Find the Volume and surface area of the following solid. Take Pi to be 22/7. ​

Find The Volume And Surface Area Of The Following Solid. Take Pi To Be 22/7.

Answers

Answer 1

Answer:

V= 32340cm^3

A= 5082cm^2

Step-by-step explanation:

Solution is in the picture. The area of the base of cone is not counted

Find The Volume And Surface Area Of The Following Solid. Take Pi To Be 22/7.
Answer 2
Final answer:

The formulas for volume and surface area largely depend on the type of solid. For a cylinder, the volume is computed by πR²h and the surface area is 2πr(h + r) where Pi (π) is 22/7. Apply these formulas using consistent units such as meters.

Explanation:

To compute the volume of a particular solid shape, you would first need to know the specific formula that applies to that shape. For example, the volume of a cylinder can be calculated using πR²h (where R is the radius, and h is the height), and the calculation would use the value 22/7 for Pi (π). The volume of a pillar segment where the cross-sectional area A is given and height h is known could be calculated by multiplying A by h.

Surface area calculations would also depend on the specific shape. The surface area of a cylinder, for example, is 2πr(h + r), with r as radius, h as height, and Pi as 22/7.

Without knowledge of the specific type of solid in question, more detailed steps cannot be provided. However, once the shape is identified, application of the right formulas with consistent units (such as meters) will yield both the volume and surface area of the solid.

Learn more about Volume and Surface Area here:

https://brainly.com/question/15585435

#SPJ3


Related Questions

Find the distance between the points (6,5√5) and (4,3√2).
2, 2√2, 2√3

Answers

Answer:

D=[tex]\sqrt{(147-30\sqrt{10}}[/tex]

Step-by-step explanation:

Here we are required to find the distance between two coordinates. We will use the distance formula to find the distance

The distance formula is given as

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Here we are given two coordinates as

[tex](6,5\sqrt{5} ) , (4,3\sqrt{2} )[/tex]

Substituting these values in the Distance formula given above we get

[tex]D=\sqrt{(6-4)^2+(5\sqrt{5} -3\sqrt{2}) ^2}[/tex]

[tex]D=\sqrt{(2)^2+(5\sqrt{5})^2+(3\sqrt{2})^2-2*5\sqrt{5}*3\sqrt{2}}\\[/tex]

[tex]D=\sqrt{4+125+18-2*15\sqrt{10}}\\D=\sqrt{147-30\sqrt{10}}\\[/tex]

Hence this is our answer

answer :

2 square of 3 is the answer

step-by-step explanation :

[tex]\sqrt({x} _{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} \\\\\sqrt({4} - 6})^{2} + (3\sqrt{2} - 5\sqrt{2} )^{2} \\\\= \sqrt(-2})^{2} + (-2\sqrt{2} )^{2} \\\\\\= \sqrt4 + 8 \\\\\\\\\\= \sqrt12 \\\\\\\\= 2\sqrt{3}[/tex]

H varies directly as L. If H=20 when L=50, determine H when L=30

Answers

The correct answer is 12

Set up a ratio and then solve. See paper attached. (:

Final answer:

H varies directly as L, and using the constant of direct variation from the given values (H=20 when L=50), we calculated the value of H to be 12 when L is 30.

Explanation:

The concept we are dealing with here is direct variation, which means we can set up a proportion based on the relationship that H varies directly as L. Given that H=20 when L=50, we can determine the constant of variation k by dividing H by L (H = k*L), which gives us k = 20/50 or k = 0.4. With the constant of variation, we can then find the value of H when L=30.

To do this, we use the formula for direct variation again with our constant k and the new value of L:

H = k * L = 0.4 * 30 = 12

Therefore, when L is 30, H is 12.

There are 24,000 square miles of forest in a western state. Forest fires decrease this area by 9.2% each year. The state needs to have
more than 15,000 square miles of forest to keep their funding from a nonprofit wildlife organization.
Which inequality represents this situation, and if the fires continue to decrease the area of the forests at the same rate, will the state be
able to keep their funding from the nonprofit wildlife organization in 5 years?
O
24,000(1.092) > 15,000; no
0
24,000(0.092) > 15,000; yes
0
24,000(0.908) > 15,000; no
0
24,000(1.098) > 15,000; yes​

Answers

Answer:

Part 1) [tex]24,000(0.908)^{5}> 15,000[/tex]

Part 2) No

Step-by-step explanation:

step 1

Let

x ----> the time in years

y ----> the area of the forests is square miles

we know that

The equation that represent this situation is a exponential function of the form

[tex]y=a(b)^{x}[/tex]

where

a is the initial value

b is the base

we have

[tex]a=24,000\ mi^{2}[/tex]

[tex]b=100\%-9.2\%=90.8\%=90.8/100=0.908[/tex]

substitute

[tex]y=24,000(0.908)^{x}[/tex]

The inequality that represent the situation is

[tex]24,000(0.908)^{x}> 15,000[/tex]

step 2

Verify if the state will be  able to keep their funding from the nonprofit wildlife organization in 5 years

For x=5 years

[tex]24,000(0.908)^{5}> 15,000[/tex]

[tex]14,813> 15,000[/tex] ----> is not true

therefore

The state will be not able to keep their funding from the nonprofit wildlife organization in 5 years

Answer:

24,000(0.908) > 15,000; no

Step-by-step explanation:

What value of c makes x2 − 12x + c a perfect square trinomial?

Answers

Answer:

for value 36

c makes the perfect square

x2 - 12x +36

= x2 - 2*6x +6^2

= (x-6)^2 #

Answer:  The required value of c is 36.

Step-by-step explanation:  We are given to find the value of c so that the following expression becomes a perfect square trinomial :

[tex]E=x^2-12x+c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

To find the value of c, we proceed as follows :

[tex]E\\\\=x^2-12x+c\\\\=(x^2-2\times x\times6+6^2)+c-6^2\\\\=(x-6)^2+c-36.[/tex]

So, for E to be a perfect square trinomial, we must have

[tex]c-36=0\\\\\Righatrrow c=36.[/tex]

Thus, the required value of c is 36.

If 3t -7 =5t, then 6t=

Answers

3t -7 = 5t
Minus 3t over

-7= 2t
t= -7/2

6(t) = 6(-7/2) = -42/2 = -21

6t = -21

Find the surface area of the sphere. Leave your answers in terms of pi.
Radius = 100
Surface Area = [ ? ] pi

Answers

The formula for surface area of a sphere is: A = 4 x PI x r^2

Replace r with the given radius and calculate the area:

Area = 4 x PI x 100^2

Area = 4 x PI x 10,000

Area = 40,000PI

I don't understand how to prove that this is an isosceles triangle.​

Answers

An isosceles has 2 equal sides so you can draw your triangle like this...

Check the picture below.

so, two tangents to the same circle, whenever they meet outside the circle, they'll be congruent, namely, AB = AX and CB = CY and DX = DY.

well, we know AB = BC, and we know that AB = AX and CB = CY, therefore

AB = BC = AX = CY = 10.

an isosceles needs twin sides, well, we know DX = DY, and we know that AX = 10 then the triangle's side AD = AX + DX = 10 + DX.

the triangle's side of CD = CY + DY = 10 + DY.

but but but, we know DX and DY are tangents to a common circle meeting outside, so they're equal, so whatever length DX and DY are, is the same, so

10 + DY = 10 + DX

meaning the triangle's sides AX = CD, and for an isosceles, is all you need, twin sides.

Given f(x) = 17-xwhat is the average rate of change in f(x) over the interval [1, 5]?

Answers

Answer:

The average rate of change in f(x) over the interval [1, 5] is -1

Step-by-step explanation:

Hi! Let me help you to understand this problem. Here we have the following function:

[tex]f(x) = 17-x[/tex]

We need to compute the Average Rate of Change (ARC) in [tex]f(x)[/tex] over the interval [tex][1, 5][/tex]. So what is the average rate of change of a function? In general, for a nonlinear graph whose slope changes at each point, the average rate of change between any two points [tex](x_{1},f(x_{1}) \ and \ (x_{2},f(x_{2})[/tex] is defined as the slope of that line through that two points. Here we have a linear function, so the average rate of change will be the slope of the line:

So:

[tex]ARC=m=-1[/tex]

This can also be calculated as:

[tex]ARC=\frac{f(x_{2})-f(x_{1})}{x_{2}-x_{1}} \\ \\ ARC=\frac{17-5-(17-1)}{5-1} \\ \\ ARC=-1[/tex]

Given f(x)= 3x-5 find f (x-2)

Answers

[tex]f(x-2)=3(x-2)-5=3x-6-5=3x-11[/tex]

Answer:

[tex] f ( x - 2 ) = 3 x - 1 1 [/tex]

Step-by-step explanation:

We are given the following function [tex] f ( x ) [/tex] and we are to find [tex] f ( x - 2 ) [/tex]:

To find [tex] f ( x - 2 ) [/tex], we would consider [tex] f ( x - 2 ) [/tex] as [tex] x [/tex] and substitute [tex] x - 2 [/tex] in place of [tex] x [/tex] so it would be:

[tex] f ( x - 2 ) = 3 ( x - 2 ) - 5 = 3 x - 6 - 5 = 3 x - 1 1 [/tex]

Which linear inequality is represented by the graph?

Answers

We must find the slope of the graph first, we can do this by finding two perfect points and inputting those points into the formula y2 - y1/x2 - x1

Perfect point #1: (0,1)

Perfect point #2: (2,5)

As mentioned above, input these numbers into our formula.

5-1 = 4

2 - 0 = 2

4/2 = 2

So, the slope of the graph is 2.

Now, we must find the y-intercept which can be found based on where the line intersects with the y-axis. As we can see, the line intersects at (0,1) therefore the y-intercept of the graph is 1.

We now form a linear equation:

y = 2x + 1

However, since this is linear equality graph we will replace the equal sign with an inequality symbol. The inequality symbol we can use is based on the direction of the shaded area. If shaded up, we use the "greater than symbol", if down then we use the "less than symbol".

The line also matters, if the line is dotted we use the normal inequality symbol, but if it is straight then we use one of the "equal to" inequality symbols.

As for our graph, we have a dotted line with the shaded area upwards. Therefore, we will be using the greater than symbol and not a "equal to" symbol.

So, our answer would be y > 2x + 1

A ship leaving port sails for 75 miles
in a direct 35° north of due east: Find
the magnitude of the vertical and
horizontal components.

Answers

Answer:

Vertical= 61.43 miles

Horizontal=43.02 miles

Step-by-step explanation:

We use the trigonometric ratios for a right angled triangle to calculate the components.

The vertical is the adjacent while the horizontal is the opposite.

The vertical is calculated as follows:

V= 75 Cos 35° =61.43 Miles

The magnitude of the horizontal H is calculated as follows:

H= 75 Sin 35° = 43.02 miles

Final answer:

Using trigonometric functions, the horizontal component of the ship's journey is found to be 61.44 miles to the east, and the vertical component is 43.02 miles to the north.

Explanation:

A ship leaving port sails for 75 miles in a direct 35° north of due east. To find the magnitude of the vertical and horizontal components, one can use trigonometric functions based on the angle provided. The horizontal (east) component can be found using the cosine function, and the vertical (north) component can be calculated using the sine function.

To calculate the horizontal (east) component: Horizontal Component = 75 miles * cos(35°) = 75 * 0.8192 = 61.44 miles.

To calculate the vertical (north) component: Vertical Component = 75 miles * sin(35°) = 75 * 0.5736 = 43.02 miles.

Therefore, the ship’s vertical component of movement is 43.02 miles to the north, and the horizontal component is 61.44 miles to the east.

Which function rule describes the pattern in the table? X: -2, -1, 0, 1, 2 Y: 0,-1,-2,-3,-4

Answers

Answer:

y = -x - 2.

Step-by-step explanation:

The function rule that describes the patter in the table is: y = -x - 2.

To prove that, we're going to test each given point:

For x= -2 ⇒  y = -(-2) - 2 = 0  ✅

For x = -1 ⇒ y = -(-1) - 2 = -1 ✅

For x = 0 ⇒ y = -(0) - 2 = -2 ✅

For x = 1 ⇒ y = -(1) - 2 = -3 ✅

For x = 2 ⇒ y = -(2) - 2 = -4 ✅

Then, we have just proved that the function rule that describes the patter in table is y = -x - 2

the population of one part of the city is recorded. in 2010 there was a population of 6500 people. from 2010 to 2014 our population increased by 10%. from 2014 to 2017, the population decreased by 6%. what was the population in 2017?​

Answers

Hello there!

Your question asks to find what was the size of the population in 2017

Answer: 6,721

In order to solve this problem, we're going to need to use the given information in the question in order to find the population in 2017.

Key information:

In 2010, population was 6500

In 2014, population increased by 10% from 2010

In 2017, population decreased by 6% from 2014.

With the information above, we can solve the problem.

We're going to start with 6500 as our starting population.

We know that the population increased by 10% in 2014, so we would multiply 6500 by 1.10.

[tex]6500*1.10=7,150[/tex]

The population in 2014 was 7,150.

We know that in 2017, the population decreased by 6% from the population in 2014. So we would find how much 6% is from 7,150 and then subtract that number.

[tex]7,150*.06=429\\\\7,150-429=6,721[/tex]

When you're done solving, you sohuld get 6,721.

The population in 2017 would be 6,721.

I hope this helps!Best regards, MasterInvestor

Answer:

6721

Step-by-step explanation:

the answer is 6721

cheryl bought 3.4 pounds of coffee thay cost $6.95 per pound. How much did she spend on coffee?

Answers

Answer:

2,085

Step-by-step explanation:

multiply 3 by 600 then 90 then 5 and then u add them all and u get ur answer

Rectangle with length labeled 24 feet and width labeled 14 feet.

What is the area of the rectangle?



76 ft2


168 ft2


38 ft2


336 ft2

Answers

Answer:

336 ft^2

Step-by-step explanation:

We are given the dimensions of a rectangle, length 24 feet and width 14 feet, and we are to find the area of this rectangle.

We know that the formula of area of rectangle is given by:

Area of a rectangle = l × w

Substituting the given values in the above formula to get:

Area of rectangle = 24 × 14 = 336 ft^2

Answer:

Area = 336 ft^2

Step-by-step explanation:

Given

Width of rectangle = w = 14 ft

Length of rectangle = l = 24 feet

The formula for finding the area of rectangle is:

Area = Length * width

It can also be denoted as:

A = l*w

Putting the given values of length and width, the area of given rectangle will be:

A = 24 ft * 14 ft

A = 336 ft^2

So, the area of given rectangle is 336 ft^2 ..

Find the greatest possible error for each measurement 4 1/2 oz

Answers

Answer:

0.05 oz

Step-by-step explanation:

Usually, the greatest number that is allowed for approximation, assuming that the number itself is obtained by approximation, is the greatest possible error of it.

It is usually half the place value of the last digit of the number.

Here we are given [tex]4\frac{1}{2}[/tex] oz which is equal to [tex]4.5[/tex] oz. The last digit is 5 which is at the tenth place (0.1) so the greatest possible error for this would be its half.

[tex]\frac{0.1}{2}[/tex] = 0.05 oz

Find the quotient: –3.5 and –0.875

Answers

Answer:

4

Step-by-step explanation:

-3.5/-0.875 = 4

Answer:

The answer is 4 or C

Step-by-step explanation:

Since its a negative-negative equation, the result is a positive number. So take this equation as 3.5/0.875. Your result will be four or C. Hope this helps!

which of the following describes a simple event
A.spinning a 2 on a spinner

B.spinning a 3 on a spinner and rolling a 1 on a dice

C.getting heads on a coin toss and rolling a 5 on a die

D.drawing a queen from a deck of cards and getting a tail on a coin toss

Answers

Answer: c. getting heads on a coin toss and rolling a 5 on a die

Step-by-step explanation:

solve sin (x)(sin(x)-1) =0

Answers

Answer:

[tex]x=n \pi[/tex] or [tex]x=2\pi n+\frac{\pi}{2}[/tex]

Step-by-step explanation:

The given trigonometric equation is;

[tex]\sin x(\sin x-1)=0[/tex]

By the zero product property;

[tex]\sin x=0[/tex] or [tex]\sin x-1=0[/tex]

For [tex]\sin x=0[/tex], the general solution is [tex]x=n \pi[/tex]

[tex]\sin x-1=0[/tex], [tex]\sin x=1[/tex], the general solution is [tex]x=2\pi n+\frac{\pi}{2}[/tex]

Therefore the general solution is:

[tex]x=n \pi[/tex] or [tex]x=2\pi n+\frac{\pi}{2}[/tex]

The solutions to the equation sin(x)(sin(x)-1) = 0 are:

x = 0, π, 2π, 3π, π/2, 3π/2, 5π/2, and so on.

We have,

To solve the equation sin(x)(sin(x)-1) = 0, we can apply the zero-product property, which states that if a product of factors is equal to zero, then at least one of the factors must be equal to zero.

So, we set each factor equal to zero and solve for x:

sin(x) = 0

To find the solutions for this equation, we look for x values where the sine function equals zero.

The solutions are x = 0, π, 2π, 3π, and so on.

sin(x) - 1 = 0

Adding 1 to both sides:

sin(x) = 1

The solutions for this equation occur when the sine function equals 1, which happens at x = π/2, 3π/2, 5π/2, and so on.

Therefore,

The solutions to the equation sin(x)(sin(x)-1) = 0 are:

x = 0, π, 2π, 3π, π/2, 3π/2, 5π/2, and so on.

Learn more about equations here:

https://brainly.com/question/17194269

#SPJ6

Which of the following properties is necessary to simplify the expression given below?

(–2) + 5(x – 3) – 4x(6 + 1)

Answers

Answer:

C. Distributive property

Step-by-step explanation:

The options to your question can be found in the image below.

the correct option is C. Distributive property

(to clear the parenthesis)

(–2) + 5(x – 3) – 4x(6 + 1)

= -2 + 5x -15 -24x -4x

= -17 +5x -28x

= -23x -17

Simplify: 2(8 - 2x4).

Answers

Answer:

2(8-8x)

Step-by-step explanation:

Distrubutive Property:

   ↓

A(B+C)=AB+AC

Multiply by the numbers from left to right.

4*2=8

Therefore the correct answer is 2(8-8x).

Answer:

16 - 4x^4

Step-by-step explanation:

Assuming x4 means x^4 or x to the 4th power

2(8 - 2x^4)

Distribute the 2

2*8 - 2 * 2x^4

16 - 4x^4

Match each pair of angle measures of a triangle with the remaining angle measure
119 degrees and 23 degrees
33 degrees
16 degrees and 10 degrees
BOOOO
65 degrees
20 degrees and 87 degrees
35 degrees
36 degrees and 51 degrees
62 degrees

Answers

Answer:

119, 23 - 38

16, 102 - 62

96, 51 - 33

28, 87 - 65

After matching each pair of angle with the remaining angle 1st pair - 38 degree-3rd option, 2nd pair - 62 degree -4th option,3rd pair -  65 degree- 2nd option,4th pair - 33 degree- 1st option

What is the angle sum property of a triangle ?

According to Angle sum property of a triangle, the sum of all the interior angles is equal to 180 degree.

It is given the question that

Four pairs of Angles are given , these pairs belong to a triangle and it is been asked to determine the third angle

Let the third angle is x for all the options

1. 119 degrees and 23 degrees

119+23+ x = 180

x = 38 degrees

2. 16 degrees and 102 degrees

16+102+x = 180

x = 62 degree

3. 28 degrees and 87 degrees

28+87 +x = 180

x = 65 degree

4. 96 degrees and 51 degrees

96 + 51+x = 180

x = 33 degree

Therefore the match is as follows

1st pair - 38 degree-3rd option

2nd pair - 62 degree -4th option

3rd pair -  65 degree- 2nd option

4th pair - 33 degree- 1st option

To know more about Angle Sum Property

https://brainly.com/question/4316040

#SPJ2

Combine these radicals. –23 –11

Answers

The answer to your question is -34

Answer:

-23

Step-by-step explanation:

subtract (-2x^2+9x-3)-(7x^2-4x+2)

Answers

For this case we must subtract the following expression:

[tex](-2x ^ 2 + 9x-3) - (7x ^ 2-4x + 2) =[/tex]

We must bear in mind that:

[tex]- * + = -\\- * - = +[/tex]

We rewrite the expression:

[tex]-2x ^ 2 + 9x-3-7x ^ 2 + 4x-2 =[/tex]

We add similar terms taking into account that equal signs are added and the same sign is placed, while different signs are subtracted and the sign of major is placed:

[tex]-2x ^ 2-7x ^ 2 + 9x + 4x-3-2 =\\-9x ^ 2 + 13x-5[/tex]

Answer:

[tex]-9x ^ 2 + 13x-5[/tex]

Answer: [tex]=-9x^2+13x-5[/tex]

Step-by-step explanation:

First, you need to remember the multiplication of signs:

[tex](+)(+)=+\\(-)(-)=+\\(-)(+)=-[/tex]

Then, to subtract the polynomials given, the first step is to distribute the negative sign:

[tex](-2x^2+9x-3)-(7x^2-4x+2)=-2x^2+9x-3-7x^2+4x-2[/tex]

And finally, you need to add the like terms.

With this procedure,  you get the following result:

[tex]=-9x^2+13x-5[/tex]

Idk what end behavior for this?

Answers

Answer:

It is b.

Step-by-step explanation:

When x is negative x^5 will also be negative.

f(x) = x^5 - 3x^3 + 2x + 4

As x  --> -∞ x^5 will  be the main factor for f(x) --->  -∞ .

Similarly  x^5 will have the greatest influence when x ---> ∞, so f(x) ---> ∞.

Answer:

b

Step-by-step explanation:

The end behaviour is what happens when x gets larger and positive ( right hand end ) or larger and negative ( left hand end ) Tis is called the end behaviour as x → + ∞ and x → - ∞ respectively

For a polynomial the end behaviour is determined by the term of greatest degree.

For the given function

f(x) = [tex]x^{5}[/tex] - 3x³ + 2x + 4 ← degree 5 polynomial

The leading coefficient is positive

• Odd degree, positive leading coefficient, then

as x → - ∞, f(x) → - ∞

as x → + ∞, f(x) → + ∞

----------------------------------------------------------------------

• Odd degree, negative leading coefficient, then

as x → - ∞, f(x) → f(x) → + ∞

as x → + ∞, f(x) → - ∞

Find the solution(s) to 7x - 42x = 0. Check all that apply.

Answers

Answer:

x=0

Step-by-step explanation:

7x - 42x = 0

Combine like terms

-35x = 0

Divide each side by -35

-35x/-35 = 0/-35

x = 0

Answer:

X=6

X=0

Step-by-step explanation:

On aP Ex

The perimeter of a rectangular field is 26 yards. The length is 4 more yards than twice the width. Find the length and width of the field.

A. Length = 8 yards; Width = 4 yards
B. Length = 10 yards; Width = 3 yards
C. Length = 13 yards; Width = 9 yards
D. Length = 8.5 yards; Width = 4.5 yards

Answers

The formula for perimeter is P = 2length + 2width (P = 2L + 2W)

You know that the length is 4 more yards then twice the width. In equation form this would be:

length = 4 + 2w

Plug what you know into the perimeter formula:

26 = 2(4 + 2w) + 2w

First you must distribute the 2 to the numbers inside the parentheses, which would be 4 and 2w...

26 = (2 * 4) + (2 * 2w) + 2w

26 = 8 + 4w + 2w

Now you must combine like terms. This means that first numbers with  the same variables (w) must be combined...

26 = 8 + 4w + 2w

4w + 2w = 6w

26 = 8 + 6w

Now bring 8 to the left side by subtracting 8 to both sides (what you do on one side you must do to the other). Since 8 is being added on the right side, subtraction (the opposite of addition) will cancel it out (make it zero) from the right side and bring it over to the left side.

26 - 8 = 8 - 8 + 6w

18 = 0 + 6w

18 = 6w

To isolate w divide 6 to both sides

18 / 6 = 6w / 6

w = 3

We know that the width is 3 ft

Now you must find the length. To do this plug 3 where you see w in the equation:

length = 4 + 2w

l = 4 + 2(3)

l = 4 + 6

l = 10

We know that length is 10 ft

Letter B. is the correct answer

Hope this helped!

~Just a girl in love with Shawn Mendes

Dianne purchased a ham for $45.15. How many pounds is the ham if it sells for $6.45 per pound?

Answers

it would be 7lbs, you divide the total amount by the amount per pound and you get the weight.

What is the solution to this equation?
5x + 9 - 3x = 18 + 15​

Answers

Answer:x=12

Step-by-step explanation:

5x+9-3x=18+15

First of all, in the case of a equation that has one vatiable having one power ,you need to bring all the variable together in one side.

5x-3x=18+15-9

0r,2x=18+6

Or,2x=24

Or,x=24/2

Or,x=12

So it's the solution..

Final answer:

To solve the equation 5x + 9 - 3x = 18 + 15, you simplify both sides of the equation to get 2x + 9 = 33. Then, you isolate x by subtracting 9 from both sides to get 2x = 24, and further divide by 2 to get x = 12. Therefore, x = 12 is the solution.

Explanation:

The question requires the solution for the equation 5x + 9 - 3x = 18 + 15. To start solving this, first simplify both sides of the equation. The left side simplifies to 5x - 3x + 9, which equals 2x + 9. The right side simplifies to 18 + 15, which equals 33.

So, 2x + 9 = 33. To isolate x, subtract 9 from both sides of the equation, and you'll get 2x = 24. Then divide both sides by 2, and you'll get x = 12.

This means that the solution to the equation 5x + 9 - 3x = 18 + 15 is x = 12.

Learn more about Equation Solving here:

https://brainly.com/question/18262581

#SPJ2

Which equation can be used to find 30 percent of 600

Answers

answer is 2nd equation

30x 6/100x6=180/600

Your answer is correct I do it in a different way is that

30/100 = 0.3

600x0.3 = 180
Hope this helps!
Other Questions
What is the measure of DG?Enter your answer in the box. The total cost for 9 bracelets, including shipping was $72. The shipping charge was $9. Define your variable and write an equation that models the cost of each bracelet.4. Use the equation you have written above determine the cost for each bracelet. Show the algebraic steps that it takes to find the answer. Provide your conclusion. Water and food are examples of ______ for populations. How to tell if two lines are perpendicular Which statement describes the reaction for cellular respiration?The equation is carbon dioxide + water glucose + oxygen + water and energy is required in the form of lightThe equation is glucose + oxygen carbon dioxide + water and energy is produced in the form of ATP.The equation is carbon dioxide + water glucose + oxygen + water and energy is produced in the form of ATP.The equation is glucose + Exygen carbon dioxide + water and energy is required in the form of light. What Christian belief does the excerpt show? what happened as the south continued to grow?more and more regions became dependent on slavery as a cheap source of labor.more and more regions became dependent on immigration.more and more regions became independent of slaverymany farmers headed to Canada to get wealthy from the fur trapping industry. Whats the common ratio of this sequence?3, 21, 147 giving 50 points if you can answer this. PLEASE HELP ME ATTACHMENT BELOWDrag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.Match the absolute value functions with their vertices. Explain how natural selection works What is the perimeter, P, of a rectangle that has a length of x + 8 and a width of y 1? P = 2x + 2y + 18 P = 2x + 2y + 14 P = x + y 9P = x + y + 7 What is the first step needed to solve 2/5x-6=-16? PLZ HELP I WILL GIVE BRAINLIEST What is the surface area of a sphere with radius 2? A. 8 pie units2 B. 4 pie units2 C. 2 pie units2 D. 16 pie units2 What is the percent by mass of sodium in Na2SO4? Consider the given function and the given interval. f\(x\) = 2 sin\(x\) - sin\(2 x\) text(, ) [0 text(, ) pi] (a) Find the average value fave of f on the given interval. fave = Correct: Your answer is correct. (b) Find c such that fave = f(c). (Enter solutions from smallest to largest. If there are any unused answer boxes, enter NONE in the last boxes. Round the answers to three decimal places.) Which bibliography entry is written correctly and completely?A.Johnson, Marie. The Solar Age. Chicago: Energy Options Press, 2014.B.Front page story. Houston Chronicle. 5 Apr 2013.C.Will Solar Work? Science News. March edition.D.Friends of Solar. Mother Earth Society, accessed 15 Jan 2014. Because ?ABC and ?CBD both have a right angle, and the same angle B is in both triangles, the triangles must be similar by AA. Likewise, ?ABC and ?ACD both have a right angle, and the same angle A is in both triangles, so they also must be similar by AA. The proportions and are true because they are ratios of corresponding parts of similar triangles. The two proportions can be rewritten as a2 = cf and b2 = ce. Adding b2 to both sides of first equation, a2 = cf, results in the equation a2 + b2 = cf + b2. Because b2 and ce are equal, ce can be substituted into the right side of the equation for b2, resulting in the equation a2 + b2 = cf + ce. Applying the converse of the distributive property results in the equation a2 + b2 = c(f + e). Which is the last sentence of the proof? Which of the sentences below is a negative t command that uses doubleobject pronouns and corresponds to the following sentence?No le pidas la talla grande al empleado.OA. No te la pidas.OB. Pdesela.Oc. No la pidas.OD. No se la pidas. A local public library decides to track the number of hours that a certain computer is being used. The table represents the number of hours, y, which is dependent on the number of days, x. What is the linear equation that represents this situation? Read the passage from the opinion of the court in Dred Scott v. Sandford, written by Justice Taney.Upon the whole, therefore, it is the judgment of this court, that it appears by the record before us that the plaintiff in error is not a citizen of Missouri, in the sense in which that word is used in the Constitution; and that the Circuit Court of the United States, for that reason, had no jurisdiction in the case, and could give no judgment in it. Its judgment for the defendant must, consequently, be reversed, and a mandate issued, directing the suit to be dismissed for want of jurisdiction.Which statement most accurately states the claim in this passage?Citizens of Missouri cannot sue in a court of the United States.Dred Scott cannot sue in court because he is not a citizen.Sanford should not have won the previous case in circuit court.The Constitutions definition of citizenship does not include Missouri. Steam Workshop Downloader