Find the exact length of the curve. y = 3 + 2x3/2, 0 ≤ x ≤ 1

Answers

Answer 1

The exact length of the curve [tex]\(y = 3 + 2x^\frac{3}{2}\)[/tex] over the interval [tex]\(0 \leq x \leq 1\)[/tex] is [tex]\(\frac{2}{27} (10\sqrt{10} - 1)\)[/tex].

To find the exact length of the curve [tex]\(y = 3 + 2x^\frac{3}{2}\)[/tex] over the interval [tex]\(0 \leq x \leq 1\)[/tex], we can use the formula for arc length of a curve:

[tex]\[ L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \][/tex]

where a and b are the lower and upper bounds of the interval, respectively.

First, we need to find [tex]\(\frac{dy}{dx}\)[/tex], which represents the derivative of y with respect to x:

[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(3 + 2x^\frac{3}{2}) = 0 + 3x^\frac{1}{2} = 3\sqrt{x} \][/tex]

Next, we substitute this derivative into the formula for arc length:

[tex]\[ L = \int_{0}^{1} \sqrt{1 + (3\sqrt{x})^2} dx = \int_{0}^{1} \sqrt{1 + 9x} dx \][/tex]

Now, we need to integrate [tex]\(\sqrt{1 + 9x}\)[/tex]L with respect to \(x\). We can do this by making a substitution. Let u = 1 + 9x, then du = 9dx and \(dx = \frac{du}{9}\). Substituting these into the integral, we get:

[tex]\[ L = \frac{1}{9} \int_{1}^{10} \sqrt{u} du \][/tex]

Now, we can integrate [tex]\(\sqrt{u}\)[/tex]:

[tex]\[ L = \frac{1}{9} \left[\frac{2}{3}u^\frac{3}{2}\right]_{1}^{10} = \frac{2}{27} \left[10^\frac{3}{2} - 1^\frac{3}{2}\right] \][/tex]

[tex]\[ L = \frac{2}{27} (10^\frac{3}{2} - 1) \][/tex]

[tex]\[ L = \frac{2}{27} (10\sqrt{10} - 1) \][/tex]

So, the exact length of the curve [tex]\(y = 3 + 2x^\frac{3}{2}\)[/tex] over the interval [tex]\(0 \leq x \leq 1\)[/tex] is [tex]\( \frac{2}{27} (10\sqrt{10} - 1) \)[/tex].


Related Questions

angle LMP and angle PMN are complementary. Find the value of x.

A. 22.5
B. 7.5
C. 15
D. 30

Answers

complimentary angles add up to 90 degrees

2x + 4x = 90
6x = 90
x = 90/6
x = 15 <==
The answer is C because if you multiply 15 * 4 and 15 * 2 it will sum to 90

What is the work done by moving in the force field f~ (x, y) = h2x 3 + 1, 2y 4 i along the parabola y = x 2 from (−1, 1) to (1, 1)?

a.compute directly

b.use the theorem?

Answers

The force field seems to be

[tex]\mathbf f(x,y)=\langle2x^3+1,2y^4\rangle[/tex]

(though it's not entirely clear whether that's it...)

The parabolic path can be parameterized by

[tex]\mathbf r(t)=\langle t,t^2\rangle[/tex]

where [tex]-1\le t\le1[/tex]. Then the work done by the field along the path is

[tex]\displaystyle\int_C\mathbf f(x,y)\cdot\mathrm d\mathbf r=\int_{t=-1}^{t=1}\langle2t^3+1,2t^8\rangle\cdot\langle1,2t\rangle\,\mathrm dt[/tex]
[tex]=\displaystyle\int_{-1}^1(2t^3+1+4t^9)\,\mathrm dt[/tex]
[tex]=2[/tex]

Not sure what theorem is being referred to in part (b). Perhaps you mean the gradient theorem? In which case you would need to show that there's a scalar function [tex]f(x,y)[/tex] such that [tex]\nabla f(x,y)=\mathbf f(x,y)[/tex]. We have

[tex]\nabla f(x,y)=\left\langle\dfrac{\partial f}{\partial x},\dfrac{\partial f}{\partial y}\right\rangle=\left\langle2x^3+1,2y^4\right\rangle[/tex]

from which we have

[tex]\dfrac{\partial f}{\partial x}=2x^3+1\implies f(x,y)=\displaystyle\int(2x^3+1)\,\mathrm dx[/tex]
[tex]\implies f(x,y)=\dfrac12x^4+x+g(y)[/tex]

[tex]\implies\dfrac{\partial f}{\partial y}=g'(y)=2y^4[/tex]
[tex]\implies g(y)=\dfrac25y^5+C[/tex]

[tex]\implies f(x,y)=\dfrac12x^4+x+\dfrac25y^5+C[/tex]

We have a candidate for a potential function, so we apply the gradient theorem, which asserts that the value of the line integral is path independent and can be determined by evaluating the potential function at the endpoints of the path. We then have

[tex]\displaystyle\int_C\mathbf f(x,y)\cdot\mathrm d\mathbf r=f(1,1)-f(-1,1)[/tex]
[tex]=\dfrac{19}{10}-\left(-\dfrac1{10}\right)[/tex]
[tex]=2[/tex]

as expected.

Raina makes eight dollars for each hour of work. Write an equation to represent her total pay p after working h hours

Answers

p=8h is the equation which shows the total pay is 8 times the number of hours worked.
P= 8h

P is her total pay
h is the amount of hours so if she works one hour she makes 8x 1
2 hours 8x2 and so on

Two way Frequency table question

Answers

Answer: choice A

---------------------------------------------------------------------
---------------------------------------------------------------------

Work Shown:

P(TV) = (number who watch tv)/(number total)
P(TV) = 30/100
P(TV) = 0.30

P(Girl) = (number of girls)/(number total)
P(Girl) = 55/100
P(Girl) = 0.55

P(TV)*P(Girl) = 0.30*0.55 = 0.165 which rounds to 0.17
We'll use this value later. So let's call this M = 0.17

Look in the "girl" row and "tv" column. The value 17 is here.
This is out of 100 people total, so
P(TV and Girl) = 17/100 = 0.17
Call this value N = 0.17

Because M = N = 0.17 approximately, this means that the two variables "TV" and "Girl" are approximately independent

So the equation P(TV and Girl) = P(TV)*P(Girl) is approximately true in this example.

This points to choice A being the answer.

PLEASE HELP!!! IMAGE ATTACHED FIND THE AREA OF THE FIGURE ABOVE

Answers

The area of the rectangle is equal to length times width, or 9*11=99 in^2.
The area of the parallelogram is equal to base times height, or 9*11=99.
The area of a triangle is equal to half of base times height, or 11*6/2=33.
Add these values together to get 231 or C

Answer:

231in

Step-by-step explanation:

To the nearest hundredth, what is the circumference of a circle with a radius of 4 units.

A. 201.06
B. 50.27
C. 12.57
D. 25.13

Answers

C = 2 * (pi) * r
C = 2 * 3.14 * 4
C = 25.12.....its gonna be 25.13...because I rounded (pi)

Answer:

it Is D

Step-by-step explanation:

just did it

(NEED HELP!!!)Which of the following lines is perpendicular to y= 3x + 2?

A. y=3x -1/2

B. y=-1/3x+6

C. y=1/3x+2

D. y=3x+1/2

Answers

The correct answer is:  [B]:  " y = (-⅓)x  + 6 " .
____________________________________________________________

Answer:

[tex]y=\frac{-1}{3}x+6[/tex]

Step-by-step explanation:

We have to find the equation of the line from the options given which is perpendicular to the line y=3x+2.

In order to do so we must know that , the product of the slope of the two perpendicular lines is always -1

Hence

if the slope of line A is "m" and the line B which is perpendicular to A, will have [tex]-\frac{1}{m}\\[/tex]

Also , in the slope intercept form of any equation the coefficient of x is our slope. Hence the slope of y=3x+2., is 3

Hence the slope of any line perpendicular to this will be [tex]\frac{-1}{3}[/tex]

as the product of two slopes is -1

Hence in the given options only c options has the line whose slope is  [tex]\frac{-1}{3}[/tex]

A model rocket is launched with an initial upward velocity of 67/ms. The rocket's height h (in meters) after t seconds is given by the following.

h= 67t-5t^2

Find all values of t for which the rocket's height is 30 meters.

Round your answer(s) to the nearest hundredth.
(If there is more than one answer, use the "or" button.)

Answers

Step-by-step explanation:

The rocket's height h (in meters) after t seconds is given by:

[tex]h=67t-5t^2[/tex]

67 m/s is the initial upward velocity of the rocket. We need to find the values of t for which the rocket's height is 30 meters. So equation (1) becomes :

[tex]67t-5t^2=30[/tex]

[tex]67t-5t^2-30=0[/tex]

The above equation is a quadratic equation. We need to find the value of t.After solving the quadratic equation, we get the values of t are :

t = 0.464 seconds = 0.46 seconds

or

t = 12.936 seconds = 12.94 seconds

Hence, this is the required solution.

Final answer:

The rocket's height is 30 meters at t = 3.79 seconds or t = 0.54 seconds after launch, when solved using the quadratic formula applied to the given equation.

Explanation:

To find all values of t for which the rocket's height is 30 meters according to the given quadratic equation h = 67t - 5t2, we need to set the equation equal to 30:

30 = 67t - 5t2

Moving all terms to one side, we obtain:

0 = 5t2 - 67t + 30

Now, we can solve this quadratic equation using the quadratic formula:

t = (-b ± sqrt(b2 - 4ac)) / (2a)

Here, a = 5, b = -67, and c = 30. Plugging these values into the formula we get:

t = (67 ± sqrt(672 - 4 * 5 * 30)) / (10)

Calculating the discriminant and then computing the values for t:

t = 3.79 or t = 0.54

Therefore, the rocket is at 30 meters at approximately t = 3.79 seconds or t = 0.54 seconds after launch, rounded to the nearest hundredth.

Learn more about Quadratic Equations here:

https://brainly.com/question/30098550

#SPJ3

At maximum speed, an airplane travels 2460 miles against the wind in 6 hours. Flying with the wind, the plane can travel the same distance in 5 hours.
Let x the maximum speed of the plane and y be the speed of the wind. What is the speed of the plane with no wind?

Answers

Final answer:

The speed of the plane with no wind is 451 miles per hour.

Explanation:

Let's solve this problem step-by-step:

We are given that the airplane travels 2460 miles against the wind in 6 hours at maximum speed. This means that the speed of the airplane relative to the ground is its maximum speed minus the speed of the wind. So, the equation is: x - y = 2460/6 or x - y = 410 (where x is the maximum speed of the plane and y is the speed of the wind). We are also given that the airplane can travel the same distance with the wind in 5 hours. This means that the speed of the airplane relative to the ground is its maximum speed plus the speed of the wind. So, the equation is: x + y = 2460/5 or x + y = 492. To find the speed of the plane with no wind, we can add the two equations: (x - y) + (x + y) = 410 + 492. This simplifies to: 2x = 902. Dividing both sides by 2, we get: x = 451. Therefore, the speed of the plane with no wind is 451 miles per hour.

X+y/3 =5 solve for (x)

Answers

Given x+y/3=5, to make x the subject we proceed as follows;
x+y/3=5
subtract y/3 from both sides we get:
x+y/3-y/3=5-y/3
hence;
x=5-y/3
this can also be written as:
x=(15-y)/3

salas little brother is learning to talk. he has a vocabulary of 30 words. each week his vocabulary grows by about 6%. at this rate how many words will he know 5 weeks from now

Answers

30 * (1+0.06)^5=

30* 1.338225578 = 40.146

 he will know 40 words in 5 weeks

On a 10-item test, three students in professor hsin's advanced chemistry seminar received scores of 2, 5, and 8, respectively. for this distribution of test scores, the standard deviation is equal to the square root of

Answers

The standard deviation is 5 because (2+5+8)/3=5. So the equal square root is square root of 25

The probability that an american industry will locate in shanghai, china, is 0.7, the probability that it will locate in beijing, china, is 0.4, and the probability that it will locate in either shanghai or beijing or both is 0.8. what is the probability that the industry will locate

Answers

The answer to this equation is 0.5

The original price of a couch is $650. It is on sale for $546. What is the percent change in the price off the couch?

Answers

%change=100(final-initial)/initial

%change=100(546-650)/650

%change= -16%

So 16% was taken off of the original price.

A normal curve is ___________ about the mean. consequently, 50% of the total area under a normal distribution curve lies on the left side of the mean, and 50% lies on the right side of the mean.

Answers

In statistics, when you gather data points for the same test, you construct a distribution graph. For example, you make a statistics based on the score of a class for a 145-item test. You graph it based on frequency such as, 10 students got 50 points and so and so forth. When that test have a few outliers and have more or less the same score, you form a normal distribution graph. It is more commonly known as the Gaussian Bell Curve. An example would be shown in the picture.

A normal distribution curve is symmetric about the mean. As a result, the area under the curve on the left side of the mean would be equal to the area under the curve on the right side of the mean. So, each would constitute 50%.

At an amusement park, Corey spends 7 minutes on a ride for every 20 minutes he spends waiting in lines. If he waits in line for 60 minutes, how many minutes does he spend on rides? [Type your answer as a number.]

Answers

he rides for 7 min and waits in line for 20 min, if he was to wait in line for 60 min then he would ride for 21 min, if you divide 20/60 then you'll get 3. Multiply the 7 with that 3 and you'll get "21".

Answer:

21

Step-by-step explanation:

True or false? in order to inscribe a circle in a triangle, the circle's center must be placed at the circumcenter of the triangle

Answers

Answer:

False.

Step-by-step explanation:

A inscribe circle in a triangle means to draw the biggest circle possible inside such triangle. To do that perfectly, we first have to find the incenter of the circle, which is the intersection of all three internal bisector of the triangle, that point is the center of the inscribed circle.

Therefore, the statement is false.

In addition, a circumcenter allow to perfectly draw a circumscribed circle, which is outside the triangle, which is not the case here.

An image showing the inscribed circle is attached.

Answer:

false

Step-by-step explanation:

a lab researcher wants to find out whether mice will run through a maze quicker during the day or at night, after training. Describe what is being measured in this experiment and what variable is being manipulated?

Answers

The goal of any experiment is to test the hypothesis by adjusting the independent variables so you can see the trend of the dependent variable that you want to investigate. The independent variables are parameters that you manipulate. In this experiment, that would be the time of day. You have two independent variables: night and day. The speed of the mice is the parameter that you will measure. Once you do these set-up, you can conclude in the end the effect of the time of day on the speed of the mice. 

Two numbers have a sum of 30 and a product of 209. what is the positive difference between them?

Answers

y + x = 30
xy = 209
y = 30 -x
x(30-x) = 209
30x - x^2 = 209
x^2 - 30x + 209 = 0
x = 19
y = 11

the difference is 19-11 = 8


The numbers are 11 and 19.

Given to us,Sum of the two numbers = 30,Product of the two numbers = 209,

Assumption

Let's assume that the first number be a and the second is b.

equation 1,

a + b = 30

equation 2,

ab = 209

Therefore, in equation 1,

[tex]a\times b = 209\\b= \dfrac{209}{a}[/tex]

substitute the value of b in equation 1,

[tex]a+b=30\\\\a+\dfrac{209}{a}=30\\\\\dfrac{a^2+209}{a} =30\\\\a^2 +209 = 30a\\a^2-30a +209 = 0[/tex]

[tex]a^2 -30a+209= 0\\a^2 -19a-11a+209= 0\\a(a-19)-11(a-19)=0\\(a-11)(a-19)=0[/tex]

Substituting the factor against 0,

[tex](a-11) = 0\\a = 11\\\\(a-19)=0\\a = 19[/tex]

Therefore, the numbers are 11 and 19.

Learn more about factorization:

https://brainly.com/question/6810544

What is the solution of y − 4x = 0 and 3x + 6y = 9?

Answers

You solve this by plugging one equation into the other. Usually you have to rewrite one equation to make this work. In this case I choose to rewrite y-4x=0 as y=4x.

After plugging it into the second, you get:

3x + 6*4x = 9 => 27x = 9 => x=1/3

Putting this solution back into y=4x gives us y=4/3

reflecting over which line will map the rhombus onto itself

Answers

y = -2x

because every point of the rhombus vertex will reflect on the opposite vertex.

Which of the following is the correct expanded form for the series below?

A. 1+1+1/2+1/6
B.1+1/2+1/6+1/24
C.1+2/3+1/2+2/5
D.4+2+2/3+1/6

Answers

Answer: Option A is correct  that is [tex]1 +1+\frac{1}{2} +\frac{1}{6}[/tex]

Explanation:

we will substitute the values of n in given expression

[tex]\sum_{n=1}^{4}\frac{n}{n!}[/tex]

when substituting n=1 we get  in [tex]\sum_{n=1}^{4}\frac{n}{n!}[/tex]=[tex]\frac{1}{1!}[/tex]

when n=2  we get [tex]\frac{2}{2!}[/tex]

when n =3 we get [tex]\frac{3}{3!}=\frac{3}{6}=\frac{1}{2}[/tex] ;3 factorial that is 3! = 3 *2*1 = 6

when n=4 we get  [tex]\frac{4}{4!}=\frac{4}{24}=\frac{1}{6}[/tex];4! = 4*3*2*1 = 24

Note: factorial means the product of the terms getting multiplied  till 1

suppose n! will be equal to n(n-1)(n-2)(n-3).......1




Final answer:

The correct expanded form for the series is Option B, which represents the sum of inverse factorials up to 1/3! The other options do not accurately depict the factorial series.

Explanation:

The correct expanded form for the series given would be the option that correctly represents the sum of the factorial terms in the sequence. The series in the choices seems to depict a sum of inverse factorials. Factorials are mathematical expressions that involve multiplying a series of descending natural numbers. The factorial of a number n is represented as n! and is equal to n × (n-1) × (n-2) × … × 1. Therefore, 0! and 1! are both equal to 1, while 2! is equal to 2, 3! equals 6, and 4! equals 24, and so on.

By applying this logic to the options:

Option A is incorrect because 1/6 is equivalent to 1/3! not 1/4!.Option B, 1 + 1/2 + 1/6 + 1/24, correctly represents the sum 1/0! + 1/1! + 1/2! + 1/3!.Option C is incorrect as the sequence of numbers does not represent factorials.Option D is incorrect because the numbers do not follow the pattern of the inverse factorial sequence.

Therefore, the correct answer is Option B.

Who can help me with that one please ? Thanks!

Answers

∠APB is an inscribed angle  
The measure of the intercepted arc is twice that of the inscribed angle ⇒
arc AB = 2 * ∠APB = 2 * 108 = 216°

Use the properties of logarithmic functions to simplify the expression on the left side of the equation and determine the values of x and y. Then evaluate the simplified expression. The value of x is , and the value of y is. The value of the expression, rounded to nearest hundredth, is .

Answers

Final answer:

To simplify the equation using logarithmic functions, take the natural logarithm of both sides and use properties of logarithms to solve for x and y. Then substitute the values in the simplified expression to evaluate it.

Explanation:

To simplify the expression on the left side of the equation using the properties of logarithmic functions, let's work step by step:

Take the natural logarithm (ln) of both sides of the equation. The natural logarithm cancels the exponential function.The natural logarithm of 5.6/16.0 is -1.050.Now, we have the equation ln(x) - ln(2y) = -1.050.Using the property of logarithms, subtracting the logarithms of two numbers is equivalent to dividing the numbers. So we have ln(x/2y) = -1.050.To find the value of x/2y, take the inverse natural logarithm (e^) of both sides.So we have x/2y = e^(-1.050).To solve for x, multiply both sides of the equation by 2y.Therefore, x = 2y * e^(-1.050).Once you have the values for x and y, substitute them into the simplified expression to find its value.

Which graph best represents the solution to the system of equations shown below?

y = -2x + 14
y = 2x + 2

Answers

The efficient way might be solving for the crossing point of the two lines:

Add 2 equations together, you will get:

2y = 16 -> y = 8

Then, x = 3

So the point will be (3,8)

Apparently, A will be the answer

Answer:

solution is (3,8)

option A

Step-by-step explanation:

[tex]y = -2x + 14[/tex]

[tex]y = 2x + 2[/tex]

Lets graph each equation

Given equation is in the form of y=mx+b

LEts graph each equation using a table

[tex]y = -2x + 14[/tex]

x             y

0            14

1             12     points are (0,14) and (1,12)

[tex]y = 2x + 2[/tex]

x             y

0            2

1             4     points are (0,2) and (1,4)

Graph both the table

The graph is attached below. both graph intersects at (3,8)

The average of six numbers is 4. a seventh number is added and the new average is 5. what is the seventh number?

Answers

the average of 6 numbers is 4....
t/6 = 4.....t = 24 (the total of the 6 numbers)

(24 + x) / 7 = 5
24 + x = 35
x = 35 - 24
x = 11 <== ur 7th number

According to the question, the seventh number is 11.

Use the concept of average defined as:

Average, also known as the mean, is a statistical measure that represents the central value of a set of numbers. It is calculated by summing up all the numbers in the set and dividing the sum by the total count of numbers.

To find the seventh number,

If the average of six numbers is 4, then the total sum of those six numbers would be 6 multiplied by 4, which is 24.

Assume the seventh number is 'x'.

If the new average (after adding the seventh number) is 5, then the total sum of all seven numbers would be 7 multiplied by 5, which is 35.

To find the seventh number 'x',

Subtract the sum of the initial six numbers (24) from the sum of all seven numbers (35).

This gives us 35 - 24 = 11.

Hence,

The seventh number is 11.

To know more about average visit:-

brainly.com/question/24057012

#SPJ5

Alice wants to buy some paper towels. She has two options. She can either buy a package of four rolls or she can buy one roll now and buy another when she runs out. Which of these options is better? Give reasons for your answer.

Answers

buying 4 rolls. If she buys 4 rolls, whenever she used up one roll she already has 3 to replace it. If she buys one roll and then one later, when she uses up the one roll she will have to go buy more

Answer:

Correct Answer: Alice should buy the package of four paper towels because buying in bulk means she gets each roll of towels for less money.

Step-by-step explanation:

The last step in a proof contains the

Answers

The last step in a proof contains the conclusion.
hope this helps:)
The answer is "Conclusion". Feel free to ask more if needed.

The average grade mark received on 4 tests was 94. if he drops his lowest grade of 85, what will his new average be

Answers

After dropping his lowest marks of 85 the new average test mark is 97.

Given, average test score of 4 tests is 94.

Average concept:

Average = sum of all the observations / total number of observations.

Average of 4 test marks = 94

94 = Sum of all the marks obtained in 4 tests / 4

Sum of all the marks obtained in 4 tests = 94 × 4

Sum of all the marks obtained in 4 tests = 376

Now the lowest marks of 85 are removed,

Remaining sum of 3 test marks = 376  - 85

Remaining sum of 3 test marks = 291

New average of 3 tests:

Average of 3 test marks = 291/3

Average of 3 test marks  = 97

Know more about average,

https://brainly.com/question/2426692

#SPJ5

-8-(3x+6)=4-x

Wow I'm dumb lol

Answers

hello: 
solve for x : 
-8-(3x+6)=4-x
-8 -3x-6 =4-x
-3x+x = 8+6+4
-2x =18
x = 18/-2
x= -9
Other Questions
A client with rheumatoid arthritis has infiltration of the lacrimal and salivary glands with lymphocytes as a result of the disease. what does the nurse understand that this clinical manifestation is? What is the level of risk associated with rejecting a true null hypothesis called? Glenn needs 20 minutes to clean his room. If his little sister Veronika pulls things out while he is cleaning, it takes 60 minutes for him to clean the room. How many minutes does it take for Veronika to pull everything out? Which of the following groups of people overthrew the Delhi Sultanate and set up a new Islamic empire in India? Mamluks Mongols Ottomans Umayyads Which element has the same number of valence electrons as phosphorus? which element has the same number of valence electrons as phosphorus? bi in te rb? How many people were sentenced for being apart of witchcraft? A dense mix of dry, hot rock fragments and hot gas eurpting from volcanic vents at high-speed is? A polygon has 12 sides. Find the sum of its interior angles. because the group of boys standing near the fence teased him and laughed at himwhat kind of sentence is this Help! I've been struggled on this for a loooong time!! An insured has a disability policy. after becoming disabled, the insured must wait 90 days before qualifying for benefits. this time frame is called the A drowsy cat spots a flowerpot that sails first up and then down past an open window. the pot was in view for a total of 0.49 s, and the top-to-bottom height of the window is 1.80 m. how high above the window top did the flowerpot go? The value of 7 in 503,497 is what times the value of 7 in 26,475? write two different pairs of decimals whose sum are 14.1 how did the atlantic slave trade lead to the stagnation of african cultures and economies The weights of bags of pet food are distributed normally about the mean, 50 lb. The standard deviation is 0.2 lb. In a group of 20 bags, about how many would you expect to be within one standard deviation from the mean? Which statement represents the views of the Republican Party in the Election of 1860?A) opposed the extension of slaveryB) favored freeing all slavesC) favored popular sovereigntyD) opposed internal improvements In the middle of the page draw an equilateral triangle with 2 inch sides and the bottom parallel to the bottom of the page. From the center of the right side draw two parallel lines an inch apart and an inch long. Draw a line from the end of one of the parallel lines to the end of the other parallel line. Which direction is the arrow pointing Gfci circuitry continuously checks for a difference in current between the ___________. A phane takes off at an angle of elevation of 15 and travels in a straight line for 3,000 meters. What is the height of plane above the ground at this instant ? Steam Workshop Downloader