Answer:
114 degrees
Step-by-step explanation:
The formula to find the measure of all angles in a regular polygon is [tex](n-2)180[/tex], where n = total number of sides.
Thus, we substitute n for 10, and you get:
[tex](10-2)180=1440[/tex]
If the shape is a regular polygon and it has ten sides, meaning all sides are equal, then all you do is divide 1440 by 10, to get the final answer of 114.
A central angle in a regular ten-sided polygon would be 144 degrees.
Final answer:
The central angle of a regular polygon with 10 sides (a decagon) is calculated by dividing 360° by the number of sides, resulting in a central angle of 36°.
Explanation:
To find the measure of a central angle of a regular polygon with 10 sides (a decagon), we use the formula for the measure of each central angle:
Central Angle = 360° / Number of sides
Thus, the central angle of a regular decagon is:
360° / 10 = 36°
This is because the central angles are equally distributed around the center point, dividing the 360° of a circle evenly by the number of sides in the polygon.
What is the area of the obtuse triangle below
Solution:
Given :
Base of triangle = 19 Height of triangle = 11So, We have to find the area of Triangle .
Area of triangle = 1/2*b×h, Where represents
B represent Base H represent HeightStep : Substitute those value in Formula;
Area of triangle = 1/2 × b × h
Area of triangle = 1/2 × 19 × 11
Area of triangle = 104.5 units Square
Therefore, Option B is correct Answer.
Area of triangle is 104.5 units Square.
What is area of a triangle?One of the most fundamental geometric shapes is the triangle. The simplest and most widely used formula is area = 0.5 * b * h, where b is the triangle's base length and h is the triangle's height or altitude. Almost everyone knows this formula from school.
Given :
Base of triangle = 19
Height of triangle = 11
So, We have to find the area of Triangle .
Area of triangle = 1/2*b×h, Where represents
B represent Base
H represent Height
Step : Substitute those value in Formula;
Area of triangle = 1/2 × b × h
Area of triangle = 1/2 × 19 × 11
Area of triangle = 104.5 units Square
To know more about area of triangles refer to :
https://brainly.com/question/17335144
#SPJ2
Carolyn wants to deposit a check into her savings account. She should _____.
Carolyn wants to deposit a check into her savings account. She should sign the back of the check , complete a deposit slip, and visit the teller at the bank.
PLEASE HELP 13 POINTS
The formula for finding the circumference of the circle is 2 pi r or pi d. R stand for radius and D stand for diameter. The problem gave you the length of the diameter so can either put it in form of pi as in 30pi or multiply it by pi (3.14) which will give you the result of 94.2
Answer:
- 30pi
- 94.2
Are two equilateral triangles similar? if one triangle has a side length of 6 cm and the other has a side length of 10 cm, what is the scale factor?
Yes, they're similar.
Step-by-step explanation:
Triangles are similar when they have the same shape but vary in sizes. This is our case here. We have two equilateral ∆s which makes them similar but what differs them is the length. One is 6 and the other is 10. Although that doesn't affect anything in the triangle. If you drew a height to any base (in either triangle) it would still be a bisector, median, and perp bisector. Their angles are alsp equal.
Please help me I don’t understand!!
Answer:
A.) 30
Step-by-step explanation:
The entire figure consists of two angles supplementary to each other, which means that ∠YWZ + ∠ZWX = 180°. Since ∠ZWX is 20°, we know that ∠YWZ is 160°.
So now we have an equation to solve:
5x + 10 = 160
- 10 - 10
5x = 150
÷ 5 ÷ 5
x = 30
Write the equation x+5y-2= 0 in normal form. Then, find the length of the normal and the length and the angle makes with the positive x-axis.
Final answer:
The normal form of x + 5y - 2 = 0 is (1/√26)x + (5/√26)y - (2/√26) = 0. The length of the normal is 1, and the angle it makes with the positive x-axis can be calculated using tan θ = 5, which gives the angle as tan-1(5).
Explanation:
To rewrite the equation x + 5y - 2 = 0 in normal form, we need to express it in the form Ax + By + C = 0, where A2 + B2 = 1. The equation is already in this form, but we must divide each term by the square root of (12 + 52) to satisfy the condition for A2 + B2. After the division, the normal form becomes (1/√26)x + (5/√26)y - (2/√26) = 0.
The length of the normal is the magnitude of the vector (A, B), which in this case, is 1 due to the normalization. To find the angle θ that the normal makes with the positive x-axis, we use the relationship tan θ = B/A. For our equation, tan θ = 5/1, so θ = tan-1(5).
The analytical method of vector addition involves identifying the x- and y-components of vectors and merging them to calculate the resultant vector's magnitude and direction.
Round .796 to the nearest hundredth.
Answer:
The answer is .800
To round .796 to the nearest hundredth, we observe the third decimal place (6) and round up the second decimal place from 9 to 10, which effectively turns .796 into .80.
Explanation:The question asks us to round .796 to the nearest hundredth. To do this, we look at the third decimal place, which is 6. Since 6 is greater than 5, we round up the second decimal place from 9 to 10. However, since the second place cannot literally take the value of 10, it effectively rolls over and adds 1 to the first decimal place, changing .796 to .80. Therefore, the answer is .80 when rounded to the nearest hundredth.
If the following figure is rotated 90° counterclockwise about the origin, what is the new location?
Answer: Last option.
Step-by-step explanation:
We need to apply the Rule for 90° counterclockwise rotation about the origin. Given a point [tex]P(x,y)[/tex]:
[tex]P(x,y)[/tex] → [tex]P'(-y,x)[/tex]
We can observe in the figure that the coordinates of the points E, F, G and H are:
[tex]E (2,6)[/tex]
[tex]F(7,-4)[/tex]
[tex]G(-2,-7)[/tex]
[tex]H (-5,1)[/tex]
Then, applying the rule, we get the coordinates of the new location of the figure EFGH:
[tex]E (2,6)[/tex] → [tex]E'(- 6,2)[/tex]
[tex]F(7,-4)[/tex] → [tex]F'(4,7)[/tex]
[tex]G(-2,-7)[/tex] → [tex]G'(7,-2)[/tex]
[tex]H (-5,1)[/tex] → [tex]H'(-1,-5)[/tex]
HELP PLEASE A cylinder and its dimensions are shown. Which equation can be used to find V, the volume of the cylinder in cubic centimeters?
A)
V = π(4.5h)2
B)
V = π(9h)2
C)
V = π(4.5)2h
D)
V = π(9)2h
Answer:
WRONG THE ANSWER IS ACUALLY C
Step-by-step explanation:
I know this because i decided to take th4e test use his answer and it was wrong telling me the right answer it's (c).
The equation that can be used to find the volume of the cylinder is V = π(4.5)²h (option C).
Explanation:The equation that can be used to find the volume of the cylinder is V = π(4.5)²h (option C). To find the volume of a cylinder, you need to use the formula V = πr²h, where r is the radius of the base and h is the height of the cylinder. In this case, the radius is 4.5 cm and the height is not given, so it is represented as h. By substituting the values into the formula, you get V = π(4.5)²h.
what is the period of the function y = 2 sinx
Answer:
The period is 360° ( in radians, the period is 2π)
Step-by-step explanation:
For a sine/cosine (sinusoidal) function in the form
y = ASin(Bx-C) + D, we can say
A is the amplitude
360/B is the period
C is the phase shift
D is the vertical translation
The function given is y = 2Sinx
To find the period, we need 360/B. Since "B" is just "1", the period is
360/1 = 360
Answer:
The period of the function [tex]y = 2sinx[/tex] is [tex]2\pi[/tex]
Step-by-step explanation:
The sinosuidal functions have the following form
[tex]y = Asin (bx) +k[/tex]
Where A is the amplitude of the function
k is the vertical displacement
[tex]\frac{2\pi}{b}[/tex] is the period.
In this case we have the function
[tex]y = 2sinx[/tex]
Therefore the amplitude A = 2
The vertical displacement is k = 0
The period is [tex]\frac{2\pi}{1} = 2\pi[/tex] because b=1
Therefore the function completes a cycle every [tex]2\pi[/tex]
A sandwich shop offers a choice of 4 types of bread, 8 types of meat, and 4 types of cheese. How many different sandwiches could be made with 1 type of bread, 1 type of meat, and 1 type of cheese?
By using the counting principle in mathematics, the student can know that there are 128 possible sandwiches that can be made with one type of each ingredient.
Explanation:The question you're asking is related to the counting principle in mathematics. The counting principle suggests that if you can choose one item from 4 different types of bread, one from 8 types of meat, and one from 4 different types of cheese, the number of different sandwiches you could make is the product of these choices.
To calculate it, simply multiply the choices together like this: 4 (types of bread) * 8 (types of meat) * 4 (types of cheese) = 128. So, there are 128 different sandwiches that could be created with one type of each ingredient.
Learn more about Counting Principle here:https://brainly.com/question/33601419
#SPJ11
A book costs $12.50 plus sales tax. After tax it costs $13.25. What is the sales tax rate?
Answer:
The rate of sales tax is 6%.
Step-by-step explanation:
First you must subtract 12.50 from 13.25
This brings you to .75
Then, divide .75/12.50 to get 0.06 which is equivalent to 6 percent.
What is the approximate circumference of a circle with a radius of 60 inches use pi 3.14
Answer: 376.99 is the answer
ANSWER
The approximate circumference is 377 inches
EXPLANATION
The circumference of a circle is calculated using the formula
[tex]C=2 \pi \: r[/tex]
Where r=60 inches is the radius of the circle.
We substitute π=3.4 and the radius into the formula to obtain:
[tex]C=2 (3.14)(60) \: inch[/tex]
[tex]C = 376.8inches[/tex]
The approximate circumference of the circle is 377 inches.
What is the area of this face?
4
in.
1
Answer:
4
Step-by-step explanation:
Which epression is equivalent to (x^4/3 x^2/3)^1/3
Answer:
The correct answer is X²/³
Step-by-step explanation:
Points to remember
Identity
Xᵃ/Xᵇ = X⁽ ᵃ⁻ ᵇ ⁾
Xᵃ * Xᵇ = X⁽ᵃ ⁺ ᵇ⁾
(Xᵃ)ᵇ = Xᵃᵇ
To find the equivalent expression
We have, (X⁴/³ X²/³)¹/³
Using identities we can write,
(X⁴/³ X²/³)¹/³ = (X⁴/³ * X²/³)¹/³
= (X⁴/³ ⁺ ²/³)¹/³
= ( X⁽⁴⁺²⁾/³)¹/³
= (X⁶/³)¹/³
= (X²)¹/³
= X²/³
Therefore the correct answer is X²/³
Can someone pls help me???
Answer: its the one under the first one i think good luck adriana lol
Step-by-step explanation:
An Olympic swimmer competes in the same events during each long course swim season. A swimmer currently competing on the United States Women’s Olympic Swim Team, will swim her best events each year with the hope of continuous improvement. The following table is a record of the swimmer’s best times for the 100 meter freestyle event, measured in long course meters.
Long Course
Season Recorded
Best Time
2005 2:33.42
2006 2:24.81
2007 2:10.93
2008 2:03.45
2009 1:58.67
2010 1:59.17
2011 1:55.06
2012 1:55.82
2013 1:54.81
2014 2:00.03
Create a scatter plot representing the data displayed in the table.
Use the scatter plot to determine whether there is positive, negative or no correlation between the data values.
Write a conclusion statement regarding the data and the rate of change present in the line of best fit. Do not actually calculate the slope or write the equation for the line of best fit.
I don't know if you still need this but here you go
Answer: Equation for the line of best fit is given by
f(x)=-4.28402x+0.0875
Step-by-step explanation:
Long Course Season Recorded Best time
2005 2:33.42
2006 2:24.81
2007 2:10.93
2008 2:03.45
2009 1:58.67
2010 1:59.17
2011 1:55.06
2012 1:55.82
2013 1:54.81
2014 2:00.03
Since we can see from the scatter plot that it has negative correlation.
Equation for the line of best fit is given by
f(x)=-4.28402x+0.0875
WILL GIVE BRAINEST IF CORRECT!!!!!
The area of a triangle is 24 square inches. What is the height of the triangle if the base length is 8 inches?
Answer:
6 inches
Step-by-step explanation:
area of triangle = 1/2 b* h
24 = 1/2 * 8* h
4h = 24
divide both sides by 4
h = 6 inches
Area is 1/2 x base x height.
24 = 1/2 x 8 x H
Multiply both sides by 2:
48 = 8 x Height
Divide both sides by 8:
Height = 48 / 8
Height = 6 inches.
Given: KLIJ is inscribed in circle k(O)
m∠K = (9x+1)°,
m (arc) LI = (10x−1)°
m (arc) IJ = 59°,
m (arc) KJ =97°
Find: All angles of KLIJ
Check the picture below.
let's notice that the angle at K is an inscribed angle with an intercepted arc
[tex]\bf \stackrel{\textit{using the inscribed angle theorem}}{K=\cfrac{\widehat{LI}+\widehat{IJ}}{2}}\implies 9x+1=\cfrac{(10x-1)+59}{2} \\\\\\ 9x+1=\cfrac{10x+58}{2}\implies 18x+2=10x+58\implies 8x+2=58 \\\\\\ 8x=56\implies x=\cfrac{56}{8}\implies x=7 \\\\[-0.35em] ~\dotfill\\\\ K=9x+1\implies K=9(7)+1\implies \boxed{K=64}[/tex]
now, let's notice something again, the angle at L is also an inscribed angle, intercepting and arc of 97 + 59 = 156, so then, by the inscribed angle theorem,
∡L is half that, or 78°.
now, let's take a look at the picture down below, to the inscribed quadrilateral conjecture, since ∡J and ∡I are both supplementary angles, then
∡I = 180 - 64 = 116°.
∡J = 180 - 78 = 102°.
The measure of all the angle of KLIJ which is inscribed in circle k(O) are, 64, 78, 116, 102 degrees.
What is inscribed angle theorem?Inscribed angle theorem is the theorem, which state that the angle inscribed in a circle will be half of the angle which delimits the same arc on the circle.
The quadrilateral KLIJ is inscribed in circle k(O). In this the measure of the angle are given as,
[tex]m\angle K = (9x+1)^o[/tex]
m (arc) LI = (10x−1)°
m (arc) IJ = 59°,
m (arc) KJ =97°
All angles of the quadrilateral KLIJ has to be found out. By the inscribed angle theorem,
[tex]K=\dfrac{LI+IJ}{2}\\9x+1=\dfrac {10x-1+59}{2}\\18x+2=10x+58\\8x=56\\x=7[/tex]
Therefore, the value of the angle k is,
[tex]m\angle K = (9(7)+1)^o\\m\angle K = 64^o[/tex]
Similarly, the measure of the angle L is,
[tex]m\angle L=\dfrac{KJ+IJ}{2}\\m\angle L=\dfrac {97+59}{2}\\m\angle L=\dfrac{156}{2}\\m\angle L=78^o[/tex]
Now the angles I and J are the supplementary angles of the angle K and angle L respectively. Therefore,
[tex]m\angle I=180-m\angle K=180-64=116^o\\ m\angle J=180-m\angle L=180-78=102^o[/tex]
Hence, the measure of all the angle of KLIJ which is inscribed in circle k(O) are, 64, 78, 116, 102 degrees.
Learn more about the inscribed angle theorem here;
https://brainly.com/question/3538263
please helppppppppppp due tomarrow very easyyyyy
Answer: 6
Step-by-step explanation: -8 x -8 = 64
64 - -58 = 6
Answer:
The answer is 6.
Step-by-step explanation:
Since negative × negative = positive, therefore -8(-8)=64 and 64-58=6.
PLEASE HELP ASAP ON THIS PROBLEM
Answer:
The ball was dropped from 150 feet.
It will take the ball 3.06 seconds to reach the ground.
Step-by-step explanation:
A story is 10 feet.
You want to find the number of seconds for the ball to reach the ground, which is a height of 0. So you can put 0 in for h(t), and then solve that. If you need more help than that, let me know.
please answer will give points
Answer:
step 2
Step-by-step explanation:
Given step 1
324π = π × 12² h
Then second step should read
324π = π × 144h ← 144 not 24 is the error
The points (4, 1) and (x, -6) lie on the same line. If the slope of the line is 1 what is the value of x?
Answer:
The value of x is -3
Step-by-step explanation:
* Lets explain how to solve the problem
- The slope of a line that passes through points (x1 , y1) and (x2 , y2) is
[tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
* Lets solve the problem
∵ The points (4 , 1) and (x , -6) lie on the same line
∵ The slope of the line is 1
- Let the point (4 , 1) is (x1 , y1) and the point (x , -6) ix (x2 , y2)
∵ x1 = 4 , x2 = x and y1 = 1 , y2 = -6
∴ [tex]m=\frac{x-4}{-6-1}[/tex]
∴ [tex]m=\frac{x-4}{-7}[/tex]
∵ The slope of the line is m = 1
∴ [tex]\frac{x-4}{-7}=1[/tex]
- By using cross multiplication
∴ x - 4 = -7 ⇒ add 4 to both sides
∴ x = -3
* The value of x is -3
the value of x for the point on the line is -3.
The student is asking how to find the value of x for a point on a line with a given slope. Since the slope of the line is 1, we can use the slope formula, which is (y2 - y1) / (x2 - x1) = slope, to find the value of x. Here, we have two points, (4, 1) and (x, -6), and a slope of 1.
Using the formula, we get (-6 - 1) / (x - 4) = 1. Simplifying, we get -7 / (x - 4) = 1. To find the value of x, we solve the equation -7 = x - 4, which gives us x = -3. So, the value of x for the point on the line is -3.
5.The university book store sells pennants in two sizes. The pennants are similar right triangles . The small pennants is represented by triangle ABC in the largest pennants is represented by triangle XYZ. If B is 35 what is the Measure of Z?
Answer:
55 deg
Step-by-step explanation:
In triangle ABC, angle A is a right angle, so angles B and C are complementary; their measures add to 90 deg.
m<C + m<B = 90
m<C + 35 = 90
m<C = 90 - 35
m<C = 55
Angle Z corresponds to angle C, so angles Z and C are congruent.
m<Z = m<C = 55
Solve the following equation. Then place the correct number in the box provided.
4(3 - 2x) = 15
Answer:
Step-by-step explanation:
4(3-2x)=15
Distribute 4:
12-8x= 15
Subtract 12:
-8x= 3
Divide
X= -3/8 or -0.375
ANSWER
[tex]x = - \frac{3}{8} [/tex]
EXPLANATION
The given equation is:
4(3 - 2x) = 15
Expand the parenthesis to obtain:
12-8x=15
Group similar terms to get;
-8x=15-12
Combine similar terms to get:
-8x=3
Divide both sides by -8
[tex]x = - \frac{3}{8} [/tex]
Find all polar coordinates of point P where P = ordered pair 4 comma negative pi divided by 3.
Answer:
[tex](4,-\frac{\pi}{3}+2n\pi)[/tex] And [tex](-4,-\frac{\pi}{3}+(2n+1)\pi).[/tex]
Hope this helps you out!
Answer:
All the polar coordinates of point P are [tex]P(4,-\frac{\pi}{3})=(4,2n\pi-\frac{\pi}{3})[/tex] and [tex]P(4,-\frac{\pi}{3})=(-4,(2n+1)\pi-\frac{\pi}{3})[/tex], where n is any integer and θ is in radian.
Step-by-step explanation:
It a polar coordinate is given as P(r,θ), then all the polar coordinates of point P are defined as
[tex]P(r,\theta)=(r,2n\pi+\theta)[/tex]
[tex]P(r,\theta)=(-r,(2n+1)\pi+\theta)[/tex]
Where, n is any integer and θ is in radian.
The given point is
[tex]P(4,-\frac{\pi}{3})[/tex]
So, all the polar coordinates of point P are defined as
[tex]P(4,-\frac{\pi}{3})=(4,2n\pi-\frac{\pi}{3})[/tex]
[tex]P(4,-\frac{\pi}{3})=(-4,(2n+1)\pi-\frac{\pi}{3})[/tex]
Therefore all the polar coordinates of point P are [tex]P(4,-\frac{\pi}{3})=(4,2n\pi-\frac{\pi}{3})[/tex] and [tex]P(4,-\frac{\pi}{3})=(-4,(2n+1)\pi-\frac{\pi}{3})[/tex], where n is any integer and θ is in radian.
If the outliers are not included, what is the mean of the data set?
76, 79, 80, 82, 50, 78, 83, 79, 81, 82
A. 77
B. 78
C. 79
D. 80
Answer:
78
Step-by-step explanation:
78 is the answer because if you count inwards then you get 78
Answer:
D
Step-by-step explanation:
add them all except 50 divide by 9 because only used 9.
Two fitness clubs are adding new members. Fitness Club A currently has 450 members and adds 15 new members each month. Fitness Club B currently has 400 members and adds 25 new members each month.
After how many months will Fitness Club A and Fitness Club B have the same number of members?
Answer:4 months
Step-by-step explanation:
if you go by members for each group. group A has 450 but adds in 15 members each month. group B has 25 members each month. not take 25 and multiply it by 4 it equals to 100. and multiply 15 by 4 equals 50. which makes group B 500. and group A 500.
After 5 months, Fitness Club A and Fitness Club B will have the same number of members.
What is an expression?An expression contains one or more terms with addition, subtraction, multiplication, and division.
We always combine the like terms in an expression when we simplify.
We also keep all the like terms on one side of the expression if we are dealing with two sides of an expression.
Example:
1 + 3x + 4y = 7 is an expression.
3 + 4 is an expression.
2 x 4 + 6 x 7 – 9 is an expression.
33 + 77 – 88 is an expression.
We have.
We can solve this problem by setting up an equation to represent the number of members at each club after a certain number of months and then solving for the number of months that makes the number of members equal.
Let's use "m" to represent the number of months:
Number of members at Club A after m months = 450 + 15m
Number of members at Club B after m months = 400 + 25m
To find when the two clubs will have the same number of members, we can set these two expressions equal to each other and solve for m:
450 + 15m = 400 + 25m
Subtracting 400 from both sides:
50 + 15m = 25m
Subtracting 15m from both sides:
50 = 10m
Dividing both sides by 10:
m = 5
Therefore,
After 5 months, Fitness Club A and Fitness Club B will have the same number of members.
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ3
Find the volume in ft cubed
Answer:
7x6x2= 84 ft cubed
Step-by-step explanation:
multiply length by width by height
Can I get help with 18 and 22 please
Answer:
18. 36.36%
22. 53.71
Step-by-step explanation: