How can you tell whether one glass of water has more thermal energy than another, identical glass of water

Answers

Answer 1
you can know which one has more thermal energy by testing the temperature, if it is warmer the more energy it has because the particles are going faster than they would if it was cold. because, when its cold the particles slow down until they are so cold they are frozen. (ice).
Answer 2
According to my school book thermal energy is the total kinetic energy of the particles that make up a substance thermal energy is measured in joules know that this is different from the temperature for it is the average kinetic energy while the thermal energy is the total kinetic energy.not done answering this

Related Questions


The term sink refers to _____.

Answers

I believe the options are
 A. fossil fuels such as coal, oil, and gas
B. a location for carbon dioxide storage
C. the origination point of a gas, such as a volcano
D. the origination point of a gas, such as the atmosphere

If those are the options then the answer is B. A location of Carbon storage such as Fossil fuels, coal oil gas etc is referred to as a sink
Answer is B :) hope this was helpful

Combustion of 25.0 g of a hydrocarbon produces 86.5 g of co2. what is the empirical formula of the compound?

Answers

Combustion is a reaction between a combustible substance and oxygen, to ultimately produce carbon dioxide and water. Reaction between carbon and oxygen would give,

                               C     +     O2      ------>  CO2

Here, we have 86.5 grams of carbon dioxide, CO2, which is a product of combustion. Dividing this mass by the molar mass of CO2, which is 44 grams, we can determine the number of moles of CO2. 

                               86.5 g CO          = 1.966 moles CO2
                            44 g CO2/ mole

Considering that CO2 is composed of 1 mole of carbon and 2 moles of oxygen, and that with complete combustion, 1 mole of carbon reacts to produces 1 mole of CO2, we can then determine the mass of the carbon in the hydrocarbon fuel. 

        1.966 moles CO2   x      1 mole C       x      12 g C     = 23.59 g C
                                             1 mole CO2          1 mole C

We were given 25.0 grams of the fuel hydrocarbon. A hydrocarbon is a substance consisting of carbon and hydrogen. To determine the mass of the hydrogen in the fuel, we simply subtract 23.59 grams from 25.0 grams. 


            25.0 g - 23.59 g = 1.41 grams Hydrogen 

To know the number of moles of hydrogen, we divide the mass of the hydrogen in the fuel by the molar mass of hydrogen, which is 1.01 g/mole. Thus, we have 1.396 mole hydrogen. 

To determine the empirical formula, we divide the number of moles carbon by the number of moles hydrogen, and find a factor that would give whole number ratios for the carbon and hydrogen in the fuel, 

Carbon:       1.966 mol      = 1.408   x   5 (factor)     = 7
                    1.396 mol

Hydrogen:    1.396 mol       = 1.00   x    5 (factor)    = 5
                     1.396 mol

Thus, the empirical formula is C7H5

       

The empirical formula of the hydrocarbon is [tex]\boxed{{{\text{C}}_7}{{\text{H}}_5}}[/tex].

Further explanation:

Empirical formula:

It is atom’s simplest positive integer ratio in the compound. It may or may not be same as that of molecular formula. For example, empirical formula of sulfur dioxide is SO.

Combustion reactions:

These are the reactions that take place when hydrocarbons are burnt in the presence of oxygen to form carbon dioxide and water. These are also referred to as burning.  

Example of combustion reactions are as follows:

(a) [tex]{\text{C}}{{\text{H}}_4}+{{\text{O}}_2}\to{\text{C}}{{\text{O}}_2}+{{\text{H}}_2}{\text{O}}[/tex]

(b) [tex]{{\text{C}}_{10}}{{\text{H}}_{14}}+12{{\text{O}}_2}\to10{\text{C}}{{\text{O}}_2}+ 4{{\text{H}}_2}{\text{O}}[/tex]

[tex]{\text{C}}{{\text{O}}_2}[/tex] is formed as a product during combustion reactions.

Step 1: [tex]{\text{C}}{{\text{O}}_2}[/tex] is formed as a product during combustion reactions. Initially, we have to calculate the moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] . The formula to calculate moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] is as follows:

[tex]{\text{Moles of C}}{{\text{O}}_2}=\dfrac{{{\text{Given mass of C}}{{\text{O}}_2}}}{{{\text{Molar mass of C}}{{\text{O}}_2}}}[/tex]          ...... (1)

The given mass of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 86.5 g.

The molar mass of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 44 g/mol.

Substitute these values in equation (1).

[tex]\begin{aligned}{\text{Moles of C}}{{\text{O}}_2}&=\left( {{\text{86}}{\text{.5 g}}} \right)\left( {\frac{{{\text{1 mol}}}}{{{\text{44 g}}}}} \right)\\&={\text{1}}{\text{.9659 mol}}\\ &\approx{\text{1}}{\text{.966 mol}}\\\end{aligned}[/tex]

Step 2: During combustion, one mole of carbon reacts to form one mole of  [tex]{\text{C}}{{\text{O}}_2}[/tex] .So the mass of C in the hydrocarbon is calculated as follows:

[tex]{\text{Mass of C}}=\left( {{\text{Moles of C}}{{\text{O}}_{\text{2}}}}\right)\left( {\dfrac{{{\text{Moles of C}}}}{{{\text{Moles of C}{{\text{O}}_{\text{2}}}}}}\right)\left( {{\text{Molar mass of C}}}\right)[/tex]      ...... (2)

The moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 1.966 mol.

The molar mass of C is 12 g/mol.

The mole of C is 1 mol.

The moles of [tex]{\text{C}}{{\text{O}}_2}[/tex] is 1 mol.

Substitute these values in equation (2).

[tex]\begin{aligned}{\text{Mass of C}}&=\left( {{\text{1}}{\text{.966 mol}}} \right)\left( {\frac{{{\text{1 mol of C}}}}{{{\text{1 mol of C}}{{\text{O}}_{\text{2}}}}}} \right)\left( {\frac{{{\text{12 g}}}}{{{\text{1 mol}}}}} \right)\\&= {\text{23}}{\text{.592 g}}\\&\approx{\text{23}}{\text{.59 g}}\\\end{aligned}\\[/tex]

Step 3: Since the hydrocarbon consists of only carbon and hydrogen. The mass of hydrogen is calculated as follows:

[tex]{\text{Mass of H}}={\text{Mass of hydrocarbon}}-{\text{Mass of C}}[/tex]      ...... (3)

The mass of hydrocarbon is 25 g.

The mass of carbon is 23.59 g.

Substitute these values in equation (3).

[tex]\begin{aligned}{\text{Mass of H}}&={\text{25 g}}-{\text{23}}{\text{.59 g}}\\&= {\text{1}}{\text{.41 g}}\\\end{aligned}[/tex]

The formula to calculate moles of H is as follows:[tex]{\text{Moles of H}}=\dfrac{{{\text{Given mass of H}}}}{{{\text{Molar mass of H}}}}[/tex]      ...... (4)

The given mass of H is 1.41 g.

The molar mass of H is 1.01 g/mol.

Substitute these values in equation (4).

[tex]\begin{aligned}{\text{Moles of H}}&=\left({{\text{1}}{\text{.41 g}}}\right)\left( {\frac{{{\text{1 mol}}}}{{{\text{1}}{\text{.01 g}}}}}\right)\\&={\text{1}}{\text{.396 mol}}\\ \end{aligned}[/tex]

The moles of carbon and hydrogen present in hydrocarbon are to be written with their corresponding subscripts. So the preliminary formula becomes,

[tex]{\text{Preliminary formula of hydrocarbon}}={{\text{C}}_{1.966}}{{\text{H}}_{1.396}}[/tex]

Step 4: Each of the subscripts is divided by the smallest subscript to get the empirical formula. In this case, the smallest one is 1.39. So the empirical formula of hydrocarbon is written as follows:

[tex]\begin{aligned}{\text{Empirical formula of hydrocarbon}}&={{\text{C}}_{\dfrac{{1.966}}{{1.396}}}}{{\text{H}}_{\dfrac{{1.396}}{{1.396}}}}\\&= {{\text{C}}_{1.408}}{{\text{H}}_1}\\\end{aligned}[/tex]

Step 5: Multiply each subscript of the empirical formula by 5, we get the final empirical formula as follows:

[tex]\begin{aligned}{\text{Empirical formula of hydrocarbon}}&={{\text{C}}_{5\left( {1.408} \right)}}{{\text{H}}_{5\left( 1 \right)}}\\&={{\text{C}}_7}{{\text{H}}_5}\\\end{aligned}[/tex]

Therefore, the empirical formula of hydrocarbon is [tex]{{\mathbf{C}}_{\mathbf{7}}}{{\mathbf{H}}_{\mathbf{5}}}[/tex] .

Learn more:

1. Calculate the moles of ions in the solution: https://brainly.com/question/5950133

2. Calculate the moles of chlorine in 8 moles of carbon tetrachloride: https://brainly.com/question/3064603

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Stoichiometry of formulas and equations

Keywords: empirical formula, C, H, C7H5, moles of CO2, C, H, 5, preliminary formula, whole number.

How many milliliters of 0.150 m h2so4 are required to react with 2.05 g of sodium hydrogen cabronate?

Answers

25 milliters are required

Calculate the number of Li atoms in 5.1 moles of Li

Answers

Avogadro's number is the number of atoms/particles in one mole.
5.1 mol Li * 6.022 x 10 ^23 atoms/mol = 3.07 x 10^24 Li atoms

The number of Li atoms in 5.1 moles of Li is 3.07 x 10²⁴ atoms.

What are atoms?

Atoms are defined as the smallest piece of matter that can be separated without sending electrically charged particles flying.

It can also be defined as the smallest piece that carries an element's characteristics. Subatomic particles, which make up an atom, are uncreatable.

There are various types of atoms.

DescriptionStableIsotopesRadioactive IonsAntimatter

In a chemical reaction, atoms cannot be formed or destroyed since they are indivisible units. The mass and chemical characteristics of each atom of a specific element are the same. Different elements' atoms have varying weight and chemical characteristics. Compounds are created when atoms combine in ratios of small whole numbers.

Moles of Li = 5.1 x 6.022 x 10²³

                   = 3.07 x 10²⁴ atoms.

Thus, the number of Li atoms in 5.1 moles of Li is 3.07 x 10²⁴ atoms.

To learn more about atoms, refer to the link below:

https://brainly.com/question/1566330

#SPJ2

How many moles of o2 are required for the complete reaction of 54.7 g of c2h4 to form co2 and h2o?

Answers

The balanced chemical equation that illustrates this reaction is:
C2H4 + 3O2 --> 2CO2 + 2H2O 

From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 gram
Therefore:
molar mass of C2H4 = 12(2) + 4(1) = 24 + 4 = 28 grams

number of moles = mass / molar mass
number of moles of C2H4 = 54.7 / 28 = 1.95 moles

From the balanced equation above:
3 moles of oxygen are required to react with one mole of C2H4, therefore, to know the number of moles required to react with 1.95 moles of C2H4, all you have to do is cross multiplication as follows:
number of oxygen moles = (1.95*3) / 1 = 5.85 moles

5.862 moles of O₂

Further explanation

Given:

Combustion of 54.7 g of C₂H₄ to form CO₂ and H₂O.

Question:

How many moles of O₂ are required for the complete reaction of combustion of C₂H₄?

The Process:

Relative atomic mass: C = 12 and H = 1.Relative molecular mass (Mr) of C₂H₄ = 2(12) + 4(1) = 28.

Let us convert mass to mole for C₂H₄.

[tex]\boxed{ \ n = \frac{mass}{Mr} \ } \rightarrow \boxed{ \ n = \frac{54.7}{28} = 1.954 \ moles \ }[/tex]

The combustion reaction of  C₂H₄ (ethylene, also named ethene) can be expressed as follows:

[tex]\boxed{ \ C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O \ }[/tex] (the reaction is balanced)

According to chemical equation above, proportion between C₂H₄ and O₂ is 1 to 3. Therefore, we can count the number of moles of O₂.

[tex]\boxed{ \ \frac{n(O_2)}{n(C_2H_4)} = \frac{3}{1} \ }[/tex]

[tex]\boxed{ \ n(O_2) = \frac{3}{1} \times n(C_2H_4) \ }[/tex]

[tex]\boxed{ \ n(O_2) = \frac{3}{1} \times 1.954 \ moles \ }[/tex]

Thus, the number of moles of O are required for the complete reaction of the combustion of C₂H₄ is 5.862 moles.

_ _ _ _ _ _ _ _ _

Notes:

If we want to calculate the mass of O₂, then we use the number of moles of O₂ that have been obtained.

Learn moreDetermine the mass of aspirin from the number of molecules https://brainly.com/question/10567477#  How many molecules of ascorbic acid (vitamin C or C₆H₈O₆) are in a 500 mg tablet? https://brainly.com/question/6455775  Find out he molecular weight of a gas that has a density of 5.75 g/L at STP https://brainly.com/question/7497852

A student makes observations when water is added to a blue solution of copper sulfate. The student makes only 1 observation: the solution changes to a lighter shade of blue. Is this an example of a chemical reaction? Explain your reasoning.

Answers

No, I believe this is not an example of a chemical reaction. What we actually see here is a physical change of the solution. Since we are adding more water to an aqueous solution which is also made up mostly of water, what we are simply basically doing is dilution. Since the solution is being diluted, so definitely the color turned lighter.

In Part A, you found the amount of product (1.80 mol P2O5 ) formed from the given amount of phosphorus and excess oxygen. In Part B, you found the amount of product (1.40 mol P2O5 ) formed from the given amount of oxygen and excess phosphorus. Now, determine how many moles of P2O5 are produced from the given amounts of phosphorus and oxygen.

Answers

Final answer:

The number of moles of P2O5 produced from the given amounts of phosphorus and oxygen is equal to the number of moles of phosphorus or oxygen used.

Explanation:

To determine the number of moles of P2O5 produced from the given amounts of phosphorus and oxygen, you need to compare the amounts of each reactant used in Part A and Part B. Based on the given information, it is stated that in Part A, 1.80 mol of P2O5 is formed from a given amount of phosphorus and excess oxygen. In Part B, 1.40 mol of P2O5 is formed from a given amount of oxygen and excess phosphorus. Since the stoichiometry of the reaction is a 1:1 ratio between P2O5 and phosphorus, we can conclude that 1.80 mol of phosphorus is required to produce 1.80 mol of P2O5. Similarly, 1.40 mol of oxygen is required to produce 1.40 mol of P2O5. Therefore, the number of moles of P2O5 produced from the given amounts of phosphorus and oxygen is equal to the number of moles of phosphorus or oxygen used, which is 1.80 mol and 1.40 mol respectively.

Learn more about mole calculations here:

https://brainly.com/question/33652783

#SPJ1

The pH of a vinegar solution is 4.15. What is the H+ concentration of the solution

Answers

The pH of a vinegar solution is 4.15. To find the H+ concentration of the solution use the following equation -log(H+)=pH. Insert the pH into the equation to get, -log(H+) = 4.15 Rearrange the equation to get, 10^(-4.15) = H+ Finally, you can solve for H+. The hydrogen ion concentration of the vinegar solution is .0000708 M.

The [tex]{{\text{H}}^+}[/tex] concentration of vinegar solution is [tex]\boxed{{\text{0}}{\text{.0000708 M}}}[/tex]

Further Explanation:

An acid is a substance that has the ability to donate [tex]{{\mathbf{H}}^{\mathbf{+}}}[/tex]ions or can accept electrons from the electron-rich species. The general dissociation reaction of acid is as follows:

[tex]{\text{HA}}\to{{\text{H}}^+}+{{\text{A}}^-}[/tex]

Here, HA is an acid.

The acidic strength of an acid can be determined by pH value. The negative logarithm of hydronium ion concentration is defined as pH of the solution. Lower the pH value of an acid, the stronger will be the acid. Acidic solutions are likely to have pH less than 7. Basic or alkaline solutions have pH more than 7. Neutral solutions have pH equal to 7.

Vinegar contains acetic acid [tex]\left({{\text{C}}{{\text{H}}_3}{\text{COOH}}}\right)[/tex], water and some traces of other chemicals and flavors.

The formula to calculate pH is as follows:

[tex]{\text{pH}}=-{\text{log}}\left[{{{\text{H}}^+}}\right][/tex]                                   …… (1)

Here,

[tex]\left[{{{\text{H}}^+}}\right][/tex] is hydrogen ion concentration.

On rearranging equation (1), we get:

[tex]\left[{{{\text{H}}^+}}\right]={10^{-{\text{pH}}}}[/tex]                                           …… (2)

The pH of vinegar is 4.15.

Substitute 4.15 for pH in equation (2)

[tex]\begin{gathered}\left[{{{\text{H}}^+}}\right]={10^{-4.15}}\\=0.0000707946\\\approx0.0000708\;{\text{M}}\\\end{gathered}[/tex]

So the concentration of [tex]{{\mathbf{H}}^{\mathbf{+}}}[/tex] ion in vinegar is 0.0000708 M.

Learn more:

1. The reason for the acidity of water https://brainly.com/question/1550328

2. Reason for the acidic and basic nature of amino acid. https://brainly.com/question/5050077

Answer details:

Grade: High School

Subject: Chemistry

Chapter: Acid, base and salts.

Keywords: pH, neutral, acidic, basic, alkaline, 4.15, vinegar, acetic acid, water, chemicals, negative logarithm, H+, 0.0000708 M, pH more than 7, pH less than 7, pH equal to 7.

For the following reaction, what volume of NOBr can be produced from 3.8 L of Br2 (measured at the same temperature and pressure), assuming an excess of NO?
2NO(g)+Br2(g)=2NO(Br)2

Answers

Answer:

[tex]7.6LNOBr[/tex]

Explanation:

Hello,

In this case, since no temperature and pressure are known, one could develop the stoichiometric relationship for 1 mole of [tex]Br_2[/tex] per 2 moles of [tex]NOBr[/tex] in terms of volume as shown below because of the Avogadro's law (change in mole proportional to the change in volume at constant both pressure and temperature):

[tex]3.8LBr_2*\frac{2LNOBr}{1LBr_2} =7.6LNOBr[/tex]

Best regards.

What is the most common type of climate/ecosystem found in the Congo River basin?

Answers

The answer is tropical rainforest. The congo river basis is a mosaic of rivers, forests, savannas, swamps and flooded forests.

Which of the following is a heterogeneous mixture?
A) vinegar and water
B) milk
C) Oil and vinegar
D) Air

Answers

The correct option is C, OIL AND VINEGAR
There are two types of mixture, homogeneous and heterogeneous mixtures.
Homogeneous mixture are uniform in composition and an example of this is milk.
Heterogeneous mixture refers to a mixture which is not uniform in composition, that is, smaller constituent parts is present in it and it can be easily separated using suitable methods.

A sample of pure water has a hydronium concentration of 1.0 × 10-7 M. What is the pH of the water?

Answers

pH of the water would be 6.79

Answer:The pH of the water is 7.

Explanation;

The pH of the solution is defined as negative logarithm of [tex]H^+[/tex] or hydronium ions ions in the solution.

[tex]pH=-\log[H^+][/tex]

So, [tex]H^+[/tex] concentration of water = [tex]1.0\times 10^{-7} m[/tex]

[tex]pH=-\log[1.0\times 10^{-7}]=7[/tex]

The pH of the water is 7.

Explain how the determination of the rate law equation significantly differs from the determination of the equilibrium constant keq expression.

Answers

The rate law equation is different from the determination of the equilibrium constant keq expression because rate law equation is used experimentally
And by looking at the equation of the reaction and chemicals used in the reaction equation Keq is determined.
The value of the reaction quotient, when the chemical reaction approaches the state of equilibrium, this is called equilibrium constant.

Why would gamma radiation be used in diagnostic imaging rather than alpha or beta radiation?

Answers

Gamma radiation is a very short wavelength electromagnetic emission, and can pass through soft tissue easily. Alpha and beta particles possess less energy and cannot easily pass through tissue. 
An x-ray is a 'negative' of body structure; gamma rays pass freely through soft tissue and expose the film, but gamma rays don't pass through bony structures well, leaving the film underexposed.

WILL MARK BRAINLIEST FOR THE BEST ANSWER~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If the caffeine concentration in a particular brand of soda is 4.05 mg/oz, drinking how many cans of soda would be lethal? Assume 10.0 grams of caffeine is a lethal dose, and there are 12 oz in a can.

Please explain the steps you used.

Answers

There are 1,000 milligrams (mg) in one gram:
In 10 grams, there are 10 x 1,000 = 10,000 milligrams. This is a lethal dose of caffeine.

There are 4.05 mg/oz (milligrams/ounce) of caffeine in the soda. 
In a 12 ounce can, there are 4.05 x 12 = 48.6 milligrams.

How many sodas would it take to kill you?
To find this, we divide the lethal dose amount (10,000 mg) by the amount of caffeine per can (48.6 mg).
10,000 ÷ 48.6 = 205.76. 

Since 205 cans is not quite 10,000 mg, technically it would take 206 cans of soda to consume a lethal dose of caffeine. 

Consider the resonance structures of formate. the first lewis structure of formate has a central carbon atom. a hydrogen atom and two osygen atoms are bonded to the carbon atom. the bond between carbon and hydrogen is a single bond. one of the bonds between carbon and oxygen is a single bond and the other bond is a double bond. the single bonded oxygen has three lone pairs of electrons and a negative one charge. the double bonded oxygen has two lone pairs of electrons. the second lewis structure of formate has all of the same atom connectivities, but the double and single bonds between oxygen and carbon are switched from the first strucutre. select the true statements about the resonance structures. the actual structure of formate switches back and forth between the two resonance forms. each carbon–oxygen bond is somewhere between a single and double bond. each oxygen atom has a double bond 50% of the time. the actual structure of formate is an average of the two resonance forms.

Answers

Final answer:

The statement "each carbon-oxygen bond is somewhere between a single and double bond" and "the actual structure of formate is an average of the two resonance forms" are correct. The resonance structures represent an average distribution of electrons across all valid structures, not constant flipping between these structures.

Explanation:

In regards to the resonance structures of formate, the statements "each carbon–oxygen bond is somewhere between a single and double bond" and "the actual structure of formate is an average of the two resonance forms" are both true.

Resonance describes the situation where more than one valid Lewis structure can be drawn for a particular molecule. The resonance structure is not a rapid equilibrium between the structures but rather an average of the different possible structures, called resonance forms.

In the case of formate, which has two resonance forms, the molecule doesn't constantly flip between these two structures. Instead, the electrons are distributed in a way that is an average of these two resonance forms. This is why each carbon-oxygen bond in formate is described as being somewhere between a single and a double bond, as the characteristics of the bond are shared across both resonance forms.

Learn more about Resonance Structures in Chemistry here:

https://brainly.com/question/25204120

#SPJ11

Name all of the alkene isomers, c6h12, that contain a methylene group.

Answers

Actually, a methylene group is simply any compound which contains a C=C double bond group and the rest are single bonded carbon groups. Some example of the isomers of C6H12 which contains methylene group is:

1-hexene

2,3-dimethyl-2-butene

2,3-dimethyl-1-butene

2-methyl-2-pentene

trans-2-hexene

4-methyl-1-pentene

cis-2-hexene

trans-3-hexene

2-ethyl-1-butene

2-methyl-1-pentene

3,3-dimethyl-1-butene

4-methyl-cis-2-pentene

cis-3-methyl-2-pentene

trans-3-methyl-2-pentene

The process that makes ice cubes shrink as they sit in a freezer is called:
A- Sublimation
B- Condensation
C- Freezing
D- Boiling

Answers

Freezing. When you freeze water, it becomes ice.

Which carboxylic acid has the lowest boiling point?

Answers

methanoic acid :33333

According to the forces of attraction, the carboxylic acid with  lowest boiling point is methanoic acid.

What are forces of attraction?

Forces of attraction is a force by which atoms in a molecule  combine. it is basically an attractive force in nature.  It can act between an ion  and an atom as well.It varies for different  states  of matter that is solids, liquids and gases.

The forces of attraction are maximum in solids as  the molecules present in solid are tightly held while it is minimum in gases  as the molecules are far apart . The forces of attraction in liquids is intermediate of solids and gases.

The physical properties such as melting point, boiling point, density  are all dependent on forces of attraction which exists in the substances.

Learn more about forces of attraction,here:

https://brainly.com/question/2122941

#SPJ6

How many chloride ions are present in 0.100 mol of MgCl2

Answers

To identify the amount of chloride ions present in 0.1 mol of MgCl2, first know the amount of mols of Chloride. The answer is 0.2 mol since you just need to multiply 0.1 to 2 because there are 2 chloride in the compound. Then, multiply the mols to 6.02x10^23. The answer would be 1.204x10^23 chloride ions. 

Answer : The number of chloride ions present in 0.100 mole of [tex]MgCl_2[/tex] are, [tex]1.2044\times 10^{23}[/tex]

Explanation : Given,

Moles of [tex]MgCl_2[/tex] = 0.100 mole

As we know that, 1 mole contains [tex]6.022\times 10^{23}[/tex] number of ions.

In [tex]MgCl_2[/tex], there are one magnesium ion and two chloride ions.

As, 1 mole [tex]MgCl_2[/tex] contains [tex]2\times (6.022\times 10^{23})[/tex] number of chloride ions.

So, 0.100 mole [tex]MgCl_2[/tex] contains [tex]0.100\times 2\times (6.022\times 10^{23})=1.2044\times 10^{23}[/tex] number of chloride ions.

Therefore, the number of chloride ions present in 0.100 mole of [tex]MgCl_2[/tex] are, [tex]1.2044\times 10^{23}[/tex]

The acceleration due to gravity on the surface of Mars is about one third the acceleration due to gravity on Earth’s surface. The weight of a space probe on the surface of Mars is about

Answers

Ok. I finally understood that you need to complete (fill in the blank) the last sentence: The weight of a space probe on the surface of Mars is about ______________

The answer is one third its weight on the surface of Earth.

You can find that by using the formula for the weight:

weight =  mass * acceleration due to gravity

So, given that the mass is constant and the acceleration due to gravity is one third, the weight is also one third.








Final answer:

On Mars, the acceleration due to gravity is about one-third of that on Earth, which means an object weighs significantly less on Mars compared to its weight on Earth.

Explanation:

The question pertains to the acceleration due to gravity on the surface of Mars compared to Earth. On Mars, the acceleration due to gravity is about one-third of that on Earth. Specifically, the gravitational acceleration on Mars is approximately 3.71 m/s², while on Earth, it is about 9.81 m/s². Thus, an object on Mars weighs significantly less than it does on Earth. For example, if a space probe weighs 100 pounds on Earth, on Mars, it would weigh roughly 38 pounds because the acceleration due to gravity on Mars is 0.38 that of Earth's gravity. This difference significantly impacts how objects move and respond to forces on Mars compared to Earth.

A 31.1 g wafer of pure gold, initially at 69.3 _c, is submerged into 64.2 g of water at 27.8 _c in an insulated container. what is the final temperature of both substances at thermal equilibrium?

Answers

Final answer:

The final temperature at thermal equilibrium can be calculated using the concept of conservation of energy and the specific heat capacities of gold and water.

Explanation:

To find the final temperature of the gold and water system when they reach thermal equilibrium, we need to apply the concept of conservation of energy. This concept suggests that in an isolated system, the heat lost by the hot object (the gold) will be equal to the heat gained by the cold object (the water). Since the system is at equilibrium, the heat lost is equal to the heat gained, hence the formula: Cgold × mgold × (Tinitial, gold - Tfinal) = -Cwater × mwater × (Tfinal - Tinitial, water), where Cgold and Cwater are the specific heat capacities of gold and water, T is the temperature and m is the mass.

We also need to know the specific heat capacities of gold and water. The specific heat capacity of gold is 0.129 J/g °C and for water, it's 4.18 J/g °C. Substituting those values along with the original temperatures and masses, we can solve for the final temperature, Tfinal.

Learn more about Thermal Equilibrium here:

https://brainly.com/question/29419074

#SPJ11

If 8.800 g of c6h6 is burned and the heat produced from the burning is added to 5691 g of water at 21 °c, what is the final temperature of the water?

Answers

the final temperature of the water is approximately [tex]\(4.009 C\)[/tex].

To find the final temperature of the water after adding the heat produced from burning 8.800 g of [tex]\(C_6H_6\)[/tex] (benzene), we'll use the concept of heat transfer and the specific heat capacity of water.

The heat released from the combustion of [tex]\(C_6H_6\)[/tex] will be transferred to the water, causing its temperature to increase. We'll use the equation:

Q = mcΔT

Where:

- Q is the heat transferred (in Joules)

- m is the mass of the water (in grams)

- c is the specific heat capacity of water (4.18 J/g°C)

- ΔT  is the change in temperature of the water (in °C)

First, we need to calculate the heat released from burning [tex]\(C_6H_6\)[/tex].

Given:

- Mass of [tex]\(C_6H_6\)[/tex] burned, [tex]\(m_{C_6H_6} = 8.800 \, g\)[/tex]

- Heat of combustion of [tex]\(C_6H_6\)[/tex], [tex]\(ΔH_{comb} = -3263 \, kJ/mol\)[/tex]

Using the molar mass of [tex]\(C_6H_6\) (\(M_{C_6H_6} = 78.11 \, g/mol\))[/tex], we can find the number of moles of [tex]\(C_6H_6\)[/tex] burned and then calculate the heat released.

Next, we'll use the equation for heat transfer to find the change in temperature of the water, and then add this change to the initial temperature of the water to get the final temperature.

Let's calculate step by step.

Step 1: Calculate the heat released from burning [tex]\(C_6H_6\)[/tex].

1. Find the number of moles of [tex]\(C_6H_6\)[/tex]:

[tex]\[n_{C_6H_6} = \frac{m_{C_6H_6}}{M_{C_6H_6}} = \frac{8.800 \, g}{78.11 \, g/mol} \approx 0.1128 \, mol\][/tex]

2. Calculate the heat released from burning [tex]\(C_6H_6\)[/tex] using its molar enthalpy of combustion:

[tex]\[Q_{comb} = n_{C_6H_6} \times ΔH_{comb} = 0.1128 \, mol \times (-3263 \, kJ/mol)\][/tex]

[tex]\[Q_{comb} = -368.112 \, kJ\][/tex]

Step 2: Calculate the change in temperature of the water.

1. Use the equation for heat transfer:

[tex]\[Q_{water} = mcΔT\][/tex]

Where [tex]\(Q_{water}\)[/tex] is the heat absorbed by water, \(m\) is the mass of water, c is the specific heat capacity of water, and \(ΔT\) is the change in temperature of water.

2. Rearrange the equation to solve for [tex]\(ΔT\)[/tex]:

[tex]\[ΔT = \frac{Q_{comb}}{mc}\][/tex]

Given:

- [tex]\(m_{water} = 5691 \, g\)[/tex]

- [tex]\(c_{water} = 4.18 \, J/g°C\)[/tex]

3. Substitute the values and calculate \(ΔT\):

[tex]\[ΔT = \frac{-368.112 \times 10^3 \, J}{(5691 \, g) \times (4.18 \, J/g°C)}\][/tex]

[tex]\[ΔT \approx -16.991°C\][/tex]

Step 3: Find the final temperature of the water.

Given:

- Initial temperature of water, [tex]\(T_{initial} = 21°C\)[/tex]

The final temperature [tex](\(T_{final}\))[/tex] of the water can be found by adding the change in temperature [tex](\(ΔT\))[/tex] to the initial temperature [tex](\(T_{initial}\))[/tex]:

[tex]\[T_{final} = T_{initial} + ΔT\][/tex]

[tex]\[T_{final} = 21°C - 16.991°C\][/tex]

[tex]\[T_{final} \approx 4.009°C\][/tex]

Therefore, the final temperature of the water is approximately [tex]\(4.009 C\)[/tex].

11. Which of the following accurately describes properties of valence? A. Nonmetallic elements tend to have a positive valence and tend to be electron borrowers. B. The smaller the number of electrons an atom has to borrow or to lend, the greater the activity of the atom. C. Metals tend to have a negative valence and tend to be electron borrowers. D. The greater the number of electrons an atom has to borrow or to lend, the greater the activity of the atom.

Answers

Atoms, the main constituents of matter, consist of positively charged protons and neutral neutrons within a nucleus which are surrounded by a sea of electrons that sit in distinct shells. The electrons on the outer shell are known as valence electrons. The valence can be descibed as the smaller number of electrons an atom has to borrow or to lend, the greater the activity.

The answer is B.


Considering light at the two ends of the visible light spectrum, violet light has a _____ wavelength and a _____ photon energy than red light.

Answers

Violet light has a shorter wavelength and greater amount of photon energy than red light. A short wavelength correlates to a higher energy. Of the wavelengths humans can see, violet waves have the shortest wavelength and therefore also have the most energy.

Final answer:

Violet light has a shorter wavelength and higher photon energy compared to red light, with violet having the shortest wavelengths and red the longest within the visible spectrum.

Explanation:

Considering light at the two ends of the visible light spectrum, violet light has a shorter wavelength and a higher photon energy than red light. In the visible light spectrum, violet light has the shortest wavelengths (approximately 400 nm) and thus carries the most energy. Conversely, red light has the longest wavelengths (approximately 700 nm) and carries the least amount of energy.

Sunlight, for example, which is blackbody radiation, peaks in the visible spectrum and has more intensity in the red than in the violet, giving the sun a yellowish appearance. The high energy of violet photons is why dyes that absorb violet light fade more quickly, and when you observe faded posters, the blues and violets are the last to fade.

The scattering of light by a colloidal suspension is called the

Answers

Answer: The correct answer is Tyndall effect.

Explanation:

Colloids are defined as the mixtures where the size of the particle is within the range of 2nm to 1000 nm. In these mixtures, physical boundary is seen between the dispersed phase and dispersed medium.

Tyndall effect is defined as the effect in which scattering of light takes place by the particles present in a colloid or in very fine suspension.

For Example: Scattering of sunlight by clouds

Thus, the correct answer is Tyndall effect.

The scattering of light by a colloidal suspension is known as the Tyndall effect.

What does this mean?

When a beam of light passes through a colloidal solution or a suspension, the suspended particles disperse and scatter the light.

This scattering is more pronounced when the suspended particles are larger in size compared to the wavelength of the light. The scattered light becomes visible, creating a cone or beam of light that is observable in the direction of the incident light. The Tyndall effect is often used to study and characterize colloidal systems, as it provides valuable information about particle size, concentration, and overall dispersion.

Read more about Tyndall effect. here:

https://brainly.com/question/23487849

#SPJ6

Could you please help

Answers

I would say D, because you need to start with nothing to measure the different sizes as they start to grow. hope this helps!

Caffeine (c8h10n4o2) is a weak base with a pkb of 10.4. part a calculate the ph of a solution containing a caffeine concentration of 430 mg/l .

Answers

Concentration of caffeine is 430 mg/L = 0.43g/L 
The molar mass of caffeine is 194.19 g/mol 

Therefore the molarity is:

Molarity = (0.43/194.19) mol/L 
Molarity = 0.002214 mol/L 
Molarity = 0.002214 M 

Given pKb = 10.4:

Kb = 10^-pKb = 10^ -10.4 = 3.981 x 10^ -11 

Kb is equivalent to:
Kb = [caffeine H+][OH-] / [caffeine] 
3.981 x 10^ -11 = [caffeine H+][OH-] / (0.002214) 
[caffeineH+][OH-] = 8.815 x 10^ -14 

But since:
[caffeineH+] = [OH-] 

Hence,

[OH-]^2 = 8.815 x 10^ -14 
[OH-] = 2.969 x 10^ -7 

The formula for pH is:

pH = 14 + log [OH-]

pH = 7.47
Final answer:

The pH of a solution containing a caffeine concentration of 430 mg/L is 4.75.

Explanation:

To calculate the pH of a caffeine solution, we can first use the provided pKb (10.4) to find the Kb, using the equation Kb = 10^(-pKb). We can then use the Kb to find the concentration of OH-, represented by the equilibrium C8H10N4O₂ (aq) + H₂O(1) ⇒ C8H10N4O₂H+ (aq) + OH¯ (aq). By inserting the equilibrium concentrations into the Kb expression and solving, we can find the OH- concentration.

The pH of a solution containing a caffeine concentration of 430 mg/L can be calculated using the equilibrium constant expression for caffeine. The equilibrium equation is: C8H10N4O2(aq) + H2O(l) ⇌ C8H10N4O2H+(aq) + OH-(aq). By substituting the given concentrations into the expression, the pH can be determined. The equation gives a pH of 4.75 for the solution.

Learn more about pH of a solution containing caffeine here:

https://brainly.com/question/6125764

#SPJ3

how does the structure of covalent bonds affects their structure.

Answers

Covalent bond is a type of chemical bond which is formed as a result of sharing of electron pairs among the elements that are involved. The structure of the covalent bond is affected by the electronegativity of the elements involved. The molecules joined by covalent bond range in size from very small to very large polymers. There are different types of structures for covalent substances, these include: macromolecular substances, molecular substances and giant covalent structures. Strong bonds hold individual molecules together but there are negligible forces of attraction among them.

How many calcium ions are in 0.3 mol of cacl2?

Answers

One mole of CaCl2 contains 1 mole of calcium.
Therefore, 0.3 moles of CaCl2 will contain 0.3 moles of calcium.

1 mole of calcium contains Avogadro's number of ions, therefore, 0.3 moles will contain:
number of ions = 0.3 * 6.02 * 10^23 = 1.806 * 10^23 ions
1.8 x 10^23 calcium ions Each mole of CaCl2 will produce 1 mole of calcium ions. So just multiply the number of moles of CaCl2 by avogadro's number. Therefore 0.3 * 6.0221409 x 10^23 = 1.806642 x 10^23 So there will be 1.8 x 10^23 calcium ions in 0.3 moles of CaCl2.
Other Questions
use co.patible numbers to find two estimates 734,858 What statement does the author make to emphasize that graffiti art is considered vandalism? How many grams of CO2 are used when 7.0 g of O2 are produced? It takes one machine 25 minutes to pick a bale of cotton and another machine 30 minutes to compete the same job. If both machines are used, how long will it take them to pick a bale of cotton? Which of the sexually transmitted diseases was left out of the center for disease control study referred to by mackinnon? HELP!!Lucita does the division problem 3.302 -1.27, and gets -0.026. She doesn't understand this result because she had estimated the answer to be -3. What was Lucita's mistake? (A)The decimal point should be to the left of the 2.(B)The decimal point should be to the left of the 6.(C)Lucita's estimate is too low.(D)Lucita's estimate is too high. What role does the oxidation agent play in a redox reaction Brainly use a matrix to find the solution to the system of equations -8x-8y=-16 6x-9y=-108 The number issued to physicians by the internal revenue service for income tax purposes is known as: Why do some absolute value equations have no solution? According to the monk's stories, what common trait do Nebuchadnezzar and Belshazzar share?A. Both lost their eyesight.B. Both made golden images to worship.C. Both were kings.D. Both lost their sanity. Which atoms in the cfc molecule can destroy thousands of ozone molecules in the upper atmosphere? PLEASE HELP WILL GIVE BRAINLIEST...! (:Which political division developed in the Ganges Valley?- city- city-state- nation- nation-state TWO EASY QUESTIONS 8TH GRADE MATH9. Complete the missing steps in the paragraph proof of Theorem 3-8.11. Solve for the value of x in the triangle shown below. Show your work! (1 point for equation, 1 point for answer) Which of the following is true about the Federal Advisory Committee (FAC)? It makes key decisions about interest rates. It collects information about economic conditions in each district. It controls the growth of the United States money supply. It consists of members elected by the constituents in their district. 99 points if you answer this question . and only if its right . i will check lolWhich obligations are among the Five Pillars of Islam? Select all that apply.meditating in silencespreading the faith to other peoplememorizing the Qurandeclaration of faithfasting during holy monthgiving charityDescription what are the limiting factors for a squirrel A truck accelerates at 5m/s2. Find the truck's mass if the driver applies a force of 425N(can you also show free diagram)? Solve the formula M = 2P + 3Q for the variable Q. _____ leadership is a form of leadership in which the leader solicits input from subordinates. Steam Workshop Downloader