Answer:
5 Billion Years to form
Explanation:
Approximately 4.6 billion years ago, the solar system was a cloud of dust and gas known as a solar nebula. Gravity collapsed the material in on itself as it began to spin, forming the sun in the center of the nebula.
Organic Chemistry
Which example is not an organic compound?
com oil
methane
protein
aluminum
Answer:
aluminum
Explanation:
i took the test
The pressure on 40ml of a gas is increased from 760mm to 800mm.find the new volumes at the same temperature.
The new volume is 38 ml.
Explanation:
At NTP,
P1 = 760 mm,
P2 = 800 mm,
V1 = 40 ml
Boyle's law states that when a gas is held at a constant temperature and mass in a closed container, the volume and pressure vary inversely.
By applying Boyle's law,
P1 V 1 = P2 V2
where P1, P2 represents the pressure of a gas,
V1, V2 represents the volume of a gas.
P1 V 1 = P2 V2
760×40 = 800×V 2
V 2 = (760×40) / 800
V2 = 38 mL.
The new volume of the gas at the increased pressure, while maintaining the same temperature, is 38 ml.
The correct formula to use in this situation is Boyle's Law, which states that for a given mass of gas at constant temperature, the pressure of the gas is inversely proportional to its volume. Mathematically, this can be expressed as:
[tex]\[ P_1V_1 = P_2V_2 \][/tex]
where [tex]\( P_1 \)[/tex] and [tex]\( V_1 \)[/tex] are the initial pressure and volume, and [tex]\( P_2 \)[/tex] and [tex]\( V_2 \)[/tex] are the final pressure and volume.
Given:
- Initial pressure, [tex]\( P_1 = 760 \)[/tex] mm Hg
- Final pressure, [tex]\( P_2 = 800 \)[/tex] mm Hg
- Initial volume, [tex]\( V_1 = 40 \)[/tex] ml
We want to find the final volume [tex]\( V_2 \)[/tex].
Using Boyle's Law:
[tex]\[ P_1V_1 = P_2V_2 \][/tex]
[tex]\[ 760 \times 40 = 800 \times V_2 \][/tex]
[tex]\[ V_2 = \frac{760 \times 40}{800} \][/tex]
[tex]\[ V_2 = \frac{30400}{800} \][/tex]
[tex]\[ V_2 = 38 \text{ ml} \][/tex]
Uranium-238 decays into Thorium-232 by emitting
A Hydrogen nucleus
B beta particles
C gamma rays
D alpha particles
Answer:
D alpha particles
Explanation:
Radioactive U-238 will decay into Thorium -232 by emitting alpha particles in the process of nuclear fission.
Nuclear fission is the radioactive decay process in which a heavy nucleus spontaneously disintegrates into two lighter ones and several other particles with a large release of energy.
U-238 → Th-232 + alpha particles + 2 neutrons + energy
This way the mass and atomic numbers are conserved;
How does the health of polar bears indicate the health of the environment
Answer:How it indicates the health of the environment is when the less food, shelter, and mates cause population reduction and if nothing done to stop (or reduce) the amount of thing being taken away they could go extincted.
Explanation: Read above /\
|
A sample in the laboratory is found to contain 3.36 grams of hydrogen, 20.00 grams of carbon, and 26.64 grams of oxygen. The molecular mass is 180.156 g/mol. Determine both the empirical formula and the molecular formula.
Answer:
Empirical formula is CH₂O.
Molecular formula = C₆H₁₂O₆
Explanation:
Given data:
Mass of hydrogen = 3.36 g
Mass of carbon = 20.00 g
Mass of oxygen = 26.64 g
Molar mass of compound = 180.156 g/mol
Empirical formula = ?
Molecular formula = ?
Solution:
Empirical formula:
It is the simplest formula gives the ratio of atoms of different elements in small whole number
Number of gram atoms of H = 3.36 / 1.01 = 3.3
Number of gram atoms of O = 26.64 / 16 = 1.7
Number of gram atoms of C = 20 / 12 = 1.7
Atomic ratio:
C : H : O
1.7/1.7 : 3.3/1.7 : 1.7/1.7
1 : 2 : 1
C : H : O = 1 : 2 : 1
Empirical formula is CH₂O.
Molecular formula:
Molecular formula = n (empirical formula)
n = molar mass of compound / empirical formula mass
Empirical formula mass = CH₂O = 12×1 + 2× + 16
Empirical formula mass = 30
n = 180.156 / 30
n = 6
Molecular formula = n (empirical formula)
Molecular formula = 6 (CH₂O)
Molecular formula = C₆H₁₂O₆
If I add water to 100Ml of a 0.75 m NaOH solution until the final volume is 165 ml , what will the molarity of the diluted solution be?
Answer:
0.45M
Explanation:
The following were obtained from the question:
C1 = 0.75M
V1 = 100mL
V2 = 165mL
C2 =?
Applying the dilution formula C1V1 = C2V2, the concentration of the diluted solution can be calculated for as follows:
0.75 x 100 = C2 x 165
Divide both side by 165
C2 = (0.75 x 100) /165
C2 = 0.45M
The concentration of the diluted solution is 0.45M
ANSWER ASAP AND I WILL GIVE BRAINLYEST!!!!
Answer:
20m
Explanation:
mark brainliest
2 of 5
If an atom loses and electron what type of ion does it form?
Answer
cation
Explanation:
If an atom losses electrons it forms a positively charged ion called the cation.
cation has more protons than electrons, thereby giving it a net positive charge.
To form a cation one or more electrons must be lost, typically pulled away by atoms with a stronger affinity for them.
The number of electrons lost, and so the charge of the ion, is indicated after the chemical symbol, e.g. zinc (Zn) loses two electrons to become Zn2+.
I hope this was helpful, please mark as brainliest
Match each statement with the type of weathering it describes.
Answer: 1. Chemical weathering, 2. Mechanical weathering, 3. Chemical weathering, 4. Mechanical weathering, 5. Chemical weathering (all in the same order as the pick)
Explanation:
Statement 1,3 and 5 represent chemical weathering while statement 2 and 4 represent mechanical weathering.
What is chemical weathering?
Chemical weathering is defined as a process of breaking down of rocks which is caused by the action of rain water which reacts with the minerals present in the rock and result in it's break down.This results in formation of new minerals and salts which are soluble.
The process of chemical weathering requires water and high temperatures,so places with warm and damp climate have higher rate of chemical weathering of rocks.There are three main different types of chemical weathering:
1) solution
2) hydrolysis
3)oxidation
Chemical weathering changes the composition of rocks,weathering caused by water which is called as hydrolysis results in production of new minerals in the rock.
Learn more about chemical weathering,here:
https://brainly.com/question/14426457
#SPJ5
hi anyone able to explain Why does the temperature of a substance remain the same when it is boiling using kinetic particles theory ? Thank you!
Answer:
The temperature remains
Explanation:
The temperature of a boiling substance remains the same because the extra energy is used in phase transition, that is to break the bonds between the molecules that hold them close together in the liquid state. With increased energy the molecules gain enough kinetic energy to overcome inter-molecular forces and change state from liquid to gas
Specific Heat of Water = 4.186
J
g°C
Specific Heat of Ice = 2.00
J
g°C
Molar Heat of Fusion = 6030
J
mol
Molar Heat of Vaporization = 40790
J
mol
You take an ice cube (mass = 18g) from the freezer (T = -10°C) and place it on the table. Later that day, you notice a puddle of water on the table that has reached ambient room temperature (20°C). How much heat must have been absorbed to make this happen?
A) 1867.0 J
B) 2260.4 J
C) 7897.0 J
D) 42657.0 J
To calculate the total heat absorbed by an 18g ice cube going from -10°C to water at 20°C, you sum the heat needed to raise the temperature of the ice to 0°C, the heat of fusion to melt the ice, and the heat needed to raise the temperature of the resulting water to 20°C.
Explanation:The student is asking about the heat absorption process when an ice cube melts and warms up to ambient temperature. To find the total heat absorbed, you would calculate the heat needed to warm the ice from -10°C to 0°C, the heat required for the phase change from ice to water at 0°C, and then the heat needed to warm the water from 0°C to 20°C.
First, calculate the heat to warm the ice (Q1) using the formula Q = mcΔT, where m is the mass, c is the specific heat of ice, and ΔT is the temperature change. Then, calculate the heat to melt the ice (Q2) using the molar heat of fusion, given that the molar mass of water is approximately 18 g/mol. Finally, calculate the heat to warm the water (Q3) using the formula Q = mcΔT again, but this time with the specific heat of water.
The total heat (Qtotal) absorbed is the sum of Q1, Q2, and Q3. Note that in this example, the mass of ice and molar mass of water allows us to use a direct conversion from grams to moles for the heat of fusion calculation.
Quiz
1. When a gas is heated,
A all of the absorbed energy is converted to kinetic energy
O
B
none of the energy is converted to kinetic energy
Csome of the absorbed energy is converted to potential energy and
some is converted to kinetic energy
D all of the absorbed energy is converted to potential energy
The correct option is C. Some of the absorbed energy is converted to potential energy and some is converted to kinetic energy
Explanation:
When a gas is heated, some of the molecules absorb enough energy to convert it into kinetic energy, which makes the molecules to move faster, collide with each other and also collide with the walls of the container.But some of the molecule do not get required energy to convert it into kinetic energy, whereas it is converted into potential energy, energy possessed by a molecule due to its position.Thus by considering this above explanation it is clear that Option C can be consider as the opt answer
Describe the fate of the edges of two converging crustal plates. One plate is dense
oceanic crust and the other is less-dense continental crust.
its the oceam which is blue in color so
If 5.2 moles of oxygen react, how many moles of nitrogen monoxide are produced? _______ Round to the nearest tenth, include units on your answer.
Answer:
10.4 moles
Explanation:
Given parameters:
Number of moles of oxygen = 5.2moles
Number of moles of nitrogen monoxide = ?
Solution:
To solve this problem, we need to work from the known to the unknown specie according to the reaction.
Oxygen gas is known and we can estimate the amount of mole of nitrogen monoxide;
Let us write the balanced reaction equation;
N₂ + O₂ → 2NO
according to this reaction;
1 mole of oxygen gas will produce 2 mole of NO
5.2 moles of oxygen gas will produce (5.2 x 2)moles = 10.4moles
Answer:
10.4 moles
Explanation:
The equation of the reaction between oxygen and nitrogen to produce nitrogen monoxide is,
N₂(g) + O₂ (g)→ 2NO (g)
1 : 1 : 2
This mean 1 mole of nitrogen gas react with 1 mole of oxygen gas to give 2 moles of nitrogen monoxide
In this case the if 5.2 moles of Oxygen react, it will give 2 moles of NO
5.2*2=10.4
Determine from the balanced chemical reaction if
the derived mole ratio is correct or incorrect.
4Zn + 10HNO3 + 4Zn(NO3)2 + N20 + 5H20
Help me please
Answer:
The equation is balanced
Explanation:
Before a equation can be said to be balanced the number of mole at the reaction side must be equal to number mole at the product side
Let's start with Zn at the reactant side 4 moles of Zn reacts and 4 moles of Zn was obtained from the product side which makes it balanced
Let's take HNO3
For H,10 moles react and 10 moles was obtained in the product side
For N,10 moles react and 8 moles was obtained initially and 2 moles was obtained as well which makes it 10 moles and it makes it balanced
For O,30 moles react and after calculating the total amount of O at the product side it was observed to be 30 which indicates that the equation is balanced...
The equation is absolutely well balanced
Which of the following is true?
A
The sun has very little effect on natural cycles.
B
The sun is only helpful and is never dangerous.
The sun is very important, but its rays can also be harmful.
D
The sun is very dangerous and doesn't really support life on Earth.
Answer:
B
Explanation:
The sun can be dangerous but it also helps our Earth in a lot of ways
Final answer:
Answer C is true: The sun is critical for life on Earth, affecting natural cycles and providing necessary energy, but its UV rays can also be harmful to health and influence Earth's climate.
Explanation:
The correct answer is C: The sun is very important, but its rays can also be harmful. The sun radiates light and heat which are essential for the existence of life on Earth. It plays a crucial role in various natural cycles, such as those that regulate climate and weather, and it has enabled the development of all life forms as we know them. However, it is also true that the sun can be dangerous due to its intense ultraviolet (UV) rays, which can cause skin cancer, cataracts, and other health issues. Moreover, changes in the sun's energy can influence Earth's climate, potentially leading to warming or cooling periods.
What’s the molar mass of Rb3n
Answer:
147.473 g/mol
Explanation:
What are composites?
By integrating two or even more materials whose properties are quite distinctive is composite materials. The different materials work together to build special properties for the composite, but within the composite one can easily tell the various materials apart that they don't dissolve or mix together.
It is also recognized as Fiber-Reinforced Polymer (FRP) composites, which are constructed from a polymer matrix strengthened with engineered, man-made or natural fiber like glass, steel or aramid or other strengthening material.
Their high dimensional consistency helps them to preserve their shape, be it hot or cold, wet or dry. This renders them a common material for outdoor frameworks such as wind turbine blades.These have less resistance to cracking than metals but more durability than most polymers.In terms of electronegativity and electrons why does CaO contain an ionic bond?
Answer:
Calcium oxide is ionic in nature. The Ca-O bond in CaO is formed by the transfer of electron from highly electropositive Ca to the highly electronegative oxygen atom. The electronegativity difference should be high for the formation of ionic bond.
Explanation:
The ionic compound contains one highly electronegative atom and one highly electropositive atom. The ionic bond is formed by the transfer of electron from the more electropositive atom to electronegative atom.
In calcium oxide , Calcium is alkaline earth metal and it is highly electropositive atom while oxygen is highly electronegative atom. Calcium will transfer its 2 valence electrons to the oxygen atom. The electronegativity difference between calcium and oxygen is greater than 2.0. Hence, the bond in CaO is found to be ionic in nature.
CaO contains an ionic bond because calcium loses electrons to form a cation, and oxygen gains these electrons to form an anion. This electron transfer creates a strong attraction between the ions due to their opposite charges.
The compound CaO contains an ionic bond because of the difference in electronegativity between calcium (Ca) and oxygen (O). Calcium has a low electronegativity and tends to lose its two valence electrons easily, forming a [tex]Ca^{2+[/tex] cation. Oxygen, having a much higher electronegativity, readily attracts these two electrons to complete its valence shell, forming an [tex]O^{2-[/tex] anion.
This transfer of electrons from calcium to oxygen results in the formation of ions, which attract each other due to opposite charges, resulting in a strong ionic bond that holds the CaO compound together. This bond is characteristic of the interaction between a metal like calcium (with low electronegativity) and a non-metal like oxygen (with high electronegativity).
What mass of water should be added to 22.0 g of KCl to make a 5.50 % by mass solution?
The mass of water that should be added to 22.0 g of KCl to make a 5.50% by mass solution is 488.9 g.
Explanation:Mass of Water to be Added:To calculate the mass of water to be added, we can use the concept of mass percent. The mass percent is the mass of the solute divided by the mass of the solution, multiplied by 100%. We can set up the following equation:
Mass of KCl / (Mass of KCl + Mass of Water) = 5.50%
Let's solve for the mass of water:
Mass of Water = Mass of KCl / (0.055 - 1)
Mass of Water = 22.0 g / 0.045
Mass of Water = 488.9 g
Therefore,
488.9 g of water
should be added to 22.0 g of KCl to make a 5.50% by mass solution.
Learn more about Mass of water in a solution here:https://brainly.com/question/24441096
#SPJ12
WHO CAN HELP ME?!?!?!?!
4 Al + 3 O2 → 2 Al2O3
If 3.1581 moles of Al are reacted with 1.703 moles of O2, how many grams of Al2O3 will be produced?
Answer:
322.1262g
Explanation:
This question is mole to mole reaction but the answer should be in gram.
4moles of Al gives 2 moles of Al2O3
3.1581 moles of Al gives x moles of Al2O3
Cross multiply
4x= 3.1581×2
4x=6.3162
X=6.3162/4
X=1.57905moles
To convert to gram
Moles ×molar mass
Molar mass of Al2O3 is 204g
Which means 1.57905×204= 322.1262g
Enter a chemical equation for Ca(OH ) 2 (aq) Ca(OH)2(aq) showing how it is an acid or a base according to the Arrhenius definition. Consider that strong acids and bases dissociate completely.
According to the Arrhenius definition, Ca(OH)₂ is a Arrhenius base.
What is Arrhenius theory?According to the Arrhenius theory, acids are those substance which gives H⁺ ion in the aqueous solution and bases are those substances which gives OH⁻ ion in the aqueous solution.
Chemical equation for the dissociation of Calcium hydroxide is:
Ca(OH)₂ → Ca²⁺ + 2OH⁻
From the above equation it is clear that Ca(OH)₂ is an Arrhenius base as it gives hydroxide ion.
Hence, Ca(OH)₂ is a Arrhenius base.
To know more about Arrhenius theory, visit the new link:
https://brainly.com/question/862975
#SPJ2
Calcium hydroxide, Ca(OH)₂, is a base according to the Arrhenius definition, as it produces hydroxide ions (OH-) when it dissolves in water. The equation representing this is Ca(OH)₂ (aq) → Ca²⁺ (aq) + 2OH- (aq). It is considered a strong base because it dissociates completely in water.
Explanation:According to the Arrhenius definition, a base is a substance that releases hydroxyl ions (OH-) when it is dissolved in water. Calcium hydroxide, Ca(OH)₂, is considered to be a base because it dissociates in water to form calcium ions (Ca²⁺) and hydroxide ions (OH-). The chemical equation representing this process is: Ca(OH)₂ (aq) → Ca²⁺ (aq) + 2OH- (aq).
This depicts that calcium hydroxide is a base since it generates hydroxide ions (OH-) upon dissolution in water, which aligns with the countenance of a base as defined by Arrhenius. Because it dissociates completely in water solutions, it is acknowledged as a strong base.
The hydroxide ions (OH-) released into the solution are capable of combining with hydrogen ions (H+) to create water molecules. This reduces the solution's acidity and the concentration of free H+ ions, further signifying the behavior of a base.
Learn more about Calcium Hydroxide as a Base here:https://brainly.com/question/34709118
#SPJ11
How many grams of diborane will react with 7.5 mol of O2
Answer: Mass of diborane that would react with 7.5 mole of O2 is 70g
Explanation: The explanation is contained in the picture attached.
What is Peloponnese?
Peloponnese: The mountainous southern peninsula of Greece, connected to central Greece by the Isthmus of Corinth. Greek name Pelopónnisos.
Answer:
A Peninsula
Explanation:
The Peloponnese is a peninsula and geographic region in southern Greece. It is connected to the central part of the country by the Isthmus of Corinth land bridge which separates the Gulf of Corinth from the Saronic Gulf. During the late Middle Ages and the Ottoman era, the peninsula was known as the Morea, a name still in colloquial use in its demotic form.
The peninsula is divided among three administrative regions: most belongs to the Peloponnese region, with smaller parts belonging to the West Greece and Attica regions.
A sample of iron with a mass of 50.0 grams absorbs 2500 J of thermal energy. How much would the temperature of this sample change as a result of absorbing this amount of heat?
Temperature change would be 112.6° C.
Explanation:
We can find the amount or heat absorbed or emitted during any reaction by finding the product of their mass, specific heat, and change in temperature of the metal.
Mass of the iron, m = 50.0 g
Amount of heat absorbed, q = 2500 J
Change in temperature, ΔT = ?
Specific heat of Iron, C = 0.444 J/g °C
[tex]\boldsymbol{q}=\boldsymbol{m} \times \boldsymbol{C} \times \boldsymbol{\Delta} \mathbf{T}[/tex]
Plugin the values and rearrange the equation to get the change in temperature as,
[tex]\Delta \mathbf{T}=\frac{\mathbf{q}}{c \times m}[/tex]
[tex]\Delta \mathrm{T}=\frac{2500 \mathrm{J}}{0.444 \frac{J}{\mathrm{g}^{\circ} \mathrm{C}} \times 50 \mathrm{g}}=112.6^{\circ} \mathrm{C}[/tex]
The temperature of the iron sample would change by approximately [tex]\( 111.11 \, ^\circ \text{C} \)[/tex] as a result of absorbing 2500 J of thermal energy.
To determine the change in temperature of the iron sample, we need to use the specific heat capacity formula [tex]\[ q = m \cdot c \cdot \Delta T \][/tex]
where:
[tex]- \( q \)[/tex] is the amount of heat absorbed or released (in joules),
[tex]- \( m \)[/tex] is the mass of the substance (in grams),
[tex]- \( c \)[/tex] is the specific heat capacity of the substance (in joules per gram per degree Celsius),
[tex]- \( \Delta T \)[/tex] is the change in temperature (in degrees Celsius).
For iron, the specific heat capacity [tex]\( c \)[/tex] is approximately [tex]\( 0.450 \, \text{J/g}^\circ \text{C} \)[/tex].
Given:
[tex]- \( q = 2500 \, \text{J} \), - \( m = 50.0 \, \text{g} \), - \( c = 0.450 \, \text{J/g}^\circ \text{C} \).[/tex]
We can rearrange the formula to solve for [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \cdot c} \][/tex]
Now, plug in the values:
[tex]\[ \Delta T = \frac{2500 \, \text{J}}{50.0 \, \text{g} \cdot 0.450 \, \text{J/g}^\circ \text{C}} \] \[ \Delta T = \frac{2500}{50.0 \times 0.450} \] \[ \Delta T = \frac{2500}{22.5} \] \[ \Delta T \approx 111.11 \, ^\circ \text{C} \][/tex]
The answer is: [tex]111.11 \, ^\circ \text{C}[/tex].
are magnesium and calcium more reactive with oxygen in the air than aluminum?
Magnesium and calcium are more reactive with oxygen in the air than aluminum.
Explanation:Magnesium and calcium are more reactive with oxygen in the air than aluminum.
Magnesium reacts with oxygen to form magnesium oxide (MgO), while calcium reacts with oxygen to form calcium oxide (CaO). Aluminum also reacts with oxygen, but it forms a thin layer of aluminum oxide (Al2O3) on its surface, which acts as a protective barrier to further reaction. This layer prevents aluminum from reacting as readily with oxygen compared to magnesium and calcium. Therefore, magnesium and calcium are more reactive with oxygen in the air than aluminum.
Learn more about reactivity with oxygen here:https://brainly.com/question/31871001
#SPJ3
128 NA
175 N
Net Force:
Balanced or Unbalanced:
The net force is the vector sum of all the forces acting on an object. If the net force is not zero, it means the forces are unbalanced. In this case, the net force is 303 N.
Explanation:The net force is the vector sum of all the forces acting on an object. If the net force is zero, it means the forces are balanced and there is no change in the object's motion. If the net force is not zero, it means the forces are unbalanced and there will be an acceleration or deceleration of the object.
In this case, we have two forces given - 128 N and 175 N. To determine if the net force is balanced or unbalanced, we need to find the sum of these forces. Adding 128 N and 175 N gives us a net force of 303 N. Since the net force is not zero, the forces are unbalanced.
if a sample of gas at 25.2°C has a volume of 536 ml at 637 torr, what will its volume be if the pressure is increased to 712 torr?
Answer:
V = 479.6 mL
Explanation:
assuming ideal gas:
PV = RTn∴ T = 25.2°C ≅ 298.2 K.........remains constant
∴ P1 = 637 torr = 0.8382 atm
∴ V1 = 536 mL = 0.536 L
∴ R = 0.082 atm.L/K.mol
⇒ n = (P1V1)/(RT) = ((0.8382 atm)*(0.536 L))/((0.082 atmL/Kmol)*(298.2K))
⇒ n = 0.0184 mol......remains constant
∴ P2 = 712 torr = 0.936842 atm
⇒ V2 = RTn/P2 = [(0.082atmL/Kmol)*(298.2K)*(0.0184mol)]/(0.936842atm)
⇒ V2 = 0.4796 L
Boyle's Law can be applied in this situation to show that when pressure on a gas sample increases, its volume decreases, assuming a constant temperature. By substituting the given values into the Boyle's Law formula, we find that the new volume, with increased pressure, is approximately 478 mL.
Explanation:The volume of gas changing with pressure can be explained by Boyle's Law, which states that the pressure and volume of a gas have an inverse relationship when temperature is held constant. In this case, we can set up an equation based on Boyle's Law (P1V1 = P2V2), where P1 and V1 represent the initial pressure and volume, and P2 and V2 represent the final pressure and volume.
To solve for V2, you can rearrange the formula to: V2 = (P1V1) / P2. Substituting the given values into the formula:
V2 = (637 torr * 536 mL) / 712 torr = 478 mL approximately.
So, if the pressure is increased to 712 torr, the volume of the gas decreases to roughly 478 ml.
Learn more about Boyle's Law here:https://brainly.com/question/21184611
#SPJ11
In ionic bonds, valence electrons are
Answer:
Valence Electrons are transferred/exchanged
In ionic bonds, valence electrons are transferred from one atom to another, leading to the formation of oppositely charged ions that attract each other to create the bond.
In ionic bonds, valence electrons are transferred from one atom to another. This process involves the movement of electrons from an atom that has a relatively low number of electrons in its valence shell (often a metal) to an atom with a higher affinity for electrons (often a nonmetal), which has a relatively high number of electrons in its valence shell or a few electrons short of completing its shell. Through this transfer, the atom losing electrons becomes a positively charged ion (cation), and the atom gaining electrons becomes a negatively charged ion (anion). This electrostatic attraction between the oppositely charged ions forms the ionic bond. For example, in the formation of sodium chloride (NaCl), sodium (Na) loses one electron to become Na⁺, while chlorine (Cl) gains that electron to become Cl⁻, resulting in a stable ionic compound.
The complete question is:
Fill in the blanks:
In ionic bonds, valence electrons are _______.
If 0.899J of heat causes a 0,692 degree C temperature change, what mass of water
is present?
Final answer:
To calculate the mass of water present, we can use the formula Q = mcΔT, where Q is the heat energy (0.899 J), m is the mass of water, c is the specific heat capacity of water (4.184 J/g °C), and ΔT is the temperature change (0.692 °C). Rearranging the formula to solve for m, we find that the mass of water is approximately 0.307 g.
Explanation:
To calculate the mass of water present, we can use the formula:
Q = mcΔT
Where:
Q is the heat energy (0.899 J)
m is the mass of water
c is the specific heat capacity of water (4.184 J/g °C)
ΔT is the temperature change (0.692 °C)
Rearranging the formula to solve for m, we get:
m = Q / (cΔT)
Substituting the given values:
m = 0.899 J / (4.184 J/g °C * 0.692 °C)
Calculating m gives us:
m ≈ 0.307 g