The electron dot structure of iodine shows seven dots surrounding the 'I' symbol. Each dot represents one valence electron in the outermost shell. This represents iodine in a neutral state, not involved in a bond.
Explanation:The iodine atom is represented in an electron dot structure, also known as a Lewis dot structure, by the symbol 'I' surrounded by seven dots. Each dot represents one valence electron. Iodine belongs to group 17 (Halogens) in the periodic table and has 7 valence electrons in its outermost shell. The aim of the Lewis dot structure is to show the valence electrons that participate in forming bonds in compounds.
In the case of iodine, until it gains an electron to obtain a stable configuration, its Lewis dot structure will show seven valence electrons as dots around the symbol 'I'. This applies to all neutral atoms of iodine not involved in a chemical bond. When iodine forms a compound, the electron dot structure could be different, as it would show how the electrons are shared or transferred.
Learn more about Iodine electron dot structure here:https://brainly.com/question/29871097
#SPJ3
If 45.3 grams of aluminum react with an excess of oxygen, as shown in the balanced chemical equation below, how many grams of aluminum oxide can be formed? Please show all your work for the calculations for full credit.
4Al + 3O2 yields 2Al2O3
Answer:
86g of [tex]Al_{2}O_{3}[/tex]
Explanation:
1. The balanced chemical equation is:
[tex]_{4}Al+_{3}O_{2}=_{2}Al_{2}O_{3}[/tex]
2. Use the stoichiometry of the reaction to calculate how many moles of aluminum oxide can be formed.
If the oxygen is in excess it means that the aluminum is the limiting reagent and the calculations must be made using the mass of aluminum.
[tex]45.3gAl*\frac{1molAl}{27gAl}*\frac{2molesAl_{2}O_{3}}{4molesAl}=0.84molesAl_{2}O_{3}[/tex]
3. Use the molar mass of the [tex]Al_{2}O_{3}[/tex] to calculate how many grams of aluminum oxide can be formed:
[tex]0.84molesAl_{2}O_{3}*\frac{102gAl_{2}O_{3}}{1molAl_{2}O_{3}}=86gAl_{2}O_{3}[/tex]
Which of these statements are consistent with kinetic-molecular theory? Select all that apply.
a. The molecules in water at 100°C have more kinetic energy than the molecules in water at 0°C.
b. As a solid is heated, its particles absorb thermal energy and move more slowly.
c. The carbon atoms in a diamond vibrate back and forth in place.
d. The particles of matter in the sun are in constant random motion.
e. If you superheat a gas, its particles eventually stop moving completely.
The statements that are consistent with kinetic-molecular theory includes:
the molecules in water at 100°C have more kinetic energy than the molecules in water at 0°C.the carbon atoms in a diamond vibrate back and forth in place.the particles of matter in the sun are in constant random motion.The theory of Kinetic Molecular focuses on the average kinetic energy of the molecules with respect to temperature.
The theory explains that the absolute temperature increases, the kinetic energy also increases.
Therefore, the Option A, C and D is correct.
Read more about Kinetic Molecular
brainly.com/question/2901837
Is taking a glass of water and freezing it by placing in the freezer chemical change?
How many gallons of water in lake lewisville?
Lake Lewisville typically contains more than 142 billion gallons of water at its normal elevation, calculated by multiplying its storage volume of approximately 436,000 acre-feet by the gallons-per-acre-foot conversion factor.
Explanation:The student has asked about the volume of water in Lake Lewisville. Unfortunately, the exact amount of water in Lake Lewisville can vary due to several factors, including seasonal rainfall, water usage, and conservation efforts. However, it's known that the lake has a normal storage volume of approximately 436,000 acre-feet at its normal elevation of 522 feet above mean sea level according to official data. Since one acre-foot is equal to about 325,851 gallons of water, by multiplying the acre-feet by this conversion factor, it can be estimated that Lake Lewisville typically holds more than 142 billion gallons of water when at normal levels.
Question 12solid sodium and chlorine gas combine to form solid sodium chloride .write a balanced chemical equation for this reaction.
How many more valence electrons does carbon need to be a full outer valence shell?
Why are roman numerals used in naming compounds that contain transition metals?
the grams of carbohydrate in one apple if the apple has no fat and no protein and provides 72 kcal of energy
According to Boyle's law, the relationship between the pressure and volume of a gas at constant temperature is —
numerically equivalent.
inversely proportional.
positively correlated.
totally unrelated.
Which phrase describes an abiotic factor?
A.
fish in a pond
B.
bacteria on the skin
C.
air temperature
D.
number of species on a seashore
what are the advantages and disadvantages to using an isometric pictorial compared to oblique pictorial in technical drawings
The lowest temperature at which a flammable liquid gives off enough vapor to form an ignitable mixture in air describes or defines its
Answer: Flash Point
Explanation: Volatile substance is the substance which can easily catch fires.
Thus, there must be a point to define that temperature when the volatile substance catches fire given enough source of flame. This point is known as Flash Point.
Thus, Flash point is defined as the lowest temperature at which the flammable or volatile liquid catches fire and convert itself into the ignitable mixture when enough source of ignition is given.
Nicotine, a component of tobacco, is composed of c, h, and n. a 4.725 −mg sample of nicotine was combusted, producing 12.818 mg of co2 and 3.675 mg of h2o. what is the empirical formula for nicotine?
C = 12.818 mg CO2 (1 mmol CO2/44 mg CO2) (1 mmol C/1 mmol CO2) = 0.29 mmol
H = 3.675 mg of H2O (1 mmol H2O/18 mg H2O) (2 mmol H/1 mmol H2O) = 0.41 mmol
N = (4.725 mg – 0.29 * 12 – 0.41 * 1) * (1 mmol/14 mg) = 0.06 mmol
Divide everything by the smallest number:
C = 0.29/0.06 = 4.8 ~ 5
H = 0.41/0.06 = 6.8 ~ 7
N = 0.06/0.06 = 1
Empirical formula is:
C5H7N
Where do you place the symbols that represent the state of matter in an equation?
Answer:
After the chemical formula for each compound
Explanation:
I don't really know how to explain it besides that it's part of the formula rules and is the right a pex answer
Organic compounds are covalently bonded and they always contain oxygen true or false
An atom of copper is represented by 6529cu. how many neutrons are in the nucleus of this atom?
What type of chemical bond holds the na+ and cl- ions together in table salt?
The bond between Na + and Cl- ions is an ionic bond
To achieve stability, atoms with low ionization energy such as Na atoms will release electrons and bind to atoms with high-affinity energy such as Cl atoms
[tex]\boxed{\boxed{\bold{Further~explanation}}}[/tex]
Atoms have different stability. Unstable atomic atoms will try to form stable electron configurations like those of noble gases. Where noble gases have the number of outer electrons 2 or 8
The formation of electron configurations such as noble gases can be done by forming shared ions or electron pairs
Atoms with high ionization energy and atoms that are difficult to draw electrons will form bonds with shared electron pairs (electrons can be from one atom or two atoms attached)
In forming ions, atoms will release or attract electrons
Ion bonds occur because atoms that have low ionization energy (easily release electrons) form a + ion, and these electrons are bound by atoms that have large affinity energy (easily pulling electrons)
Generally, ionic bonds occur in metal and nonmetallic elements. Metal elements have low ionization energy and non-metallic elements have a high electron affinity
In Na atoms, to achieve stability, Na will release one electron so that it has an electron configuration like noble gas Ne
Na: 2 8 1
Ne: 2 8
so that it becomes a Na + ion
While the Cl atom will bind one electron, so it has an electron configuration like noble gas Ar
Cl: 2 8 7
Ar: 2 8 8
So that it becomes a Cl- ion
Finally, there will be an attractive attraction between positive ions and negative ions and NaCl is formed
So the bond between Na + and Cl- ions is an ionic bond
[tex]\boxed{\boxed{\bold{Learn~more}}}[/tex]
the octet rule
https://brainly.com/question/6979933
a noble gas
https://brainly.com/question/1349717
https://brainly.com/question/3505291
ionic bonds and covalent bonds
https://brainly.com/question/2092388
Keywords: ionic and covalent bonds, the octet rule, noble gases, electron configurations
[tex]\boxed{{\text{Ionic bond}}}[/tex] holds [tex]{\text{N}}{{\text{a}}^ + }[/tex] and [tex]{\text{C}}{{\text{l}}^ - }[/tex] together in table salt.
Further Explanation:
Chemical bond:
The attraction between atoms, molecules or ions which results in the formation of chemical compounds is known as a chemical bond. It is formed either due to electrostatic forces or by the sharing of electrons. There are many strong bonds such as ionic bonds, covalent bonds, and metallic bonds while some weak bonds like dipole-dipole interactions, London dispersion forces, and hydrogen bonding.
Ionic compound:
Ionic compounds are the compounds that are formed from the ions of the respective species. Ions are the species that are formed either due to loss or gain of electrons. A neutral atom forms cation by the loss of electrons and anion by the gain of electrons.
Following are some of the properties of ionic compounds:
1. These are hard solids.
2. High melting and boiling points.
3. Good conductors of heat and electricity.
4. High enthalpy of fusion.
Sodium (Na) is a metal while chlorine (Cl) is a non-metal. So Na loses one of its valence electrons by virtue of its low ionization enthalpy and [tex]{\text{N}}{{\text{a}}^ + }[/tex] is formed. Due to high electronegativity of chlorine, Cl gains an electron and forms [tex]{\text{C}}{{\text{l}}^ - }[/tex] . The electrostatic attraction between [tex]{\text{N}}{{\text{a}}^ + }[/tex] and [tex]{\text{C}}{{\text{l}}^ - }[/tex] results in the formation of ionic bond between them and thus NaCl is an ionic compound. (Refer to the attached image)
Learn more:
1. Identification of ionic bonding: https://brainly.com/question/1603987
2. What type of bond exists between phosphorus and chlorine? https://brainly.com/question/81715
Answer details:
Grade: High School
Subject: Chemistry
Chapter: Ionic and covalent compounds
Keywords: Na+, Cl-, table salt, chemical bond, ionic bond, anion, cation, attraction, electrostatic forces, mutual sharing of electrons, gain, loss, electrons, metal, non-metal, Na, Cl, sodium, chlorine.
astronauts brought back 500 lb rock samples from the moon. how many kilograms did they bring back (1 kg = 2.20 lbs)
Astronauts brought back 500 lbs rock samples from the moon they brought back 227 kilograms of sample. The correct option is D.
Who are astronauts?An astronaut is characterized as "a person who travels further than the Earth's atmosphere" or "a spaceflight trainee."
The ultimate goal of getting into space is to work and live there, just as the eventual aim of exploring the New World was colonization, rather than simply sitting back on Earth and thinking about what automated spacecraft report back.
It's one of the most difficult jobs to obtain in the world. Even if you are chosen to be an astronaut, you are not pretty much assured a trip to space.
Hundreds of humans have traveled to space, but many of those chosen as "astronauts" never made it.
As the astronaut brought 550 lbs sample,
2.20lbs = 1 kg.1 lbs = 1/2.201 lbs = 0.45so, 500 lbs nearly implies 227kgs.Thus, the correct option is D.
For more details regarding astronauts, visit:
https://brainly.com/question/11244838
#SPJ2
Your question seems incomplete, the missing options are:
A. 500 kg
B. 1,100 kg
C. 498 kg
D. 227 kg
What are the requirements for two atoms to be isotopes of each other?
Explanation:
An isotope is defined as the specie which contains same number of protons but different number of neutrons.
For example, [tex]^{12}_{6}C[/tex] and [tex]^{13}_{6}C[/tex] are isotopes.
Number placed at the bottom of an element's symbol represents atomic number whereas number placed at the top of an element's symbol represents atomic mass (sum of total number of protons and neutrons).
Therefore, we can conclude that requirement for two atoms to be isotopes of each other is that they should contain same number of protons.
The basic requirements for atoms to be an isotope is that:
1. They must have the same atomic number (i.e proton)
2. They must have different mass number.
Isotopy is a phenomenon where by two or more atoms have the same atomic number (i.e proton) but different mass number due to the difference in the neutron number of the atoms involved. The atoms involved in Isotopy are called isotopes.
Chlorine for example has 2 isotopes ³⁵₁₇Cl and ³⁷₁₇Cl.
Considering the two isotopes given above, we can see clearly that the two isotopes both have the same atomic number (i.e proton) but different mass number.
NOTE: The difference in mass number is due to the difference in the neutron number of the atoms.
Therefore, the basic requirement for atoms to be called isotope is that:
1. They must posses the same atomic number (i.e proton)
2. They must have different mass number. This is due to the difference in the neutron number of the atoms.
Learn more: https://brainly.com/question/11394246
A mixture of n2(g) and h2(g) reacts in a closed container to form ammonia, nh3(g). the reaction ceases before either reactant has been totally consumed. at this stage 1.0 mol n2, 1.0 mol h2, and 1.0 mol nh3 are present. part a how many moles of n2 and h2 were present originally?
The amount of [tex]{{\text{N}}_2}[/tex] initially taken is [tex]\boxed{{\text{1}}{\text{.5 mol}}}[/tex] and the amount of [tex]{{\text{H}}_2}[/tex] initially taken is [tex]\boxed{{\text{2}}{\text{.5 mol}}}[/tex].
Further explanation:
Stoichiometry of a reaction is used to determine the amount of species present in the reaction by the relationship between the reactants and products. It can be used to determine the moles of a chemical species when the moles of other chemical species present in the reaction is given.
Consider the general reaction,
[tex]{\text{A}}+2{\text{B}}\to3{\text{C}}[/tex]
Here,
A and B are reactants.
C is the product.
One mole of A reacts with two moles of B to produce three moles of C. The stoichiometric ratio between A and B is 1:2, the stoichiometric ratio between A and C is 1:3 and the stoichiometric ratio between B and C is 2:3.
The balanced chemical equation for the formation of [tex]{\text{N}}{{\text{H}}_3}[/tex] is as follows:
[tex]{{\text{N}}_2}\left(g\right)+3{{\text{H}}_2}\left(g\right)\to2{\text{N}}{{\text{H}}_3}\left(g\right)[/tex]
The balanced chemical equation shows that 1 mole of [tex]{{\text{N}}_2}[/tex] and 3 moles of [tex]{{\text{H}}_2}[/tex] reacts to form 2 moles of [tex]{\mathbf{N}}{{\mathbf{H}}_{\mathbf{3}}}[/tex] .
In the question, reaction started with the unknown quantity of reactant [tex]{{\text{N}}_2}[/tex] and [tex]{{\text{H}}_2}[/tex] and stopped when 1.0 mol ammonia was produced. Also, reactants left in the reaction mixture are 1.0 mol of [tex]{{\text{H}}_2}[/tex] and 1.0 mol of [tex]{{\text{N}}_2}[/tex] .
According to the balance reaction 2 moles of ammonia is produced by the 3 moles of [tex]{{\text{H}}_2}[/tex] . Thus amount of hydrogen molecule required to produce 1 mole of ammonia is,
[tex]\begin{gathered}{\text{Moles of }}{{\text{H}}_2}=\frac{{3{\text{ mol }}{{\text{H}}_2}}}{{2{\text{ mol N}}{{\text{H}}_3}}}\times1{\text{ mol N}}{{\text{H}}_3}\\=1.5{\text{ mol }}{{\text{H}}_{\text{2}}}\\\end{gathered}[/tex]
According to the balance reaction 2 moles of ammonia is produced by the 1 mole of [tex]{{\text{N}}_2}[/tex] . Thus the amount of [tex]{{\text{N}}_2}[/tex] molecule required to produce 1 mole of ammonia is,
[tex]\begin{gathered}{\text{Moles of }}{{\text{N}}_2}=\frac{{1{\text{ mol }}{{\text{N}}_2}}}{{2{\text{ mol N}}{{\text{H}}_3}}}\times1{\text{ mol N}}{{\text{H}}_3}\\=0.5{\text{ mol }}{{\text{N}}_2}\\\end{gathered}[/tex]
Therefore, the amount of [tex]{{\text{N}}_2}[/tex] and [tex]{{\text{H}}_2}[/tex] are consumed until the reaction is stopped is 0.5 moles and 1.5 moles respectively.
Therefore, the amount of [tex]{{\text{N}}_2}[/tex] initially taken is,
[tex]\begin{aligned}{\text{Amount of }}{{\text{N}}_2}&=\left({1.0 + 0.5}\right){\text{ mol}}\\&=1.5{\text{ mol}}\\\end{aligned}[/tex]
The amount of [tex]{{\text{H}}_2}[/tex] initially taken is,
[tex]\begin{aligned}{\text{Amount of }}{{\text{H}}_2}&=\left({1.0 + 1.5}\right){\text{ mol}}\\&=2.5{\text{ mol}}\\\end{aligned}[/tex]
Learn more:
1. Balanced chemical equation: https://brainly.com/question/1405182
2. Determine how many moles of water produce: https://brainly.com/question/1405182
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Mole concept
Keywords: N2, H2, NH3, 3H2, 2NH3, limiting reagent, nitrogen, hydrogen, ammonia, 0.5 mol, 1.0 mol, 1.5 mol, 2.5 mol, 1.0 mol of NH3.
The number of moles of N2 and H2 that were originally present are;
N2 = 1.5 mol
N2 = 1.5 molH2 = 2.5 mol
We are told that N2(g) reacts with H2(g) to form ammonia NH3(g).This reaction when balanced is;
N2(g) + 3H2(g) = 2NH3(g)
Now, we are told that the reaction ceases before the reactants are totally consumed and that there was 1 mole of ammonia present. This means we have to simplify our balanced equation so that the number of moles attached to Ammonia(NH3) can be 1.Thus,divide each of the number of moles in the balanced equation by 2 to get;
0.5N2(g) + 1.5H2(g) = NH3(g)
We are told that the number of moles of N2 and H2 that were present at the stage after the reaction had ceased was;1 mol of N2 and 1 mol of H2.
Thus;
Number of moles of N2 originally present = 1 + 0.5 = 1.5 moles
Number of moles of H2 originally present = 1 + 1.5 = 2.5 moles
Read more at; https://brainly.com/question/14957892
The reaction between aluminum and iron(iii) oxide can generate temperatures approaching 3000°c and is used in welding metals: 2al + fe2o3 → al2o3 +2fe in one process, 149 g of al are reacted with 601 g of fe2o3. calculate the mass (in grams) of al2o3 formed, and determine the amount of excess reagent left at the end of the reaction.
In the reaction of 2Al and Fe2O3, 7.56 moles of Al reacted with 3.76 moles of Fe2O3. 385.4 g of Al2O3 were formed, and there was no excess Fe2O3 reagent left.
Explanation:In this chemistry problem, we must use stoichiometry to determine the mass of the product and the amount of excess reagent. First, balance the equation: 2Al + Fe2O3 → Al2O3 +2Fe. From the equation, we can determine the stoichiometric relationship which is 2 mol of Al react with 1 mol of Fe2O3 to produce 1 mol of Al2O3.
Moles of Al = mass/molar mass = 204.19/26.98 = 7.56 moles. Moles of Fe2O3 = mass/molar mass =601/159.69 = 3.76 moles. As per the stoichiometric relationship, Al will be the limiting reagent and Fe2O3 will be in excess.
Using the limiting reagent, we can calculate the mass of Al2O3 formed: moles of Al2O3 = moles of Al/2 = 7.56/2 = 3.78 mol. So, mass = moles x molar mass = 3.78 x 101.96 = 385.4g.
To find the number of moles of Fe2O3 used, we divide the moles of Al by 2: 3.78 moles. The excess reagent left = initial moles – used moles = 3.76 – 3.78 = -0.02moles. Because no reagent can be left in negative amount, the excess Fe2O3 is 0.
Learn more about Stoichiometry here:https://brainly.com/question/34828728
#SPJ12
The mass of Al₂O₃ formed and the excess reactant after the reaction can be calculated by identifying the limiting reactant and calculating the theoretical yield of the reaction. Finally, the amount of reactant used is subtracted from the initial amount for the excess reactant.
Explanation:The thermite reaction between aluminum (Al) and iron(III) oxide (Fe₂O₃) produces aluminum oxide (Al₂O₃) and iron (Fe). Given the balanced thermochemical equation for the reaction: 2Al + Fe₂O₃ → Al₂O₃ + 2Fe, we can calculate the stoichiometry to find the amount of Al₂O₃ formed and the excess reagent left over.
First, we calculate the molar mass of Al, Fe₂O₃, and Al₂O₃ and then calculate the number of moles of Al and Fe₂O₃ in the given masses. Then we identify the limiting reactant in the reaction, which is the reactant that gets completely used up in the reaction determining the maximum amount of product that can be formed. Next, we determine the theoretical yield, the amount of Al₂O₃ that would be formed if the reaction went to completion. Finally, we subtract the amount reacted from the initial amount to determine the excess reagent.
Learn more about Thermite Reaction here:https://brainly.com/question/14964571
#SPJ2
What maximum fraction of the air in the room could be displaced by the gaseous nitrogen?
What does a nonpolar covalent bond show about the electronegativities of its two atoms?
Answer: The electronegativities of the atoms in a non-polar covalent bond is equal.
Explanation:
A non-polar covalent bond is defined as the bond which is formed between the atoms having no difference in electronegativity between the atoms forming a bond. Thus, the two atoms have the same value of electronegativity. For Example: [tex]H_2,O_2[/tex] etc...
A polar covalent bond is defined as the bond which is formed between the atoms having some difference in electronegativity between the atoms forming a bond. Thus, the two atoms have different value of electronegativity. For Example: [tex]HCl, H_2O[/tex] etc...
Hence, the electronegativities of the atoms in a non-polar covalent bond is equal.
The secondary structure of a protein results from _____. the secondary structure of a protein results from _____. bonds between sulfur atoms hydrophobic interactions peptide bonds hydrogen bonds ionic bonds
The secondary structure of a protein is determined by hydrogen bonds between amino acids in different regions of the polypeptide chain.
Explanation:The secondary structure of a protein results from hydrogen bonds between amino acids in different regions of the polypeptide chain. This folding can take the form of an alpha-helix or a beta-pleated sheet. Hydrogen bonds form between the oxygen atom in the carbonyl group of one amino acid and the amino acid that is four amino acids farther along the chain.
Learn more about Secondary structure of proteins here:https://brainly.com/question/34467046
#SPJ5
Hydrogen has three naturally occurring isotopes which figure into the average atomic mass found on the periodic table (1.00974): hydrogen-1, hydrogen-2, and hydrogen-3. Which would you guess is most abundant? Explain your answer
Per gram, fats release three times the energy releases from proteins.
How does the ratio of h to o atoms in starch compared with the ratio in water?
Final answer:
The ratio of hydrogen to oxygen atoms in water is a consistent 2:1. In starch, this ratio is variable and is influenced by the starch molecule's structure. Unlike the fixed ratio in water, the complexity of starch polymers means it does not have a simple, fixed ratio of hydrogen to oxygen atoms.
Explanation:
The ratio of hydrogen (H) atoms to oxygen (O) atoms in water (H2O) is always 2:1, as clearly depicted in Figure 6.1.1 Water Molecules. This means that for every oxygen atom, there are two hydrogen atoms. In the context of mass, this ratio implies that one oxygen atom weighs 16 times as much as one hydrogen atom because the atomic mass of oxygen is 16 amu and that of hydrogen is 1 amu.
Starch, which is a carbohydrate, contains carbon, hydrogen, and oxygen atoms. The ratio of hydrogen to oxygen atoms in starch is not as straightforward as in water. Upon heating starch, it is observed that water condenses, and a black, charred mass of carbon remains, indicating the presence of hydrogen and oxygen in the starch. The molecular structure of starch, exemplified by amylose with its a-1,4-glycosidic linkages, features multiple hydroxyl (-OH) groups that can establish hydrogen bonds with water molecules, demonstrating that the ratio of hydrogen to oxygen in starch is variable due to the structural complexity of starch polymers.
Therefore, while the ratio of hydrogen to oxygen atoms in water is a consistent 2:1, the ratio in starch is variable and depends on the particular starch polymer. Moreover, the ratio of these atoms in starch is more complex than in water due to the presence of carbon and the polymeric nature of starch.
A critical biotic factor in Yellowstone National Park is
A) geographic isolation
B) high elevation
C) high temperature in the summer
D) population of wolves
E) proximity to water
A critical biotic factor in Yellowstone National Park is its proximity to water. The correct option is E.
What are biotic factors?Biotic factors are those factors that are living and that can grow and reproduce. They are plants, animals, algae, and other living organisms. They are divided into producers, consumers, and decomposers. These can reproduce, and they are taken from the biosphere.
Yellowstone National Park is a unique biotic reserve, and it was preserved from prehistoric times. It is a volcanic area. It has rich wildlife and nature.
Likewise, it is a critical biotic reserve because it contains many creatures that are endemic to them, and it has other biotic things. It has many valleys and waterfalls.
Thus, the correct option is E. proximity to water.
To learn more about biotic factors, refer to the below link:
https://brainly.com/question/27430655
#SPJ2
Mole-Mass Conversions
How many moles in 28.o grams of Oxygen?
What is the mass of 5.0 moles of Iron?
Find the number of moles of argon in 452 g of argon.
Find the grams in 16.5 mol of Hydrogen.
Final answer:
To find the number of moles in a given mass of a substance, divide the mass by the molar mass. To find the mass of a given number of moles of a substance, multiply the number of moles by the molar mass.
Explanation:
To find the number of moles in a given mass of a substance, we use the formula:
moles = mass / molar mass
For example:
1. To find the number of moles in 28.0 grams of oxygen:
moles = 28.0 g / 32.00 g/mol (molar mass of oxygen)
moles = 0.875 mol
2. To find the mass of 5.0 moles of iron:
mass = 5.0 mol * 55.85 g/mol (molar mass of iron)
mass = 279.25 g
3. To find the number of moles of argon in 452 g of argon:
moles = 452 g / 39.95 g/mol (molar mass of argon)
moles = 11.31 mol
4. To find the grams in 16.5 mol of hydrogen:
mass = 16.5 mol * 1.01 g/mol (molar mass of hydrogen)
mass = 16.665 g
Why is a claim supported by a great variety of data more trustworthy than a claim made by an individual person?