) times 0.75 should equal the weight of the rock times 1. This gives us the equation: 0.75*W = 1*9.8, where W is the weight of the stick. Solving this gives us the weight of the stick as approximately 13.07 N.

Learn more about Torques here:

https://brainly.com/question/33222069

#SPJ11

A uniform solid disk with a mass of 24.3 kg and a radius of 0.314 m is free to rotate about a frictionless axle. Forces of 90 and 125 N are applied to the disk in the same horizontal direction but one is applied to the top and the other is applied to the bottom. What is the angular acceleration of the disk (in rad/s2)?

Answers

Answer:

α = 9.18 rad/s²

Explanation:

given,

mass of the solid disk = 24.3 Kg

radius of the disk = 0.314 m

Force, F₁ = 90 N

           F₂ = 125 N

net force acting on the disk

F = 125 - 90

F = 35 N

Torque

τ = F . r

τ = 35 x 0.314

τ = 11 N.m

we know that

τ = I α

moment of inertia of the solid disk

[tex]I = \dfrac{1}{2}MR^2[/tex]

[tex]I = \dfrac{1}{2}\times 24.3\times 0.314^2[/tex]

   I = 1.198 kg.m²

now,

11 = 1.198 x α

α = 9.18 rad/s²

the angular acceleration of the disk is equal to 9.18 rad/s²

Final answer:

To find the angular acceleration of the disk, use the formula: angular acceleration = (net torque) / (moment of inertia). Calculating the torques exerted by the forces and the moment of inertia will allow us to find the answer.

Explanation:

The angular acceleration of the disk can be found using the formula:

angular acceleration = (net torque) / (moment of inertia)

where the moment of inertia of a disk is given by:

moment of inertia = (1/2) * mass * radius^2

In this case, the net torque on the disk is the difference between the torques exerted by the two forces:

net torque = torque(top force) - torque(bottom force)

Each torque can be calculated using the formula:

torque = force * radius

Substituting the given values into these formulas, we can find the angular acceleration of the disk.

So, the angular acceleration of the disk is approximately 18.26 rad/s^{2}

.

Estimate how long it would take one person to mow a football field using an ordinary home lawn mower. Suppose that the mower moves with a 1 km/h speed, has a 0.5-m width, and a field is 360 ft long and 160 ft wide, 1 m-3.281 ft. (Figure 1) O 110 hours O 11 hours O 110 minutes O 11 minutes

Answers

Answer:

option B

Explanation:

given,

Length of field = 360 ft

                        = 360/3.281 = 109.72 m    ∵ 1 m = 3.281 ft

width of field = 160 ft

                      = 160/ 3.281 = 48.76 m

width of mower = 0.5 m

number of rounds required

   = [tex]\dfrac{48.76}{0.5}[/tex]

   = 97.5

we know,  1 km/h = 0.278 m/s

time taken for each round is equal to

[tex]t = \dfrac{length}{speed}[/tex]

[tex]t = \dfrac{109.72}{0.278}[/tex]

     t = 394.67 s

total time,

T = 394.67 x 94.5 = 37296.91 s

[tex]T = \dfrac{37296.91}{3600}\ hours[/tex]

[tex]T =11\ hours[/tex]

Hence. the correct answer is option B

Hold a small piece of paper (e.g., an index card) flat in front of you. The paper can be thought of as a part of a larger plane surface.

A. What single line could you use to specify the orientation of the plane of the paper (i.e., so that someone else could hold the paper in the same, or in a parallel, plane)?
B. The area of a flat surface can be represented by a single vector, called the area vector A. What does the direction of the vector represent? What would you expect the magnitude of the vector to represent?
C. Place a large piece of graph paper flat on the table. Describe the direction and magnitude of the area vector, A, for the entire sheet of paper. Describe the direction and magnitude of the area vector, dA, for each of the individual squares that make up the sheet.
D. Fold the graph paper twice so that it forms a hollow triangular tube. Can the entire sheet be represented by a single vector with the characteristics you defined above? If not, what is the minimum number of area vectors required?
E. Form the graph paper into a tube as shown. Can the orientation of each of the individual squares that make up the sheet of graph paper still be represented by dA vectors as inabove? Explain.
F. What must be true about a surface or a portion of a surface in order to be able to associate a single area vector A with that surface?

Answers

Answer:

Explanation:

(a). The line used to specify the orientation of the plane of paper is the line normal to the plane of sheet of paper

(b). The direction of the vector represents the normal to the  lat surface while the Magnitude represents the area of flat surface.

(c). Say the area of each smaller square is 1 square unit, then the area of graph paper is 64 square units. Direction of this area vector is given by a unit vector perpendicular to the graph sheet. If X and Y axes are in the plane of paper, then unit vector normal to the sheet of paper is K. Hence the complete vector is 64 K sq. units.

Area vector of each individual square is 1 squ. unit. where all these individual squares are parallel as vectors.

(d). Absolutely.

the entire sheet can be represented by a single vector. Its area vector is the sum of area vectors of three flat sides of triangular tube.

(e) NO.

Orientation of the individual squares is not the same for all squares. They cannot be represented by the same vector when compared to part C above, because they are in different directions even tough their magnitude are same.

(f) To represent a surface with a single area vector, divide the surface in to as many as possible flat pieces (if necessary infinitely large number of infinitesimally small pieces). Find the area vectors of all pieces. Add all the area vectors to obtain the single area vector resenting the complete surface.

But since the process can be done for any surface, any surface can be represented by a single area vector.

i hope this helps, cheers

The normal vector is perpendicular to the flat surface while the area vector is the direction in which the plane is embedded in 3 dimensions.

Normal Vector:A vector that is perpendicular to the plane of the surface. So a normal vector will be used to specify the plane of the paper.The magnitude of the flat surface represents the area while the vector represents the normal.

Area vector:

An area vector is an area (magnitude) with direction.

Therefore, the normal vector is perpendicular to the flat surface while the area vector is the direction in which the plane is embedded in 3 dimensions.

Learn more about Normal Vector and area vector:

https://brainly.com/question/16000644

A cable passes over a pulley. Because the cable grips the pulley and the pulley has non- zero mass, the tension in the cable is not the same on opposite sides of the pulley. The force on one side is 167 N, and the force on the other side is 42 N. Assuming that the pulley is a uniform disk of mass 1.06 kg and radius 0.433 m, find the magnitude of its angular acceleration. For a uniformi disk, I = (1/2) m,2.1 Answer in units of rad/s

Answers

Answer:

544.68604 rad/s²

Explanation:

m = Mass of disk = 1.06 kg

R = Radius of disk = 0.433 m

T = Tension

[tex]T_2[/tex] = 167 N

[tex]T_1[/tex] = 42 N

Moment of inertia is given by

[tex]I=\dfrac{1}{2}mR^2\\\Rightarrow I=\dfrac{1}{2}\times 1.06\times 0.433^2[/tex]

The resultant torque of the system will be given by

[tex](T_2-T_1)R=\tau\\\Rightarrow (T_2-T_1)R=I\alpha\\\Rightarrow \alpha=\dfrac{(T_2-T_1)R}{I}\\\Rightarrow \alpha=\dfrac{(167-42)\times 0.433}{\dfrac{1}{2}\times 1.06\times 0.433^2}\\\Rightarrow \alpha=544.68604\ rad/s^2[/tex]

The angular acceleration of the disk is 544.68604 rad/s²

The change in the velocity with respect to time is called acceleration.

The acceleration depends on the following:-

VelocityTime

According to the question, the data is as follows:-

m  = 1.06 kg

R = 0.433 m

T = Tension, T1 = 167 N , T2= 42 N

To calculate we will use the formula of the moment of inertia i.e

[tex]I =\frac{1}{2}mr^2[/tex]

After putting the value,

[tex]I = \frac{1}{2} *1.06*0.433^2[/tex]

The resultant torque of the system will be given by

[tex]torque = (T_2-T_1)R[/tex]

[tex]Ia = (T_2-T_1)R[/tex]

[tex]a =\frac{(T_2-T_1)R}{I}[/tex]

[tex]a= \frac{(167-42)*0.433}{\frac{1}{2}*1.06*0.433^2}[/tex]

After solving the equation, a is = 544.68604

Hence, The angular acceleration of the disk is 544.68604 rad/s²

For more information, refer to the link:-

https://brainly.com/question/19247046

What condition associated with shocks does passing a large current through the heart fail to cure?

A. Uniform polarization of the heart membranes
B. Return fibers to resting position
C. Start the heart functioning again
D. All of the above is accomplished by passing a large current through the body

Answers

Answer:

Uniform polarization of the heart membranes

Explanation:

Uniform polarization of the heart membranes is associated with shocks, when passing a large current through the heart fail to cure. Therefore, the correct option is option A.

What is heart?

The heart is an organ that acts as a blood pump. In spiders as well as annelid worms, it is a straight tube. In mollusks, it is a little more complex structure with one or even more collecting chambers (atria) and a primary pumping chamber (ventricle).

The heart of fish is indeed a folded tube with three to four enlarged regions that resemble the chambers inside the heart of a mammal. Uniform polarization of the heart membranes is associated with shocks, when passing a large current through the heart fail to cure.

Therefore, the correct option is option A.

To learn more about heart, here:

https://brainly.com/question/14393747

#SPJ2

In Houston, Earth's B→ field has a magnitude of 5.2 × 10−5 Tand points in a direction 57∘ below a horizontal line pointing north.Part ADetermine the magnitude of the magnetic force exerted by the magnetic field on a 11-m-long vertical wire carrying a 11-A current straight upward. Express your answer to two significant figures and include the appropriate units.Part BDetermine the direction of the magnetic force.a. to the northb. to the eastc. to the southd. to the west

Answers

Answer:

F = 0.0034 N

Explanation:

Given:

[tex]B = 5.2*10^(-5) T\\Q = 57 degrees\\I_{wire} = 12 A\\L_{wire} = 10 m[/tex]

The angle between B and wire = 90 - 57 = 33 degrees

Using formula:

[tex]F = B*I*L*sin (90-Q)\\F = (5.2*10^(-5)*(12)*(10)*sin (33)\\F = 0.0034 N[/tex]

(A) The magnetic force exerted on the wire is 3.4×10⁻³N

(B) The direction of the force is to the west.

Magnetic force:

Given that the magnetic field B = [tex]5.2\times10^{-5}T[/tex] which points in the direction  57° below a horizontal line pointing north.

Length of the wire L = 11m

current in the wire I = 11A

The angle between the wire and the magnetic field is θ = (90-57) = 33°

(A) The magnetic force on a finite wire of length L carrying a current I is given by:

[tex]F=BILsin\theta\\\\F=5.2\times10^{-5}\times11\times11\sin33\\\\F=3.4\times10^{-3}N[/tex]

(B) The direction of the force is given by dl×B, now B is at 57° with the north direction and the wire is verticle, so the direction of the field will be to the west.

Learn more about magnetic force:

https://brainly.com/question/13791875?referrer=searchResults

What is the magnitude of an electric field in which the electric force it exerts on a proton is equal in magnitude to the proton's weight?

Answers

Final answer:

The magnitude of an electric field in which the electric force equals a proton's weight is calculated to be approximately 102 N/C, considering the proton's charge and mass along with Earth's gravitational acceleration.

Explanation:

To determine the magnitude of an electric field in which the electric force equals a proton's weight, we must equate the electric force to the gravitational force (weight) acting on the proton. The electric force (FE) experienced by a charge in an electric field (E) is given by FE = qE, where q is the charge of the proton. The weight of the proton (W) can be found using W = mg, where m is the mass of the proton and g is the acceleration due to gravity (approximately 9.81 m/s2 on Earth). The charge of a proton is approximately 1.6 x 10-19 C, and its mass is approximately 1.67 x 10-27 kg.

Setting FE equal to W, we have qE = mg. Solving for E, the electric field magnitude, gives us E = mg/q. Thus, substituting the known values, we find:

E = (1.67 x 10-27 kg * 9.81 m/s2) / 1.6 x 10-19 C,

this gives us E approximately equal to 102 N/C. This is the magnitude of the electric field in which the electric force on a proton is equal to the proton's weight.

Final answer:

The magnitude of the electric field can be found by setting the electric force equal to the proton's weight and solving for the electric field. The magnitude of the electric field in this case is approximately 1.03 x 10¹² N/C.

Explanation:

The magnitude of the electric field in which the electric force it exerts on a proton is equal in magnitude to the proton's weight can be found by setting the two forces equal to each other:

FE = mg

Where FE is the electric force, m is the mass of the proton, and g is the acceleration due to gravity. Since the proton's mass is known to be approximately 1.67 x 10⁻²⁷ kg, and the acceleration due to gravity is approximately 9.8 m/s², we can calculate the magnitude of the electric field as follows:

E = mg/q

Where q is the charge of the proton, which is approximately 1.6 x 10⁻¹⁹ C. Plugging in the values:

E = (1.67 x 10⁻²⁷ kg) x (9.8 m/s²) / (1.6 x 10⁻¹⁹ C)

E ≈ 1.03 x 10¹² N/C

A 46.0-kg girl is standing on a 157-kg plank. Both originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity of 1.48î m/s relative to the plank.

(a) What is her velocity relative to the surface of ice?
(b) What is the velocity of the plank relative to the surface of ice?

Answers

To solve this problem we will apply the linear motion kinematic equations. Just as we will also find the relative speed of the body through the conservation of momentum. Our data is given as

[tex]M = 157kg[/tex]

[tex]m = 46kg[/tex]

[tex]v_1 = 1.48m/s[/tex]

PART A)

From the conservation of momentum,

[tex]\text{Momentum of Plank+girl}+\text{Mometum of girl} = 0[/tex]

[tex](M+m)v_2+mv_1 = 0[/tex]

[tex](M+m)v_2 = -m_v1[/tex]

[tex]v_2 = \frac{-Mv_1}{M+m}[/tex]

[tex]v_2 = \frac{-(46)(1.48)}{(157+46)}[/tex]

[tex]v_2 = -0.3353m/s[/tex]

Since the ice surface is frozen lake and girl is moving on it so the relative velocity will get added. Therefore the velocity of the girl relative to the ice surface is as,

[tex]v_1+v_2 = 1.48+(-0.33353)[/tex]

[tex]v_1+v_2 = 1.14647m/s[/tex]

The velocity of the girl relative to the ice surface is 1.14647m/s

PART B) The velocity of the plank plus girl is [tex]v_2 = -0.3353m/s[/tex]

Since the ice surface is frozen lake and plank is moving with girl on it so the relative velocity will get added. Therefore the velocity of the plank relative to the ice surface is as:

[tex]v_2 = -0.3353m/s[/tex]

"The correct answers are: (a) The girl's velocity relative to the surface of ice is 1.48m/s. (b) The velocity of the plank relative to the surface of ice is 0 m/s.

 (a) Since the girl is walking on the plank with a constant velocity of 1.48 m/s relative to the plank, and the plank itself is at rest on the frictionless ice surface, there are no external forces acting on the girl-plank system in the horizontal direction.

According to the principle of inertia, an object at rest will stay at rest, and an object in motion will stay in motion with a constant velocity unless acted upon by an external force. Therefore, the girl's velocity relative to the surface of ice is the same as her velocity relative to the plank, which is 1.48 m/s.

(b) The plank is initially at rest on the frictionless ice surface, and since there are no external forces acting on it in the horizontal direction, it will remain at rest relative to the ice surface. This means that the velocity of the plank relative to the surface of ice is 0 m/s. The girl walking on the plank does not affect the plank's velocity because her motion is internal to the girl-plank system, and there is no friction to transfer her momentum to the plank.

In summary, the girl's motion is relative to the plank, and since the plank remains stationary on the ice, her velocity relative to the ice is the same as her walking velocity on the plank. The plank itself does not move because of the lack of friction and external forces, thus its velocity relative to the ice remains 0 m/s."

A closed system consists of 0.3 kmol of octane occupying a volume of 5 m3 . Determine

a) the weight of the system, in N, and
(b) the molar- and mass-based specific volumes, in m3 /kmol and m3 /kg respectively. Let g = 9.81 m/s2

Answers

Answer:

(a). The weight of the system is 336.32 N.

(b).  The molar volume is 16.6 m³/k mol.

The mass based volume is 0.145 m³/kg.

Explanation:

Given that,

Weight of octane = 0.3 kmol

Volume = 5 m³

(a). Molecular mass of octane

[tex]M=114.28\ g/mol[/tex]

We need to calculate the mass of octane

Mass of 0.3 k mol of octane is

[tex]M=114.28\times0.3\times1000[/tex]

[tex]M=34.284\ kg[/tex]

We need to calculate the weight of the system

Using formula of weight

[tex]W=mg[/tex]

Put the value into the formula

[tex]W=34.284\times9.81[/tex]

[tex]W=336.32\ N[/tex]

(b). We need to calculate the molar volume

Using formula of molar volume

[tex]\text{molar volume}=\dfrac{volume}{volume of moles}[/tex]

Put the value into the formula

[tex]\text{molar volume}=\dfrac{5}{0.3}[/tex]

[tex]\text{molar volume}=16.6\ m^3/k mol[/tex]

We need to calculate the mass based volume

Using formula of mass based volume

[tex]\text{mass based volume}=\dfrac{volume}{mass}[/tex]

Put the value into the formula

[tex]\text{mass based volume}=\dfrac{5}{34.284}[/tex]

[tex]\text{mass based volume}=0.145\ m^3/kg[/tex]

Hence, (a). The weight of the system is 336.32 N.

(b).  The molar volume is 16.6 m³/k mol.

The mass based volume is 0.145 m³/kg.

One ball is dropped vertically from a window. At the same instant, a second ball is thrown horizontally from the same window.
1. Which ball has the greater speed at ground level?

Answers

Answer:

The second ball

Explanation:

Both balls are under the effect of gravity, accelerating with exactly the same value. The first ball is dropped, therefore its initial velocity is zero. Since the second ball has horizontal and vertical velocity components, its initial velocity is given by:

[tex]v=\sqrt{v_x^2+v_y^2}[/tex]

The vertical component is zero, however, it has a horizontal velocity, so its initial speed is not zero, therefore the secong ball has the greater speed at ground level.

Final answer:

The second ball will reach a greater total speed at ground level due to its initial horizontal speed added to its vertical speed. But, both balls will hit the ground at the same time if the horizontal speed of the second ball is not too high.

Explanation:

In the described situation, gravity is the only vertical force acting on both balls, hence they will reach the ground at the same speed in the vertical direction. But, the second ball has additional horizontal speed. Therefore, with this horizontal component added to the vertical detachment speed due to gravity, the second ball will have a greater total speed by the Pythagorean theorem: (total speed)^2 = (vertical speed)^2 + (horizontal speed)^2. However, the question of which hits the ground first depends on the initial horizontal speed of the second ball. If the horizontal speed is not too high, both balls should hit the ground at the same time.

Learn more about Gravity and Motion Physics here:

https://brainly.com/question/36922560

#SPJ3

At an oceanside nuclear power plant, seawater is used as part of the cooling system. This raises the temperature of the water that is discharged back into the ocean. The amount that the water temperature is raised has a uniform distribution over the interval from 10° to 25° C. Suppose that a temperature increase of more than 18° C is considered to be potentially dangerous to the environment. What is the probability that at any point in time, the temperature increase is potentially dangerous?

Answers

answer is 30. just took it

A motorboat traveling from one shore to the other at a rate of 5m/s east encounters a current flowing at a rate of 3.5m/s north a. What is the resultant velocity?

Answers

Answer:

Resultant velocity will be equal to 6.10 m/sec

Explanation:

We have given a motorbike is traveling with 5 m/sec in east

And a current is flowing at a rate of 3.5 m /sec in north

We know that east and north is perpendicular to each other

So resultant velocity will be vector sum of both velocity

So resultant velocity [tex]v=\sqrt{5^2+3.5^2}=6.10m/sec[/tex]

So resultant velocity will be equal to 6.10 m/sec

Other Questions
PLEASE HELP PLEASEA group of 20 people from the retirement community is visiting the fair today. Each person is between 75 and 79 years old and will participate in either the Pie Eating Contest or the Chili Cookoff. If all 20 people joined the same event, how would the shape of the histogram change compared to the original?Histogram with title Pie Eating Contest, horizontal axis labeled Age Group (year) with bins 0 to 19, 20 to 39, 40 to 59, and 60 to 79 and vertical axis labeled Number of People with values from 0 to 60 at intervals of 10. The first bin goes to 20, the second goes to 40, the third goes to 60, and the last goes to 50. Histogram with title Chili Cookoff, horizontal axis labeled Age Group (year) with bins 0 to 19, 20 to 39, 40 to 59, and 60 to 79 and vertical axis labeled Number of People with values from 0 to 60 at intervals of 10. The first bin goes to 30, the second goes to 50, the third goes to 40, and the last goes to 10. The Chili Cookoff would be more skewed. The Pie Eating Contest would be more skewed. The Chili Cookoff would be less symmetrical. The Pie Eating Contest would be more symmetrical. 13.(01.08 MC)Based on the answer, select the correct interrogative words._________ temps fait-il?Il fait chaud. (2 points)OQuandQuelComment14.(01.08 MC)Based on the answer, select the correct interrogative words.________ joue au football dans ta famille?Mon fr re joue au foot (2 points)OQuelQuiComment15.(01.08 MC)Based on the answer, select the correct interrogative words.________ est-ce que tu es l'cole?Parce que je dois parler la prof. (2 points)OQuandCommentPourquoi16.(01.08 MC)Select the best answer to the following question:Est-ce que tu aimes la classe de franais? (2 points)Je n'tudie pas en classe.J'adore cette classe.Je n'aime pas aller l'cole.J'tudie le franais l'cole.17.(01.08 MC)Select the best answer to the following question:Quel jour est-ce? (2 points)C'est l'hiver.C'est aujourd'hui.C'est lundi.C'est le matin.18.(01.08 MC)Select the best answer to the following question:Comment est ton pre? (2 points)Il est bien.Il va bien.Il est sympathique.Il va en ville. A young girl is staring at the raindrops running down her window. She notices that the raindrops remain more or less intact, even as they cascade down the windowpane. This is a result of: There are three fundamental types of prevention used in health care: primary, secondary, and tertiary. Which statement accurately describes secondary prevention? Which describes how a compass works?) A. The magnetic north pole of the compass points to Earth'sgeographic North Pole.OB. The magnetic north pole of the compass points to Earth's northmagnetic poleOC. The south magnetic pole of the compass points to Earth's northmagnetic pole.OD. The south magnetic pole of the compass points to Earth'sgeographic North Pole. What is -5x-10=10 answer Name one benefit and one limitation of comparative investigations Air at 40C flows over a long, 25-mm-diameter cylinder with an embedded electrical heater. In a series of tests, measurements were made of the power per unit length, P, required to maintain the cylinder surface temperature at 300C for different free stream velocities u of the air. The results are as follows: Air velocity, u (m/s) 1 2 4 8 12 Power, P (W/m) 450 658 983 1507 1963 (a) Determine the convection coefficient for each velocity, and display your results graphically. (b) Assuming the dependence of the convection coefficient on the velocity to be of the form h = Cu n , determine the parameters C and n from the results of part (a) Use a ________ after an independent clause that introduces a clause, a phrase, or even a single word that explains the original clause What international theory attributes security competition and interstate conflict to the lack of an overarching authority in the international arena? What is the difference between a countercurrent multiplier system, such as the one involving the loop of Henle, and the countercurrent systems that maximize oxygen absorption by fish gills or reduce heat loss in endotherms?A. A countercurrent multiplier system, such as the one involving the loop of Henle, involves movement of ions rather than movement of oxygen or heat transfer.B. Unlike the other countercurrent systems, a countercurrent multiplier system, such as the one involving the loop of Henle, expends energy in active transport.C. A countercurrent multiplier system, such as the one involving the loop of Henle, includes a capillary bed. Who said "we must not accept a general principle from logic only, but must prove its application to each fact, for it is in facts that we must seek general principles, and these much always accord with the facts" Graph the system of equations on graph paper. {8x+6y=48 {2x3y=6 Which statements are true about the solution to the system of equations? Select each correct answer. The x-coordinate of the solution is 3 .The x-coordinate of the solution is 3.The ordered pair that is the solution to the system lies in Quadrant I .The y-coordinate of the solution is 4.The ordered pair that is the solution to the system lies in Quadrant II .The y-coordinate of the solution is 3. Deleting question badadum Weak forms of ethical relativism hold that there are objective moral principles, even though they will need to be applied differently in different contexts.a. Trueb. False The height of a tree in feet, y, is modeled by the equation y = 2.5x + 3, where x representsthe age of the tree in years. How old will the tree be when it is 33 feet tall? Newborn infants are given a shot of ____ at birth to prevent uncontrolled bleeding. The owners of the Cheesy Burger Restaurant must decide how many new employees to add to their existing number of workers. Based on the information below, how many workers should the owners add if a worker earns $9 per hour? How do you isolate the variable in 3x=9 The ________ is created by a number of institutions and arrangements that allow the suppliers and demanders of longminus term funds to make transactions. A. money market B. capital market C. commodities market D. forex market Steam Workshop Downloader