Find the circumference of the circle in terms of pi? [30]

Answers

Answer 1

Answer:

60π

Step-by-step explanation:

If the circle has radius of 30 units, substitute r=30 into the formula C = 2πr.

C = 2π(30)

C = 60π

Answer 2

To find the circumference of the circle shown here, let's start with writing the formula down.

Circumference = 2[tex]\pi[/tex]r

We have to divide 60 by 2 because the radius is always half the diameter. Now, we can plug in 30 for r in the formula.

Now we have

circumference = 2[tex]\pi[/tex]30.

This equals 60[tex]\pi[/tex].


Related Questions

What is the exact value? (Picture provided)

Answers

Answer:

b.  (√15)/4

Step-by-step explanation:

Since Sin Ф = (opposite side)/Hypotenuse, we have 2 sides of a right triangle.  

Use Pythagorean theorem to solve for the missing leg (the adjacent side)

 1² + b² = 4²

    1 + b² = 16

            b² = 15

                 b = √15

So the adjacent side is √15, so Cos Ф = (√15)/4

Answer:

b. [tex]\frac{\sqrt{15}}{4}[/tex]

Step-by-step explanation:

Given that [tex]\sin(\theta)=\frac{1}{4}[/tex] where [tex]0\:<\: \theta \:<\:\frac{\pi}{2}[/tex].

Recall and use the Pythagorean Identity;

[tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex]

This implies that;

[tex](\frac{1}{4})^2+\cos^2(\theta)=1[/tex]

[tex]\frac{1}{16}+\cos^2(\theta)=1[/tex]

[tex]\cos^2(\theta)=1-\frac{1}{16}[/tex]

[tex]\cos^2(\theta)=\frac{15}{16}[/tex]

Take the square root of both sides;

[tex]\cos(\theta)=\pm \sqrt{\frac{15}{16}}[/tex]

[tex]\cos(\theta)=\pm \frac{\sqrt{15}}{4}[/tex]

Since we are in the first quadrant;

[tex]\cos(\theta)=\frac{\sqrt{15}}{4}[/tex]

!!!!!!!! 50 POINTS !!!!!!!!What are the explicit equation and domain for a geometric sequence with a first term of 2 and a second term of −8?

an = 2(−8)^(n − 1); all integers where n ≥ 1
an = 2(−8)^(n − 1); all integers where n ≥ 0
an = 2(−4)^(n − 1); all integers where n ≥ 0
an = 2(−4)^(n − 1); all integers where n ≥ 1

Answers

Answer:

  an = 2(−4)^(n − 1); all integers where n ≥ 1

Step-by-step explanation:

The equation has the form ...

  an = a1(r)^(n-1) . . . . . where a1 is the first term and r is the common ratio.

The first term is given as 2, and the ratio will be the ratio of the first two terms:

  r = (-8)/(2) = -4

Terms are numbered starting with n=1, so the formula is ...

  an = 2(-4)^(n-1) for n≥1

What is measure of angle R?

Enter your answer as a decimal in the box. Round only your final answer to the nearest hundredth.

°
P Q R is a right triangle. Q is a right angle. P Q is equal to five centimeters, Q R is equal to twelve centimeters and P R is equal to thirteen centimeters.

Answers

Answer:

The measure of angle R is [tex]22.62\°[/tex]

Step-by-step explanation:

we know that

In the right triangle PQR

The cosine of angle R is equal to divide the adjacent side angle R by the hypotenuse

so

[tex]cos(R)=\frac{QR}{PR}[/tex]

substitute the values

[tex]cos(R)=\frac{12}{13}[/tex]

[tex]<R=arccos(\frac{12}{13})=22.62\°[/tex]

see the attached figure to better understand the problem

The circumference of a circle is 65?. In terms of pi, what is the area of the circle?

Answers

Answer:

1056.25π square units

Step-by-step explanation:

A few formulas an definitions which will help us:

(1) [tex]\pi=\frac{c}{d}[/tex], where c is the circumference of a circle and d is its diameter

(2) [tex]A=\pi r^2[/tex], where A is the area of a circle with radius r. To put it in terms of d, remember that a circle's diameter is simply twice its radius, or mathematically, (3) [tex]d=2r \rightarrow r=\frac{d}{2}[/tex].

We can rearrange equation (1) to put d in terms of π and c, giving us (4) [tex]d = \frac{c}{\pi}[/tex], and we can make a few substitutions in (2) using (3) and (4) to get use the area in terms of the circumference and π:

[tex]A=\pi r^2\\=\pi\left(\frac{d}{2}\right)^2\\=\pi\left(\frac{d^2}{4}\right)\\=\pi\left(\frac{(c/\pi)^2}{4}\right)\\=\pi\left(\frac{c^2/\pi^2}{4}\right)\\=\pi\left(\frac{c^2}{4\pi^2}\right)\\\\=\frac{\pi c^2}{4\pi^2}\\ =\frac{c^2}{4\pi}[/tex]

We can now substitute c for our circumference, 65, to get our answer in terms of π:

[tex]A=\dfrac{65^2}{4\pi}=\dfrac{4225}{4\pi}=1056.25\pi[/tex]

Answer:

Area = 2112.5 / pi

Step-by-step explanation:

They are asking you not to use 3.14 for pi. Just leave it as a symbol.

C = 2*pi*r

C = 65

65 = 2*pi*r

65/(2*pi) = r

The area of a circle is 2*pi * r^2

Area = 2 * pi * (65/2pi)^2

Area = 2 * pi * 65^2/(4*pi^2)           Cancel out one of the pi-s in the denominator

Area = 2 * 65^2 / (4 * Pi)                  Expand the numerator

Area = 8450/(4*pi)                           Divide by 4

Area = 2112.5 / pi

Mark has a six-sided number cube. Each side is numbered from 1 to 6. What is the probability, expressed as a ratio, that Mark will roll a 3? A) 1 1/2 B) 1/6 C) 2/6 D) 1/2

Answers

♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫

There is only one '3' on the cube

Therefore, it would be B. 1/6

Hope This Helps You!

Good Luck (:

Have A Great Day ^-^

↬ ʜᴀɴɴᴀʜ

!!!!!!!!!!!!!!!! HELP 25 points

What is the completely factored form of

x3 + 4x2 – 9x – 36?

(x + 3)(x – 3)

(x2 – 9)(x + 4)

(x + 3)(x – 3)(x + 4)

(x – 3)(x – 3)(x + 4)

Answers

x3 + 4x2 - 9x - 36

x2 (x + 4) - 9(x + 4)

(x2 - 9) (x + 4)

(x - 3) (x + 3) (x + 4)

2x-3y=-14 3x-2y=-6 if (x,y) is a solution to the system of equations above, what is the value of x-y?

Answers

Final answer:

In a system of equations, if the variable x is found to be equal to 2 and y is found to be equal to 4, the value of x - y is -2.

Explanation:

To solve for the values of x and y in this pair of linear equations, we can use a method known as substitution or elimination. However, the question asks for the value of x-y, not for the individual values of x and y.

First, let's multiply the first equation by 2 and the second equation by 3:

4x - 6y = -28 (equation 1)

9x - 6y = -18  (equation 2)

If we subtract Equation 2 from Equation 1, we get -5x = -10. Solving for x, we find that x = 2.

Substituting the value of x into the first equation, we get:

2(2) - 3y = -14

Solving for y, we find that y = 4.

Therefore, x - y = 2 - 4 = -2.

Learn more about System of Equations here:

https://brainly.com/question/21620502

#SPJ6

Please help me out with this!

Answers

i think its 5x-15 OR -1x-15

The harmonic motion of a particle is given by f(t) = 2 cos(3t) + 3 sin(2t), 0 ≤ t ≤ 8. (a) When is the position function decreasing? (Round your answers to one decimal place. Enter your answer using interval notation.) Correct: Your answer is correct. (b) During how many time intervals is the particle's acceleration positive? 4 Correct: Your answer is correct. time intervals (c) At what time is the particle at the farthest distance away from its starting position in the negative direction? (Round your answer to one decimal place.) t = 5.34 Correct: Your answer is correct. How far away is it from its original position? (Round your answer to the nearest integer.) 7 Correct: Your answer is correct. (d) At what time is the particle moving the fastest? (Round your answer to one decimal place.) t = 4.7 Correct: Your answer is correct. At what speed is the particle moving the fastest? (Round your answer to the nearest integer.) -5 Incorrect: Your answer is incorrect.

Answers

For the last part, you have to find where [tex]f'(t)[/tex] attains its maximum over [tex]0\le t\le8[/tex]. We have

[tex]f'(t)=-6\sin3t+6\cos2t[/tex]

so that

[tex]f''(t)=-18\cos3t-12\sin2t[/tex]

with critical points at [tex]t[/tex] such that

[tex]-18\cos3t-12\sin2t=0[/tex]

[tex]3\cos3t+2\sin2t=0[/tex]

[tex]3(\cos^3t-3\cos t\sin^2t)+4\sin t\cos t=0[/tex]

[tex]\cos t(3\cos^2t-9\sin^2t+4\sin t)=0[/tex]

[tex]\cos t(12\sin^2t-4\sin t-3)=0[/tex]

So either

[tex]\cos t=0\implies t=\dfrac{(2n+1)\pi}2[/tex]

or

[tex]12\sin^2t-4\sin t-3=0\implies\sin t=\dfrac{1\pm\sqrt{10}}6\implies t=\sin^{-1}\dfrac{1\pm\sqrt{10}}6+2n\pi[/tex]

where [tex]n[/tex] is any integer. We get 8 solutions over the given interval with [tex]n=0,1,2[/tex] from the first set of solutions, [tex]n=0,1[/tex] from the set of solutions where [tex]\sin t=\dfrac{1+\sqrt{10}}6[/tex], and [tex]n=1[/tex] from the set of solutions where [tex]\sin t=\dfrac{1-\sqrt{10}}6[/tex]. They are approximately

[tex]\dfrac\pi2\approx2[/tex]

[tex]\dfrac{3\pi}2\approx5[/tex]

[tex]\dfrac{5\pi}2\approx8[/tex]

[tex]\sin^{-1}\dfrac{1+\sqrt{10}}6\approx1[/tex]

[tex]2\pi+\sin^{-1}\dfrac{1+\sqrt{10}}6\approx7[/tex]

[tex]2\pi+\sin^{-1}\dfrac{1-\sqrt{10}}6\approx6[/tex]

The correct answer for part (d) is: The particle is moving the fastest at [tex]\( t = 4.7 \)[/tex] with a speed of [tex]5[/tex] units per time period.

To find when the particle is moving the fastest, we need to determine the time at which the velocity of the particle is maximized. The velocity of the particle is given by the derivative of the position function with respect to time. The position function is [tex]\( f(t) = 2 \cos(3t) + 3 \sin(2t) \)[/tex]. Differentiating this with respect to [tex]\( t \)[/tex] gives the velocity function:

[tex]\[ v(t) = \frac{d}{dt}(2 \cos(3t) + 3 \sin(2t)) = -6 \sin(3t) + 6 \cos(2t) \][/tex]

To find the maximum velocity, we need to find the critical points of the velocity function by setting its derivative equal to zero:

[tex]\[ \frac{d}{dt}(-6 \sin(3t) + 6 \cos(2t)) = -18 \cos(3t) - 12 \sin(2t) = 0 \][/tex]

Solving for [tex]\( t \)[/tex] in the interval [tex]\( 0 \leq t \leq 8 \)[/tex] will give us the times at which the velocity is maximized or minimized. Let's solve for [tex]\( t \)[/tex]:

[tex]\[ -18 \cos(3t) = 12 \sin(2t) \][/tex]

This is a transcendental equation and cannot be solved algebraically. We would typically use numerical methods or graphing to find the solutions. However, since we are given that the time when the particle is moving the fastest is [tex]\( t = 4.7 \)[/tex], we can assume that this is the time at which the velocity function reaches its maximum value.

Now, to find the speed at which the particle is moving the fastest, we evaluate the velocity function at [tex]\( t = 4.7 \)[/tex]:

[tex]\[ v(4.7) = -6 \sin(3 \cdot 4.7) + 6 \cos(2 \cdot 4.7) \][/tex]

Calculating the sine and cosine values and then substituting them into the equation will give us the maximum velocity. Since we are looking for the speed, which is the absolute value of the velocity, we take the absolute value of the result.

The speed is given by the magnitude of the velocity vector, so we have:

[tex]\[ |v(4.7)| = |-6 \sin(3 \cdot 4.7) + 6 \cos(2 \cdot 4.7)| \][/tex]

Evaluating this expression will give us the speed at which the particle is moving the fastest. The correct answer, rounded to the nearest integer, is [tex]\( 5 \)[/tex] units per time period, not [tex]\( -5 \).[/tex] The negative sign in the velocity does not affect the speed, as speed is a scalar quantity and is always positive.

Therefore, the particle is moving the fastest at [tex]\( t = 4.7 \)[/tex] with a speed of [tex]\( 5 \)[/tex] units per time period.

Problem:
A non-linear system consists of two functions: f(x)=x²+2x+1 and g(x)=3-x-x². Solve this system in two different ways. Your choices are: Table, Graph, or Algebraically.

A. Make a table of values for the functions. The table may be horizontal or vertical but it must have a minimum of five x-values and the corresponding function values showing each solution, one value lower, one value higher, and one between the two solutions. Indicate the solutions by marking the x-values and the corresponding function values that are equal.


B. Solve the system algebraically. (Hint: set the two functions equal to each other and solve the resulting function.) You should obtain a quadratic equation. Solve it either by factoring or using the quadratic formula. Give the x-values of the solution set, then evaluate the original function to find the corresponding y-values. Give the results as ordered pairs of exact values.


C. Plot a graph of the functions over an interval sufficient to show the solutions. You may carefully sketch or plot your graph manually or use Desmos or other technology. Clearly indicate and label on the graph the x and y values of the solution(s).

Answers

Answer:

Part B. see the procedure

Part C. see the procedure

Step-by-step explanation:

we have

[tex]f(x)=x^{2}+2x+1[/tex] -----> equation A

[tex]g(x)=3-x-x^{2}[/tex] -----> equation B  

Part B. Solve the system algebraically

equate the equation A and the equation B

[tex]x^{2}+2x+1=3-x-x^{2}[/tex]

[tex]2x^{2}+3x-2=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]2x^{2}+3x-2=0[/tex]

so

[tex]a=2\\b=3\\c=-2[/tex]

substitute in the formula

[tex]x=\frac{-3(+/-)\sqrt{3^{2}-4a(2)(-2)}} {2(2)}[/tex]

[tex]x=\frac{-3(+/-)\sqrt{25}} {4}[/tex]

[tex]x=\frac{-3(+/-)5} {4}[/tex]

[tex]x1=\frac{-3(+)5} {4}=0.5[/tex]

[tex]x2=\frac{-3(-)5} {4}=-2[/tex]

Find the values of y

For x=0.5

[tex]f(0.5)=0.5^{2}+2(0.5)+1=2.25[/tex]

For x=-2

[tex]f(-2)=(-2)^{2}+2(-2)+1=1[/tex]

the solutions are the points

(0.5,2.25) and (-2,1)

Part C. Solve the system by graph

using a graphing tool

we know that

The solution of the non linear system is the intersection point both graphs

The intersection points are (0.5,2.25) and (-2,1)

therefore

The solutions are the points (0.5,2.25) and (-2,1)

see the attached figure

Expand the following log:


[tex]log_{3} (x^{4} y)[/tex]

SHOW ALL WORK.

Answers

Answer:

[tex]\log_{3}(x^4y)=4\log_{3}(x)+\log_{3}(y)[/tex]

Step-by-step explanation:

The given logarithmic expression is

[tex]log_{3}(x^4y)[/tex]

Recall and use the product property of logarithm: [tex]\log_a(MN)=\log_a(M)+\log_a(N)[/tex];

This implies that;

[tex]\log_{3}(x^4y)=\log_{3}(x^4)+\log_{3}(y)[/tex]

Recall again that; [tex]\log_a(M^n)=n\log_a(M)[/tex];

We apply this property to get;

[tex]\log_{3}(x^4y)=4\log_{3}(x)+\log_{3}(y)[/tex]

Solving Rational Equations. LCD Method. Show work.

[tex]\frac{3}{5x} + \frac{7}{2x} =1[/tex]

Answers

Answer: [tex]x=\frac{41}{10}[/tex]

Step-by-step explanation:

Descompose the denominators into their prime factors to calculate the Least Common Denominator (LCD):

[tex]5x=5*x[/tex]

[tex]2=2*x[/tex]

Choose the common and non-common numbers and varibles with the largest exponents and multiply them:

[tex]LCD=5*2*x=10x[/tex]

Divide eac originl denominator by the LCD and multiply the resul by each numerator. Then, make the addition and solve for x:

[tex]\frac{3(2)+7(5)}{10x}=1\\\\\frac{6+35}{10x}=1\\\\\frac{41}{10x}=1\\\\41=10x\\x=\frac{41}{10}[/tex]

Answer:

[tex]x=4.1[/tex]

Step-by-step explanation:

The given equation is;

[tex]\frac{3}{5x}+\frac{7}{2x}=1[/tex]

Multiply through by the Least Common Denominator which is [tex]-10x[/tex]

[tex]10x(\frac{3}{5x})+10x(\frac{7}{2x})=10x[/tex]

Cancel the common factors to obtain;

[tex]2(3)+5(7)=10x[/tex]

[tex]6+35=10x[/tex]

[tex]41=10x[/tex]

Divide by 10

[tex]x=\frac{41}{10}[/tex]

[tex]x=4.1[/tex]

There was no more rainfall for the rest of the day. Click on the graph until the graph that best represents the given statement appears.

Answers

Answer:

the the third graph

Step-by-step explanation:

this is because the third graph shows a correlation of the time and when the rainfall in a proporational relesho=inshop

Answer:

the third graph :)

Step-by-step explanation:

each hour the rain is increasing by 2 drops.

HELP ASAP!
Carol earned $642.20 in net pay for working 37 hours. She paid $115.34 in federal and state income taxes and $62.75 in FICA taxes
What was Carol's hourly wage?

Answers

Carol's total earnings can be calculated by adding up her net salary plus her taxes paid.                                              

So, Total earnings of Carol = 642.20 + 115.34 + 62.75 = $820.29

So, her hourly wage = [tex]\frac{820.29}{37} =22.17[/tex]

Hence, Carol's hourly wage is = $22.17                                                        

Please some help me fast

Answers

Answer:

A

Step-by-step explanation:

To find the best equation, we simply substitute the values of a, b, and c into the given equations.

a = 21

b = 5

c = 36

[tex]a=\dfrac{7}{10}b\sqrt{c}[/tex]

[tex]21=\dfrac{7}{10}5\sqrt{36}[/tex]

[tex]21=\dfrac{7}{10}5(6)[/tex]

[tex]21=\dfrac{7}{10}30[/tex]

[tex]21=(0.7)30[/tex]

[tex]21=21[/tex]

simplify the trigonometric expression. show your work

Answers

See the attached picture for the solution:

Answer:

Step-by-step explanation:

1/(1+sinθ) + 1/(1-sinθ)

= (1-sinθ)/[(1+sinθ)(1-sinθ)] + (1+sinθ)/[(1-sinθ)(1+sinθ)]

= [(1-sinθ) + (1+sinθ)] / [(1-sinθ)(1+sinθ)]

= [1 - sinθ + 1 + sinθ] / [1 - sin^2sθ]

= 2 / cos^2θ

Determine the recursive function that defines the sequence.

Answers

Answer:

Option: C is the correct answer.

    C.   [tex]f(1)=4\\\\f(n)=5\cdot f(n-1)\ ;\ n\geq 2[/tex]  

Step-by-step explanation:

Recursive Formula--

It is the formula which is used to represent the nth term of a sequence in terms of (n-1)th term of the sequence.

Here we are given a table of values by:

            n            f(n)

            1              4

            2             20

            3             100  

i.e. when n=1 we have:

[tex]f(1)=4[/tex]

Also,

[tex]f(2)=20\\\\i.e.\\\\f(2)=5\cdot 4\\\\i.e.\\\\f(2)=5\cdot f(1)[/tex]

Also,

[tex]f(3)=100\\\\i.e.\\\\f(3)=5\cdot 20\\\\i.e.\\\\f(3)=5\cdot f(2)[/tex]

Hence, the recursive formula is:

[tex]f(n)=5\cdot f(n-1)\ for\ n\geq 2[/tex]

Answer:

for plato family

f(1)=4

f(n)=5. f(n-1) ,for n [tex]\geq[/tex] 2

Step-by-step explanation:

Which choice is a list of valid names for this figure?


A. quadrilateral, parallelogram, rhombus
B. quadrilateral, parallelogram, rectangle
C. quadrilateral, pentagon, trapezoid
D. parallelogram, kite, trapezoid

Answers

Answer:

A. quadrilateral, parallelogram, rhombus

Step-by-step explanation:

Parallel sides are equal

HURRY PLEASE

Which expression is equivalent to 2w?
A)w+w
B)2w+w
C)2w-w
D) w+2

Answers

Answer:

A) w + w

Step-by-step explanation:

Combine like terms

A)w+w   = 2w

B)2w+w   = 3w

C)2w-w  = w

D) w+2 = w + 2

So answer is A) w + w

Answer:

w+w

Step-by-step explanation:

When you are looking at used cars, you should only look at local lots and newspapers

True
False

Please don't ask me what a true/false question has to do with math, but...

Answers

I believe it is False, but I am not 100% positive

Answer:

The statement is false.

Step-by-step explanation:

When you are looking at used cars, you should only look at local lots and newspapers - This statement is false.

When you are buying a used car, you should look not only in the local lots and newspapers but also online ans various used cars websites.

You can also personally visit the used car market to get wide range of cars and various comparative prices.

Please answer this question only if you know it!

Answers

You're answer to the following question: "Which Point Must be the Centre of the Circle?" Is C

What is the solution to this system of linear equations?

7x - 2y = -6

8x + y = 3

A.(-6,3)
B.(0,3)
C.(1,-5)
D.(15,-1)

Answers

Answer:

B. (0, 3)

Step-by-step explanation:

Trying the offered solutions in the given equations gets you there pretty quickly.

7·(-6) -2(3) ≠ -6 . . . eliminates choice A

__

7·0 -2·3 = -6

8·0 +3 = 3 . . . . . . . choice B is the solution

Answer:

(0,3)

B is correct

Step-by-step explanation:

Given: The system of equation.

[tex]7x-2y=-6[/tex]

[tex]8x+y=3[/tex]

Now, we solve for x and y using elimination method.

Elimination method: In this method to make the coefficient of one variable same and then cancel out by addition of both equation.

Multiply 2nd equation by 2 and we get

[tex]16x+2y=6[/tex]

[tex]7x-2y=-6[/tex]

Add both equation and eliminate y

[tex]23x=0[/tex]

[tex]x=0[/tex]

Put x=0 into 1st equation, 7x-2y=-6

7(0) - 2y = -6

           y = 3

Solution: x = 0 and y = 3

Hence, The solution of the equation would be (0,3)

A large rectangular parking lot is 2/3 km long and 1/2 km wide. What's the area of the raking lot?

Answers

Answer:1/3

Step-by-step explanation:

2/3*1/2=1/3

Final answer:

The area of a parking lot measuring 2/3 km long and 1/2 km wide is 1/3 km². This is found by multiplying the length by the width.

Explanation:

The question is asking for the area of a rectangular parking lot that measures 2/3 km long and 1/2 km wide. The formula for the area of a rectangle is length times width. Applying this formula, we multiply 2/3 km by 1/2 km.

It's important to remember that when multiplying fractions, you just multiply the numerators (top numbers) and the denominators (bottom numbers) separately. So, (2/3) x (1/2) = 2/6 km², which simplifies to 1/3 km².

So, the area of the parking lot is 1/3 km².

Learn more about Area of Rectangle here:

https://brainly.com/question/15218510

#SPJ3

Find the length of segment BA.


A) 163.3


B) 128.6


C) 84.7


D) 59.8

Answers

Answer:

D) 59.8

Step-by-step explanation:

m<B = 120 deg

Since we know the measure of an angle and the length of the opposite side, we can establish the ratio of the law of sines, so we use the law of sines to find the length of side BA.

[tex] \dfrac{\sin A}{a} = \dfrac{\sin B}{b} = \dfrac{\sin C}{c} [/tex]

[tex] \dfrac{\sin A}{BC} = \dfrac{\sin B}{AC} = \dfrac{\sin C}{AB} [/tex]

[tex] \dfrac{\sin B}{AC} = \dfrac{\sin C}{AB} [/tex]

[tex] \dfrac{\sin 120^\circ}{200} = \dfrac{\sin 15^\circ}{AB} [/tex]

[tex] \dfrac{\sin 120^\circ}{200} = \dfrac{\sin 15^\circ}{AB} [/tex]

[tex] (AB)\sin 120^\circ = 200 \sin 15^\circ [/tex]

[tex] AB = \dfrac{200 \sin 15^\circ}{\sin 120^\circ} [/tex]

[tex] AB = 59.8 [/tex]

What is the total number of arrangements for 3 green balls, 2 red balls, and 1 white ball?

Answers

Answer:

6

Step-by-step explanation:

***If choosing one of each, this is the answer*** This wasn't clearly asked for in the question though

When counting the number of arrangements of multiple choices, multiply the number of choices of each item together.

(3)(2)(1) = 6

Here is them listed..

Green ball 1, red ball 1, white ball

Green ball 1, red ball 2, white ball

Green ball 2, red ball 1, white ball

Green ball 2, red ball 2, white ball

Green ball 3, red ball 1, white ball

Green ball 3, red ball 2, white ball

Which statement Is a good definition? A. Parallel lines are lines that do not intersect B. Skew lines are lines that do not intersect C. A square is a rectangle with four congruent sides. D. Right angles are angles formed by two intersecting lines

Answers

Final answer:

Parallel lines are lines that do not intersect each other at any point.

Explanation:

The correct definition of parallel lines is option A: 'Parallel lines are lines that do not intersect.' Parallel lines are two lines in a plane that do not intersect each other at any point, no matter how far they are extended.

Learn more about Definition of Parallel Lines here:

https://brainly.com/question/7966281

#SPJ12

A rectangle prism has the dimensions 8 feet by 3 feet by 5 feet. What is the surface area of the prism

Answers

Answer:

158 square feet

Step-by-step explanation:

The surface area of a prism is found using the following formula: SA = 2(lh+lb+bh). This formula takes the area of each face (6 in total( and adds them together to find a total sum. Substitute l = 8, b = 3 and h = 5 to solve for the surface area.

SA = 2(lh+lb+bh)

SA = 2(8*5+8*3+3*5)

SA = 2(40 + 24 + 15)

SA = 2(79)

SA = 158

Given that QRVTSU is a regular hexagon what are the lengths of QR and ST?

Answers

Answer:

Step-by-step explanation:

3y + 19 = 6y + 1

6y + 1 = 3y + 19

6y - 3y = 19 - 1

3y = 18

y = 6

6y + 1

6.6 + 1

37

The first one

I hope I helped you.

Answer:

Option A. 37

Step-by-step explanation:

We will understand first what is a regular hexagon?

Hexagon is a structure in which number of all the sides are 6 and since its a regular hexagon all the sides will be equal.

Since all the sides are equal and given two sides are (3y + 19) and (6y + 1)

Therefore, by the definition of regular hexagon

3y + 19 = 6y + 1

19 = 6y - 3y + 1

19 - 1 = 6y - 3y

18 = 3y

y = [tex]\frac{18}{3}=6[/tex]

Now we have to calculate the length of both the sides given.

Side ST = 6y + 1 = 6×6 + 1 = 36 + 1 = 37

and QR = 3y + 19 = 3×6 + 19 = 18 + 19 = 37

Therefore, option A. 37 is the correct answer.

Every year ethan earns 38,428 each year he spends 21,728 how much should he have left over

Answers

♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫

You have to subtract the values:

38,428 - 21,728 = 16,700

He should have $16,700 (you can change the currency symbol if required)

Hope This Helps You!

Good Luck (:

Have A Great Day ^-^

↬ ʜᴀɴɴᴀʜ

Find the lateral area for the prism.
Will mark Brainiest​!!!

Answers

The lateral area is the area not including the base.

You have 2 sides that are 6 x 8 = 48 x 2 = 96 square feet.

One side of 4 x 8 = 32 square feet

And the top triangle = 1/2 x 4 x 6 = 12 square feet.

For lateral area you would not include the triangle at the bottom ( base).

Total Lateral area = 96 + 32 + 12 = 140 square feet.

Other Questions
one third the difference of two number is 12. if the larger number is 9, what is the sum of the two numbers Human cells have 23 pairs of chromosomes. How many combinations of chromosomes can result in an effort to maintain genetic diversity? A proton travels with a speed of 4.2106 m/s at an angle of 30 west of north. A magnetic field of 2.5 T points to the north. Find the magnitude of the magnetic force on the proton. (The magnetic force experienced by the proton in the magnetic field is proportional to the component of the protons velocity that is perpendicular to the magnetic field.) Which set of three angles could represent the interior angles of a triangle?A.49,59,72B.28,58,62C.39,89,108D.45,70,85 Two kinds of perfume are packaged in square pyramidal bottles. Perfume A is packaged in a bottle with a base of 3 inches square and a slant height of 2.5 inches. Perfume B is packaged in a bottle with a base 2.5 inches square and has a slant height of 3 inches. Which bottle contains more glass? What are two Amphibian behaviors Match each thesis statement with an essay topic the pics show thesis statements and here are the essay topics 1.use of symbolism in the raven2. Mood and tone in the raven3. Themes explored in the raven4. Use of figurative language in the raven What were European nations doing that helped their economies boom?AArms raceBThey had instituted national lotteriesCGreat Depression Technician A says that the oil control ring scrapes oil off the cylinder wall with each downward piston stroke. Technician B says that a typical oil control ring consists of two separate pieces. Who is right? A. Technician B only B. Both Technicians A and B wrong answer C. Technician A only D. Neither Technician A nor Bp.s "both"is wrong 2. Do you think IPv4 networks continue on, or will everyone eventually switch over to IPv6? How long do you think it will take? How was Philadelphia more stoic than New Amsterdam?The houses were made of wood instead of bright-colored bricks.The houses were built close together for a community spirit.The houses paid attention to fine details of the design.The houses had provisions for personal gardens. One of the biggest changes seen in the literature between the Puritan period and the colonial period is Every major contraction in the U.S. Economy has either been created or greatly exacerbated by monetary instability. Every major inflation has been caused by monetary expansion. Which of the following economists made this statement?a. Milton Friedmanb. John Maynard Keynesc. Adam Smithd. Paul Samuelson I need help with a calculus 2 exercise, with a good explanation to what I'm trying to figure out.The problem involves finding the arc length when y = (x^2)/2 - (lnx/4) given 2 x 4So I know the formula involves L = Integral from a to b of sqrt(1+(f'(x))^2)dx And I took the the derivative of y = (x^2)/2 - (lnx/4)And got = x - (1/4x) I then kept reducing it to suit the formula 1 + ( x - 1/4x)^2I added the alike terms1 + x^2 - 1/2 + 1/16x^2x^2 + 1/2 + 1/16x^2AND then comes my question!So it is supposed to become this afterwards: (x + 1/4x) ^ 2But how did that happen, I don't understand how I can reduce it to a square, please help me figure it out. Any goods being imported from another country may be subject to issued by the federal government.. how did jess and leslie change in bridge to terabithia A system at equilibrium contains i2(g) at a pressure of 0.21 atm and i(g) at a pressure of 0.23 atm . the system is then compressed to half its volume. find the pressure of i when the system returns to equilibrium. what is tan(sin^-1(x/2)) Which of the following fractions is equal to 1/4 A.12/60 B.48/12 C.36/108 D.26/104 E.17/50 Find the surface area , please explain how you solved it. Steam Workshop Downloader