blank is defined as the distance something travels divided by the time it takes
The student's question asks about the definition of average speed, which is the distance traveled divided by the time it takes, and when direction is considered, this measure is referred to as average velocity.
The term the student is asking to define is average speed, which is a fundamental concept in physics. Average speed is calculated by dividing the total distance traveled by the total time it took to travel that distance. When the direction of travel is also taken into account, we refer to this as average velocity, which means that velocity equals displacement (change of position) divided by time.
In practice, if you were traveling in a car and you wanted to figure out your average speed, you would look at the odometer to see the distance covered and then divide by the number of hours or minutes it took to cover that distance.
To put it into symbols, for average speed s, if the total distance traveled is d and the total time taken is t, the average speed is expressed as:
s = d / t
Conversely, average velocity includes direction and is defined by the formula:
v = Δd / Δt
where Δd represents displacement and Δt represents the travel time.
A dilute solution is prepared by transferring 40.00 ml of a 0.3433 m stock solution to a 750.0 ml volumetric flask and diluting to mark. what is the molarity of this dilute solution?
What are the necessary steps to prevent oxidation during high temperature
How many total atoms are in 0.250g of P2O5?
Explanation:
According to the mole concept, there are [tex]6.022 \times 10^{22}[/tex] atoms present.
It is given that mass is 0.250 g. And, number of moles are equal to mass divided by molar mass.
Mathematically, No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]
As molar mass of [tex]P_{2}O_{5}[/tex] is 283.88 g/mol. Therefore, putting given values into the above formula as follows.
No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]
= [tex]\frac{0.250 g}{283.88 g/mol}[/tex]
= 0.0008 mol
Hence, number of atoms present in 0.0008 mol are as follows.
[tex]0.0008 mol \times 6.022 \times 10^{22} atoms/mol[/tex]
= 0.0048 atoms
Thus, we can conclude that there are 0.0048 atoms in 0.250 g of [tex]P_{2}O_{5}[/tex].
Compare the ways in which atoms combine to form molecules and compounds
The valence shell holds up to two electrons in which 2 elements? a. H and C b. H and Li c. H and He d. He and Be
Answer : The correct option is, (d) He and Be
Explanation :
First we have to determine the electronic configuration of the following elements.
The electronic configuration of hydrogen (H) is:
[tex]1s^1[/tex]
The electronic configuration of carbon (C) is:
[tex]1s^22s^22p^2[/tex]
The electronic configuration of lithium (Li) is:
[tex]1s^22s^1[/tex]
The electronic configuration of helium (He) is:
[tex]1s^2[/tex]
The electronic configuration of beryllium (Be) is:
[tex]1s^22s^2[/tex]
From the electronic configuration of the elements we conclude that, the hydrogen element has '1' valence electron, carbon element has '4' valence electrons, lithium element has '1' valence electron, helium element has '2' valence electrons and beryllium element has '2' valence electrons.
Thus, the helium and beryllium are the elements that holds up to two electrons in their outermost shell.
Hence, the correct option is, (d) He and Be
In 1928, 47.5 g of a new element was isolated from 660 kg of the ore molybdenite. the percent by mass of this element in the ore was:
To take the percent by mass of this element, we use the formula:
% mass = (mass of element / mass of ore) * 100%
% mass = (47.5 g / (660 kg * 1000 g / kg)) * 100*
% mass = 7.20 x 10^-3 %
Answer: The mass percent of element in the ore is 0.0072 %
Explanation:
To calculate the mass percentage of element in ore, we use the equation:
[tex]\text{Mass percent of element}=\frac{\text{Mass of element}}{\text{Mass of ore}}\times 100[/tex]
Mass of element = 47.5 g
Mass of ore = 660 kg = 660000 g (Conversion factor: 1 kg = 1000 g)
Putting values in above equation, we get:
[tex]\text{Mass percent of element}=\frac{47.5g}{660000g}\times 100=0.0072\%[/tex]
Hence, the mass percent of element in the ore is 0.0072 %
According to the bohr model of the atom, which electron transition would correspond to the shortest wavelength line in the visible emission spectra for hydrogen? hints
n = 6 to n = 2
Further explanationFrom several sources, we have prepared the following answer choices:
A. n = 2 to n = 5
B. n = 6 to n = 4
C. n = 3 to n = 2
D. n = 6 to n = 2
We will determine which electron transition would correspond to the shortest wavelength line in the visible emission spectra for hydrogen.
The amount of energy released or absorbed by electrons when moving from n₁ level to n₂ level is equal to
[tex]\boxed{ \ \Delta E = -13.6 \Big( \frac{1}{n_2^2} - \frac{1}{n_1^2} \Big) \ }[/tex] in eV.
This energy difference is equal to [tex]\boxed{ \ hf = \frac{hc}{\lambda} \ }[/tex], where f and λ are the frequency and wavelength of the radiation emitted or absorbed.
Thus, the wavelength is inversely proportional to the energy difference from the electron transition. To get the shortest wavelength, it is determined by the largest ΔE.
From the formula above, we practically only need to calculate part [tex]\boxed{ \ \Big( \frac{1}{n_2^2} - \frac{1}{n_1^2} \Big) \ }[/tex] which is directly proportional to ΔE. Then from the results of the calculation of this section, we will get the shortest wavelength from the largest result..
A. n₁ = 2 to n₂ = 5
[tex]\boxed{ \ \Big( \frac{1}{5^2} - \frac{1}{2^2} \Big) \ }[/tex]
[tex]\boxed{ \ -\frac{21}{100} \ }[/tex]
By taking the absolute value, we get [tex]\boxed{ \ 0.210 \ }[/tex]
B. n₁ = 6 to n₂ = 4
[tex]\boxed{ \ \Big( \frac{1}{4^2} - \frac{1}{6^2} \Big) \ }[/tex]
[tex]\boxed{ \ \frac{5}{144} \ }[/tex]
We get [tex]\boxed{ \ 0.0347 \ }[/tex]
C. n₁ = 3 to n₂ = 2
[tex]\boxed{ \ \Big( \frac{1}{2^2} - \frac{1}{3^2} \Big) \ }[/tex]
[tex]\boxed{ \ \frac{5}{36} \ }[/tex]
We get [tex]\boxed{ \ 0.1389 \ }[/tex]
D. n₁ = 6 to n₂ = 2
[tex]\boxed{ \ \Big( \frac{1}{2^2} - \frac{1}{6^2} \Big) \ }[/tex]
[tex]\boxed{ \ \frac{2}{9} \ }[/tex]
We get [tex]\boxed{ \ 0.222 \ }[/tex]
The last calculation above shows the greatest results so that the shortest wavelength is undoubtedly gained from the electron transition n = 6 to n = 2.
Learn moreThe energy density of the stored energy https://brainly.com/question/9617400Particle's speed and direction of motion https://brainly.com/question/2814900The relationship between a single gold atom and the thickness of the atoms in Rutherford's foil https://brainly.com/question/4929060Keywords: according to the Bohr model of the atom, which electron transition would correspond, to the shortest wavelength, the visible emission spectra for hydrogen, energy, inversely proportional
The electronic transition from [tex]\boxed{{\text{D}}{\text{. n}} = {\text{6 to n}} = {\text{2}}}[/tex] corresponds to the shortest wavelength.
Further explanation:
Rydberg equation describes the relation of wavelength of spectral line with the transition values. The expression for Rydberg equation is as follows:
[tex]\dfrac{1}{\lambda } = \left( {{{\text{R}}_{\text{H}}}} \right)\left( {\dfrac{1}{{{{\left( {{{\text{n}}_{\text{1}}}} \right)}^2}}} - \dfrac{1}{{{{\left( {{{\text{n}}_{\text{2}}}} \right)}^2}}}} \right)[/tex] …… (1)
Here,
[tex]\lambda[/tex] is the wavelength of spectral line
[tex]{{\text{R}}_{\text{H}}}[/tex] is Rydberg constant that has the value
[tex]{{\text{n}}_{\text{1}}}[/tex] and [tex]{{\text{n}}_{\text{2}}}[/tex] are the two positive integers, where .
Rearrange equation (1) to calculate .
[tex]\lambda = \dfrac{1}{{\left( {1.097 \times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}} \right)\left( {\dfrac{1}{{{{\left( {{{\text{n}}_1}} \right)}^2}}} - \dfrac{1}{{{{\left( {{{\text{n}}_{\text{2}}}} \right)}^2}}}} \right)}}[/tex] …… (2)
A. n = 2 to n = 5
Substitute 2 for [tex]{{\text{n}}_{\text{1}}}[/tex] and 5 for [tex]{{\text{n}}_{\text{2}}}[/tex] in equation (2).
[tex]\begin{aligned}\lambda&= \frac{1}{{\left( {1.097 \times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}} \right)\left( {\frac{1}{{{{\left( 2 \right)}^2}}} - \frac{1}{{{{\left( 5 \right)}^2}}}} \right)}} \\&= 4.34 \times {10^{ - 7}}{\text{ m}}\\\end{aligned}[/tex]
B. n = 6 to n = 4
Substitute 4 for [tex]{{\text{n}}_{\text{1}}}[/tex] and 6 for [tex]{{\text{n}}_{\text{2}}}[/tex] in equation (2).
[tex]\begin{aligned}\lambda&= \frac{1}{{\left( {1.097 \times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}} \right)\left( {\frac{1}{{{{\left( 4 \right)}^2}}} - \frac{1}{{{{\left( 6 \right)}^2}}}} \right)}}\\&= 2.63 \times {10^{ - 6}}{\text{ m}}\\\end{aligned}[/tex]
C. n = 3 to n = 2
Substitute 2 for [tex]{{\text{n}}_{\text{1}}}[/tex] and 3 for [tex]{{\text{n}}_{\text{2}}}[/tex] in equation (2).
[tex]\begin{aligned}\lambda &= \frac{1}{{\left( {1.097 \times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left( {\frac{1}{{{{\left( 2 \right)}^2}}} - \frac{1}{{{{\left( 3 \right)}^2}}}} \right)}} \\ &= 6.56 \times {10^{ - 7}}{\text{ m}}\\\end{aligned}[/tex]
D. n = 6 to n = 2
Substitute 2 for [tex]{{\text{n}}_{\text{1}}}[/tex] and 6 for [tex]{{\text{n}}_{\text{2}}}[/tex] in equation (2).
[tex]\begin{aligned}\lambda&= \frac{1}{{\left( {1.097 \times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}} \right)\left({\frac{1}{{{{\left( 2 \right)}^2}}} - \frac{1}{{{{\left( 6 \right)}^2}}}}\right)}} \\&= 4.10 \times {10^{ - 7}}{\text{ m}}\\\end{aligned}[/tex]
The value of [tex]\lambda[/tex] for transition from n = 6 to n = 2 is the least and therefore this transition corresponds to the shortest wavelength.
Learn more:
Ranking of elements according to their first ionization energy: https://brainly.com/question/1550767 Chemical equation representing the first ionization energy for lithium: https://brainly.com/question/5880605
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Atomic structure
Keywords: Rydberg constant, wavelength, n1, n2, positive integers, transition, 2, 6, 3, 5, transition, Rh, spectral line, shortest wavelength.
Table salt contains 39.33 g of sodium per 100 g of salt. The U.S. Food and Drug Administration (FDA) recommends that adults consume less than 2.40 g of sodium per day. A particular snack mix contains 1.24 g of salt per 100 g of the mix.What mass of the snack mix can you consume and still be within the FDA limit?
The answer is: mass of the snack mix can you consume and still be within the FDA limit is 491 grams.
ω(Na) = m(Na) ÷ m(salt).
ω(Na) = 39.33 g ÷ 100 g.
ω(Na) = 0.3933; mass percentage of sodium in salt.
m(salt) = 2.4 g ÷ 0.3933.
m(salt) = 6.10 g; mass of salt recommended for consumation.
Make proportion: 1.24 g : 100 g = 6.10 g ÷ m(mix).
m(mix) = 491.93 g; mass of the snack mix.
Which statement is an opinion? Different varieties of fruit can have the same color. All raspberries are the same color. Fruit is good for breakfast. Fruit is a good source of nutrition.
When aqueous solutions of lead(ii) nitrate (pb(no3)2) and potassium phosphate (k3po4) are mixed, the products are solid lead(ii) phosphate and aqueous potassium nitrate. write the balanced chemical equation for this reaction. (include states-of-matter under the given conditions in your answer. use the lowest possible whole number coefficients.)?
Answer: The balanced chemical equation is written below.
Explanation:
Balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side will be equal to the total number of individual atoms on the product side. These equations follow law of conservation of mass.
The chemical equation for the reaction of lead (II) nitrate and potassium phosphate follows:
[tex]3Pb(NO_3)_2(aq.)+2K_3PO_4(aq.)\rightarrow Pb_3(PO_4)_2(s)+6KNO_3(aq.)[/tex]
By Stoichiometry of the reaction:
3 moles of aqueous lead (II) nitrate reacts with 2 moles of aqueous solution of potassium phosphate to produce 1 mole of solid lead (II) phosphate and 6 moles of aqueous solution of potassium nitrate.
Hence, the balanced chemical equation is written above.
Sodium carbonate (na2co3) is used to neutralize the sulfuric acid spill. how many kilograms of sodium carbonate must be added to neutralize 5.04Ã103 kg of sulfuric acid solution? express your answer with the appropriate units.
in the early studies of chemistry, scientists used properties and changed to help identify compounds. this is still done today. if you were given the following observation about salt water, how would you classify it? “when electricity flows through a flask of salt water, bubbles form in the water. these bubbles, when collected, will burn.”
Which phrase best defines erosion? A. physically breaking rocks apart B. cementing bits of rock together C. chemically breaking rocks apart D. Moving bits of rock from place to place
A compound has a molar mass of 44.01 g/mol. What is its identity?
Final answer:
The substance with a molar mass of 44.01 g/mol is carbon dioxide (CO2), which can be deduced by calculating the combined molar masses of one carbon atom and two oxygen atoms.
Explanation:
The question concerns the identification of a compound with a molar mass of 44.01 g/mol. One well-known substance with this molar mass is carbon dioxide (CO2). To arrive at this conclusion, one can examine the atomic masses of carbon and oxygen. Carbon has a molar mass of about 12.01 g/mol, while oxygen has a molar mass of about 16.00 g/mol. Given that carbon dioxide is composed of one carbon atom and two oxygen atoms, the total molar mass can be calculated as follows: 12.01 amu (for carbon) + 2 × 16.00 amu (for each oxygen) = 44.01 amu, which corresponds to g/mol when talking about molar mass. Hence, the molecular mass of carbon dioxide is 44.01 g/mol.
Use the mass spectrum of rubidium to determine the atomic mass of rubidium.
The atomic mass of rubidium can be determined using the mass spectrum of rubidium obtained from a mass spectrometer.
Explanation:The atomic mass of rubidium can be determined using the mass spectrum of rubidium obtained from a mass spectrometer. In a mass spectrometer, a sample of rubidium is vaporized and exposed to high-energy electrons, causing the rubidium atoms to become charged ions. These ions are then accelerated into a magnetic field, and the extent to which they are deflected depends on their mass-to-charge ratios. By measuring the relative deflections of the ions and analyzing the mass spectrum, chemists can determine the mass of rubidium.
Calculate the coulombic force of attraction between ca2+ and o2− in cao, which has the nacl-type structure
Draw two lewis structures for a compound with the formula c4h10. no atom bears a charge, and all carbon atoms have complete octets.
The two Lewis structure for a compound with the formula [tex]\rm C_4H_{10}[/tex] are shown below in the attached image.
In a Lewis structure, an element's chemical symbol shows its nucleus and inner electrons, while dots or lines represent valence electrons. Valence electrons are the atom's outermost electrons and are important in chemical bonding.
Shown below are the two Lewis structures of the compound with molecular formula [tex]\rm C_4H_{10}[/tex]. The two structures are the isomers of each other.The number of sigma bonds = 5, and number of pi bonds = 3 in the given compound.Therefore, the two structure of [tex]\rm C_4H_{10}[/tex] are isomers of each other (refer to the attached image).
Learn more about Lewis structure here:
https://brainly.com/question/9908915
#SPJ6
You have a racemic mixture of (+)-2-butanol and (-)-2-butanol. the (+) isomer rotates polarized light by +13.5∘. what is the observed rotation of your mixture?
Answer:
The degree of rotation of racemic mixture will equal 0°
Explanation:
Hello,
(-) isomer is in other words the Enantiomer of (+) isomer and as long as the statement indicates that (+)-isomer optical rotation is + 13.5°, the optical rotation of (-)-isomer will be the same value and degree but with the inverse sign which is -13.5°.
In such a way, the degree of rotation of the taken into account racemic mixture will equal 0°
This is in this way due to the fact that the racemic mixture has equal amount of both enantiomers.
Best regards.
If we had 11.3 g of nitrogen and 2 g of hydrogen, how much nitrogen would remain if all the hydrogen was consumed? g
3H2 + N2 ........> 2NH3
This means that each 6 grams of hydrogen react with 28 grams of nitrogen. To know how many grams of nitrogen are required to react with 2 grams of hydrogen, we will simply do cross multiplication as follows:
mass of nitrogen = (2 x 28) / 6 = 9.334 grams
Therefore, if we have 11.3 grams of nitrogen, 9.334 grams would react with 2 grams of hydrogen.
remaining mass of nitrogen = 11.3 - 9.334 = 1.966 grams
what is the density of an unknown if 7.82g of it occupies a volume of 3.63ml
the degree to which two separate structures that are close together can be distinguished in an image is called__________. (science)
The degree to which two separate structures that are close together can be distinguished in an image is called resolution.
What is image?A visual depiction of anything is what an image is. It may be this double, three-dimensional, or feed into to the visual system in another way to provide information.
To be a graphic illustration, a picture does not need to utilise the complete visual system. A common example is a greyscale picture, which use the visual system's responsiveness to brightness throughout all wavelengths without accounting for differing colors. The degree to which two separate structures that are close together can be distinguished in an image is called resolution.
Therefore, the degree to which two separate structures that are close together can be distinguished in an image is called resolution.
To learn more about image, here:
https://brainly.com/question/29791411
#SPJ6
Draw structures for all constitutional isomers with the molecular formula c2h5cl
Two constitutional isomers exist for C2H5Cl: 1-chloroethane (ethyl chloride) and 2-chloroethane (chloroethane), with chlorine bonded to different carbon atoms in each isomer.
Explanation:The student has asked to draw structures for all constitutional isomers with the molecular formula C2H5Cl, which is a chemical exercise focusing on understanding the different ways in which atoms can be rearranged in space to create molecules with the same molecular formula but different structures.
There are actually only two constitutional isomers with the formula C2H5Cl. These isomers are:
1-chloroethane (ethyl chloride): CH3CH2Cl2-chloroethane (chloroethane): CH3ClCH3In these structures, the chlorine atom is bonded to different carbon atoms, resulting in molecules that have different physical and chemical properties.
How many picograms are in 1 Megagram?
If 0.250 g of a gas sample represents 1.05x10–2 mol, what is the molar mass of the gas?
Sodium hydroxide, NaOH; sodium phosphate, Na3PO4; and sodium nitrate, NaNO3, are all common chemicals used in cleanser formulation. Rank the compounds in order from largest mass percent of sodium to smallest mass percent of sodium.
If a drop of blood is 0.05 mL, how many drops of blood are in a blood collection tube that holds 2 mL ?
Final answer:
To find out how many 0.05 mL drops of blood are in a 2 mL blood collection tube, divide the total volume by the volume of one drop. The calculation shows that there are 40 drops in a 2 mL tube.
Explanation:
To determine how many drops of blood are in a blood collection tube that holds 2 mL, we need to understand the relationship between the volume of the drops and the total volume that the tube can hold. Given that each drop of blood is 0.05 mL, we can calculate the number of drops in 2 mL by dividing the total volume by the volume of a single drop.
Here is the step-by-step calculation:
Determine the volume of one drop: 0.05 mL.
Determine the total volume of the collection tube: 2 mL.
Divide the total volume by the volume of one drop: 2 mL / 0.05 mL per drop.
Calculate the number of drops: 40 drops.
You are on an alien planet where the names for substances and the units of measures are very unfamiliar.
Nonetheless, you obtain 29 quibs of a substance called skvarnick.
You can trade this skvarnick for gold coins, but the vendors all measure skvarnick in units of sleps; not quibs.
10 quibs is equal to 4 sleps.
If you have 29 quibs of skvarnick, how many sleps do you have?
Round your answer to the nearest tenth (one decimal place).
Answer:
If we have 29 quibs of skvarnick they will be equal to 11.6 sleps.
Explanation:
Mass of a substance called skvarnick = 29 quibs
10 quibs is equal to 4 sleps. This means that 1 quibs is equal to 0.4 sleps.
10 quibs = 4 sleps
1 quibs = [tex]\frac{4}{10} sleps = 0.4 sleps[/tex]
Then 29 quibs will be:
[tex]29 quibs=29\times 0.4 sleps =11.6 sleps[/tex]
If we have 29 quibs of skvarnick they will be equal to 11.6 sleps.
Which of the following is a heterogeneous mixture
Describe the four main spheres of Earth. 1. lithosphere: 2. hydrosphere: 3. atmosphere: 4. biosphere: