Find an explicit solution of the given initial-value problem.dy/dx = ye^x^2, y(3) = 1.

Answers

Answer 1

Answer:

[tex]y=exp(\int\limits^x_4 {e^{-t^{2} } } \, dt)[/tex]

Step-by-step explanation:

This is a separable equation with an initial value i.e. y(3)=1.

Take y from right hand side and divide to left hand side ;Take dx from left hand side and multiply to right hand side:

[tex]\frac{dy}{y} =e^{-x^{2} }dx[/tex]

Take t as a dummy variable, integrate both sides with respect to "t" and substituting x=t (e.g. dx=dt):

[tex]\int\limits^x_3 {\frac{1}{y} } \, \frac{dy}{dt} dt=\int\limits^x_3 {e^{-t^{2} } } dt[/tex]

Integrate on both sides:

[tex]ln(y(t))\left \{ {{t=x} \atop {t=3}} \right. =\int\limits^x_3 {e^{-t^{2} } } \, dt[/tex]

Use initial condition i.e. y(3) = 1:

[tex]ln(y(x))-(ln1)=\int\limits^x_3 {e^{-t^{2} } } \, dt\\ln(y(x))=\int\limits^x_3 {e^{-t^{2} } } \, dt\\[/tex]

Taking exponents on both sides to remove "ln":

[tex]y=exp (\int\limits^x_3 {e^{-t^{2} } } \, dt)[/tex]


Related Questions

The teacher recorded the mean and median of the hourly wage for each student. Unfortunately, he forgot to label them. The numbers he wrote down were: $11.25/hour and $9.38/hour. Which would be the mean and which would be the median

Answers

Step-by-step explanation:

We can not exactly predict the values of mean and median of the data un till and unless we know about the skewness of the data.

Skewness represents the asymmetry or tapering in  the distribution of data  sample. If skewness is

Negative skew: median > mean:

Positive skew: mean > median :

Although this generalization is not always true.

Teacl Smolts are young salmon at a stage when their skin becomes covered with silvery scales and they start to migrate from freshwater to the sea. The reflectance of a light shined on a smolt's skin is a measure of the smolt's readiness for the migration. Here are the reflectances, in percents, for a sample of 50 smolts. 57.6 54.9 63.4 57.1 54.8 42.4 63.5 55.5 33.6 63.2 58.3 42.0 56.0 47.7 56.2 56.0 38.7 49.6 42.2 45.7 69.1 50.5 53.0 38.3 60.4 49.2 42.8 44.6 46.3 44.2 59.0 42.0 47.6 47.9 69.2 46.6 68.0 42.9 45.5 474 59.5 37.7 53.9 43.1 51.3 64.6 43.7 42.7 50.9 43.8 (a) Find the standard deviation of the reflectance for these smolts. (Round your answer to two decimal places.) (b) Find the quartiles of the reflectance for these smolts (c) Do you prefer the standard deviation or the quartiles as a measure of spread for these data? Give reasons for your preference.

Answers

Answer:

a) s = 8.81

b) Q1 = 43.4, Q2 = 49.4, Q3 = 57.35

c) See below

Step-by-step explanation:

(a) Find the standard deviation of the reflectance for these smolts. (Round your answer to two decimal places.)

In order to find the standard deviation, we need the mean first. The mean is defined as

[tex]\bar x=\displaystyle\frac{\displaystyle\sum_{i=1}^{n}x_i}{n}[/tex]

where the [tex]x_i[/tex] are the values of the data collected and n=50 the size of the sample.

So, the mean is

[tex]\bar x=50.882[/tex]

Now, the standard deviation of the sample is defined as  

[tex]s=\sqrt{\displaystyle\frac{\displaystyle\sum_{i=1}^n(x_i-\bar x)^2}{n-1}}[/tex]

and we have that our standard deviation is

s = 8.81

(b) Find the quartiles of the reflectance for these smolts

To find the quartiles, we must sort the data from lowest to largest:  

33.6,  37.7,  38.3,  38.7,  42,  42,  42.2,  42.4,  42.7,  42.8,  42.9,  43.1,  43.7,  43.8,  44.2,  44.6,  45.5,  45.7,  46.3,  46.6,  47.4,  47.6,  47.7,  47.9,  49.2,  49.6,  50.5,  50.9,  51.3,  53,  53.9,  54.8,  54.9,  55.5,  56,  56,  56.2,  57.1,  57.6,  58.3,  59,  59.5,  60.4,  63.2,  63.4,  63.5,  64.6,  68,  69.1,  69.2

The first quartile is the number between the 12th and the 13th data (so 25% of the data are below it and 75% above it)

So the 1st quartile is

[tex]Q_1=\displaystyle\frac{43.1+43.7}{2}=43.4[/tex]

The 2nd quartile is the median, the point between the 25th and 26th data, it splits the data in two halves.

[tex]Q_2=\displaystyle\frac{49.2+49.6}{2}=49.4[/tex]

The 3rd quartile is the point between the 38th and 39th data (so 75% of the data are below it and 25% above it)

[tex]Q_3=\displaystyle\frac{57.1+57.6}{2}=57.35[/tex]

(c) Do you prefer the standard deviation or the quartiles as a measure of spread for these data? Give reasons for your preference.

In this case, we prefer the quartiles as a measure of spread since the data are very scattered around the mean and there is no a central tendency.

Exercise 3.23 introduces a husband and wife with brown eyes who have 0.75 probability of having children with brown eyes, 0.125 probability of having children with blue eyes, and 0.125 probability of having children with green eyes

(a) What is the probability that their first child will have green eyes and the second will not?

(b) What is the probability that exactly one of their two children will have green eyes?

(c) If they have six children, what is the probability that exactly two will have green eyes?

(d) If they have six children, what is the probability that at least one will have green eyes?

Answers

Answer:

a) There is a 10.9375% probability that their first child will have green eyes and the second will not.

b) There is a 21.875% probability that exactly one of their two children will have green eyes.

c) There is a 13.74% probability that exactly two will have green eyes.

d) There is a 55.12% probability that at least one will have green eyes.

Step-by-step explanation:

In this problem, the binomial probability distribution is going to be important for itens b,c and d.

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

We have these following probabilities:

0.75 probability of having children with brown eyes, 0.125 probability of having children with blue eyes, and 0.125 probability of having children with green eyes.

(a) What is the probability that their first child will have green eyes and the second will not?

There is a 0.125 probability a child will have green eyes and an 1-0.125 = 0.875 probability a child will not have green eyes.

So

0.125*0.875 = 0.109375

There is a 10.9375% probability that their first child will have green eyes and the second will not.

(b) What is the probability that exactly one of their two children will have green eyes?

Here we use the binomial probability distribution, with [tex]n = 2, p = 0.125[/tex].

We want P(X = 1).

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 1) = C_{2,1}*(0.125)^{1}*(0.875)^{1} = 0.21875[/tex]

There is a 21.875% probability that exactly one of their two children will have green eyes.

(c) If they have six children, what is the probability that exactly two will have green eyes?

Again the binomial probability distribution, with [tex]n = 6, p = 0.125[/tex]

We want P(X = 2)

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 2) = C_{6,2}*(0.125)^{2}*(0.875)^{4} = 0.1374[/tex]

There is a 13.74% probability that exactly two will have green eyes.

(d) If they have six children, what is the probability that at least one will have green eyes?

[tex]n = 6, p = 0.125[/tex]

Either none has green eyes, or at least one has. The sum of the probabilities of these events is decimal 1. So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]

In which

[tex]P(X = 0) = C_{6,0}*(0.125)^{0}*(0.875)^{6} = 0.4488[/tex]

Finally

[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.4488 = 0.5512[/tex]

There is a 55.12% probability that at least one will have green eyes.

Final answer:

The probability that their first child will have green eyes and the second will not is 0.109375. The probability that exactly one of their two children will have green eyes is 0.21875. If they have six children, the probability that exactly two will have green eyes is 0.19140625. The probability that at least one of the six children will have green eyes is 0.6499367.

Explanation:a) Probability that the first child will have green eyes and the second will not:

Given that the parents have a probability of 0.125 of having a child with green eyes, the probability of the first child having green eyes is 0.125.

The probability that the second child does not have green eyes is 1 - 0.125 = 0.875.

Therefore, the probability that the first child has green eyes and the second child does not is 0.125 * 0.875 = 0.109375.

b) Probability that exactly one of their two children will have green eyes:

There are two possible scenarios: (1) the first child has green eyes but not the second child, or (2) the first child does not have green eyes but the second child does.

The probability of the first scenario is the same as in part (a), which is 0.109375.

The probability of the second scenario is also 0.109375.

The total probability is the sum of the probabilities of the two scenarios, which is 0.109375 + 0.109375 = 0.21875.

c) Probability that exactly two out of six children will have green eyes:

This can be calculated using the binomial probability formula.

The probability of having two children with green eyes and four children without green eyes is:

P(2 green, 4 not green) = C(6, 2) * (0.125)^2 * (0.875)^4 = 0.19140625

d) Probability that at least one out of six children will have green eyes:

The probability that none of the six children have green eyes is (1 - 0.125)^6 = 0.3500633.

Therefore, the probability that at least one child will have green eyes is 1 - 0.3500633 = 0.6499367.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

It is known that x1 and x2 are roots of the equation 6x2+7x+k=0, where 2x1+3x2=−4.
Find k.

Answers

Answer:

1

Step-by-step explanation:

For a quadratic equation, the roots are expressed by the quadratic formula.

 

x=(-b+/- Sqrt[b^2-4ac])/2a

 

In this case a=6, b=-7 and c=k

 So,

x=(7 +/- √[(-7)^2-4(6)(k)]/2(6))

 

Simplifying gives:

 

x=(7 +/- √[49-24k])/12

 

For k=0 the square root simplifies to √[49]=7 which yields roots of 7/6 and 0

For k=1 the square root simplifies to √[49-24]=√[25]=5 which yields roots of 1 and 1/6

For k=2 the square root simplifies to √[49-48]=√[1]=1 which yields roots of 2/3 and 1/2

k= 1 as other roots are fractions

Answer:

k=-5

Step-by-step explanation:

6x^2+7x+k=0 is a quadratic equation.

a= 6; b=7; c=k

Let the roots of the equation be R1 and R2

R1+R2 = -b/a = -7/6 ---------1

R1xR2 = c/a =k/6 or (R1xR2)6=k------------2

From Equation 1:

R1=-7/6-R2

We know 2R1+3R2=-4 Substituting for R1, we get

3 (-7/6-R2)+3R2=-4

R2=-5/3

R1=-7/6-(-5/3)= 1/2

Substituting these values in Eq2,

k= (-5/3 x 1/2) 6

k=-5

A sample of 15 from a normal population yields a sample mean of 43 and a sample standard deviation of 4.7. What is the P—value that should be used to test the claim that the population mean is less than 45? a. 0.0608 b. 0.1216 c. 0.4696 d. 0.9392 e. The P—value cannot be determined from the given information.

Answers

Answer:

b. 0.1216

Step-by-step explanation:

Given that a sample of  15 from a normal population yields a sample mean of 43 and a sample standard deviation of 4.7.

We have to check the p value for the claim that mean <45

[tex]H_0: \mu =45\\H_a: \mu <45[/tex]

(Left tailed test for population mean)

Sample size n = 15

Sample mean = 45

Sample std dev s = 4.7

Since sample std deviation is being used, we use t test only

Std error of mean = [tex]\frac{s}{\sqrt{n} } \\=1.214[/tex]

Mean difference = 43-45 = -2

t statistic = mean difference/std error

= -1.176

df = n-1 = 14

p value = 0.1216

Exercise 3.23 introduces a husband and wife with brown eyes who have 0.75 probability of having children with brown eyes, 0.125 probability of having children with blue eyes, and 0.125 probability of having children with green eyes. (a) What is the probability that their first child will have green eyes and the second will not?

Answers

Answer:

There is a 10.9375% probability that their first child will have green eyes and the second will not.

Step-by-step explanation:

We have these following probabilities:

0.75 probability of having children with brown eyes, 0.125 probability of having children with blue eyes, and 0.125 probability of having children with green eyes.

(a) What is the probability that their first child will have green eyes and the second will not?

There is a 0.125 probability a child will have green eyes and an 1-0.125 = 0.875 probability a child will not have green eyes.

So

0.125*0.875 = 0.109375

There is a 10.9375% probability that their first child will have green eyes and the second will not.

What are the rectangular coordinates of the point whose cylindrical coordinates are (r=9, θ=2π3, z=3)(r=9, θ=2π3, z=3) ?

Answers

Answer:

The point is [tex](-\frac{9}{2},\frac{9\sqrt{3}}{2},3)[/tex]  in rectangular coordinates.

Step-by-step explanation:

To convert from cylindrical to rectangular coordinates we use the relations

[tex]x=r \cdot cos(\theta)\\y=r\cdot sin(\theta)\\z=z[/tex]

To convert the point [tex](9,\frac{2}{3}\pi ,3)[/tex] from cylindrical to rectangular coordinates we use the above relations

Since [tex]r=9[/tex], [tex]\theta=\frac{2}{3} \pi[/tex], and [tex]z=3[/tex],

[tex]x=r \cdot cos(\theta)=9\cdot cos(\frac{2}{3}\pi )=-\frac{9}{2}[/tex]

[tex]y=r\cdot sin(\theta)=9\cdot sin(\frac{2}{3} \pi )=\frac{9\sqrt{3}}{2}[/tex]

[tex]z=z=3[/tex]

Thus, the point is [tex](-\frac{9}{2},\frac{9\sqrt{3}}{2},3)[/tex]  in rectangular coordinates.

The powerful survival impulse that leads infants to seek closeness to their caregivers is called:A)attachment.B)imprinting.C)habituation.D)assimilation.E)the rooting reflex

Answers

Answer:

A. Attachment

Step-by-step explanation:

The powerful survival impulse that leads infants to seek closeness to their caregivers is called Attachment. The infant can count on the caregiver possibly parent(s) for care which gives the infant a solid foundation for dependence and survival.

Final answer:

The instinctual behavior that drives infants to seek closeness with their caregivers is known as A) attachment. It's fostered by reflexes that ensure physical contact and is crucial for an infant's survival, ensuring they receive the necessary care, protection, and opportunity to develop securely.

Explanation:

The powerful survival impulse that leads infants to seek closeness to their caregivers is called A) attachment. This is an intrinsic part of human development and is crucial for the infant's survival. Infants have a set of innate behaviors and reflexes that promote closeness and contact with their caregivers, such as the Moro reflex and the grasping reflex, which help the infant to hold onto the caregiver and thus reduce the risk of falling.

Additionally, behaviors such as crying and the sucking reflex are instinctive methods for infants to express needs and receive care. Furthermore, the rooting reflex is an instinctive behavior that helps the infant find the nipple to feed by touching. John Bowlby's evolutionary theory underscores the importance of attachment by suggesting that the ability to maintain proximity to an attachment figure would have increased the chances of an infant surviving to reproductive age.

Attachments are not just reactions to the provision of food and warmth by the caregivers but are biological imperatives that ensure an infant remains close to those who provide security, learning, and protection, thereby enhancing their chance of survival.

Let D be the region bounded by the paraboloids; z = 6 - x² - y² and z = x² + y².
Write six different triple iterated integrals for the volume of D. Evaluate one of the integrals.

Answers

Answer:

∫∫∫1 dV=4\sqrt{3}π

Step-by-step explanation:

From Exercise we have  

z=6-x^{2}-y^{2}

z=x^{2}+y^{2}

we get

2z=6

z=3

x^{2}+y^{2}=3

We use the polar coordinates, we get

x=r cosθ

y=r sinθ

x^{2}+y^{2}&=r^{2}

r^{2}=3

We get at the limits of the variables that well need for our integral

x^{2}+y^{2}≤z≤3

0≤r ≤\sqrt{3}

0≤θ≤2π

Therefore, we get a triple integral

\int \int \int 1\, dV&=\int \int \left(\int_{x^2+y^2}^{3} 1\, dz\right) dA

=\int \int \left(z|_{x^2+y^2}^{3} \right) dA

=\int \int\ \left(3-(x^2+y^2) \right) dA

=\int \int\ \left(3-r^2 \right) dA

=\int_{0}^{2\pi}\int_{0}^{\sqrt{3}} (3-r^2) dr dθ

=3\int_{0}^{2\pi}\int_{0}^{\sqrt{3}}  1 dr dθ-\int_{0}^{2\pi}\int_{0}^{\sqrt{3}} r^2 dr dθ

=3\int_{0}^{2\pi} r|_{0}^{\sqrt{3}}  dθ-\int_{0}^{2\pi} \frac{r^3}{3}|_{0}^{\sqrt{3}}dθ

=3\sqrt{3}\int_{0}^{2\pi} 1 dθ-\sqrt{3}\int_{0}^{2\pi} 1 dθ

=3\sqrt{3} ·2π-\sqrt{3}·2π

=4\sqrt{3}π

We get

∫∫∫1 dV=4\sqrt{3}π

We find the volume of the region D bounded by the paraboloids z = 6 - x² - y² and z = x² + y² by setting up triple iterated integrals. Six different integrals are presented, and one is evaluated using cylindrical coordinates. The volume is determined to be 9π.

To find the volume of the region D bounded by the paraboloids z = 6 - x² - y² and z = x² + y², we need to set up triple iterated integrals.

The intersection of the two surfaces occurs when 6 - x² - y² = x² + y²,

which simplifies to 6 = 2(x² + y²) or x² + y² = 3, defining a circle of radius √3 in the xy-plane.

Possible Triple Iterated Integrals

Here are six different triple iterated integrals to find the volume of the region D:

[tex]\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-x^2}}^{\sqrt{3-x^2}} \int_{x^2+y^2}^{6-x^2-y^2} dz \, dy \, dx = dx \, dy \, dz.\end{equation}[/tex][tex]\begin{equation}\int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \int_{r^2}^{6-r^2} r \, dz \, dr \, d\theta \, dv = dx \, dy \, dz.\end{equation}[/tex][tex]\begin{equation}\int_{0}^{2\pi} \int_{-\sqrt{3}\cos\theta}^{\sqrt{3}\cos\theta} \int_{r^2}^{6-r^2} r \, dz \, dr \, d\theta \, dv = dx \, dy \, dz.\end{equation}[/tex][tex]\begin{equation}\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-y^2}}^{\sqrt{3-y^2}} \int_{y^2+x^2}^{6-y^2-x^2} dz \, dx \, dy \, dv = dx \, dy \, dz.\end{equation}[/tex][tex]\begin{equation}\int_{0}^{2\pi} \int_{-\sqrt{3}\cos\theta}^{\sqrt{3}\cos\theta} \int_{x^2}^{6-x^2-\theta} dz \, dx \, d\theta \, dv = dx \, dy \, dz.\end{equation}[/tex][tex]\begin{equation}\int_{-\sqrt{3}}^{\sqrt{3}} \int_{y-x}^{y+x} \int_{r^2}^{6-r^2} r \, dz \, dr \, d\theta \, dv = dx \, dy \, dz.\end{equation}[/tex]

Evaluating One of the Integrals

Let's evaluate the triple iterated integral in cylindrical coordinates:

[tex]\int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \int_{r^2}^{6 - r^2} r \, dz \, dr \, d\theta[/tex]

First, integrate with respect to z:

[tex]\int_{r^2}^{6 - r^2}\, dz = \left[ z \right]_{z=r^2}^{z=6-r^2}[/tex]

[tex]= (6-r^2) - (r^2)[/tex]

[tex]= 6-2r^2[/tex]

Next, integrate with respect to r:

[tex]int_{0}^{\sqrt{3}} r(6 - 2r^2) dr = \int_{0}^{\sqrt{3}} (6r - 2r^3) dr[/tex]

[tex]= \left[ 3r^2 - \frac{1}{2}r^4 \right]_{r=0}^{r= \sqrt{3}}[/tex]

[tex]= \left[ 3(3) - \frac{1}{2}(9) \right][/tex]

= 9 - 4.5

= 4.5

Finally, integrate with respect to θ:

[tex]\int_{0}^{2\pi} 4.5 \, d\theta = 4.5 \cdot 2\pi = 9\pi[/tex]

So the volume of the region D is 9π.

Use the Pythagorean theorem to determine which of the following give the measures of the legs and hypotenuse of a right triangle. Which apply. 3,4,5. Or. 4,11,14. Or. 9,14,17. Or 8,14,16. Or. 8,15,17

Answers

Answer: 3, 4,5 and 17, 15,8

give the measures of the legs and hypotenuse of a right triangle.

Step-by-step explanation:

In order for the measures of the legs and hypotenuse given to form a right angle triangle, they must be Pythagorean triples. A Pythagoras triple is a set of numbers that perfectly satisfy the Pythagorean theorem. The Pythagorean theorem is expressed as

Hypotenuse² = opposite side² + adjacent side². We will apply the theorem to each set of numbers given.

1) 3, 4, 5

5² = 3² + 4² = 9 + 16

25 = 25

It is a Pythagorean triple

2) 4, 11, 14

14² = 11² + 4² = 121 + 16

196 = 137

It is a Pythagorean triple

3) 9, 14, 17

17² = 14² + 9² = 196 + 81

289 = 277

It is not a Pythagorean triple

4) 8, 14, 16

16² = 14² + 8² = 196 + 64

256 = 260

It is not a Pythagorean triple

5) 8, 15 , 17

17² = 15² + 8²

289 = 225 + 64

289 = 289

It is a Pythagorean triple

Therefore, 3, 4,5 and 17, 15,8

give the measures of the legs and hypotenuse of a right triangle.

Walleye is a common game fish. Adult walleye have a length with a mean of 44 cm and a standard deviation of 4 cm, and the distribution of lengths is approximately Normal. What fraction of fish are greater than 41 cm in length?
Select one O a. -0.75 O b. 0.22 ? ?.077 O d. 0.75

Answers

Answer:b. 0.22

Step-by-step explanation:

Since the lengths of adult walleye fishes are normally distributed, we would apply the formula for normal distribution which is expressed as

z = (x - µ)/σ

Where

x = lengths of walleye fishes.

µ = mean length

σ = standard deviation

From the information given,

µ = 44 cm

σ = 4 cm

We want to find the probability or fraction of fishes that are greater than 41 cm in length. It is expressed as

P(x > 41) = 1 - P(x ≤ 41)

For x = 41,

z = (41 - 44)/4 = - 0.75

Looking at the normal distribution table, the probability corresponding to the z score is 0.22

Final answer:

To find the fraction of fish that are greater than 41 cm in length, calculate the z-score with the mean and standard deviation.

Explanation:

To find the fraction of fish that are greater than 41 cm in length, we need to calculate the z-score of 41 cm using the mean and standard deviation. The z-score formula is z = (x - μ) / σ. Plugging in the values, we have z = (41 - 44) / 4 = -0.75. We can then look up the corresponding value on the z-table to find the fraction of fish with a length greater than 41 cm, which is approximately 0.7734. Therefore, the answer is option d, 0.75.

Learn more about z-score here:

https://brainly.com/question/31613365

#SPJ3

Write the equation in vertex form for the parabola with focus (0,5) and directrix y=

5.
Simplify any fractions.

Answers

Answer: [tex]x^{2} = 20y[/tex]

Step-by-step explanation:

The directrix given is vertical , so we will use the formula :

[tex](x-h)^{2}=4p(y-k)[/tex]

P is the distance between the focus , that is 5 - 0 = 5

Therefore : p = 5

(h,k) is the mid point between the focus and the directrix , that is

(h,k) = [tex](\frac{x_{1}+x_{2} }{2},\frac{y_{2}+y_{1}}{2})[/tex] = [tex](\frac{0+0}{2} , \frac{5-5}{2})[/tex] = [tex](0,0)[/tex]

Therefore:

h =0

k = 0

substituting into the formula : we have

[tex](x-h)^{2}=4p(y-k)[/tex]

[tex](x-0)^{2}[/tex] = 4(5)([tex]y-0)[/tex]

[tex]x^{2} = 20y[/tex]

Therefore : the equation in vertex form is [tex]x^{2} = 20y[/tex]

A chain lying on the ground is 10 m long and its mass is 70 kg. How much work (in J) is required to raise one end of the chain to a height of 4 m?

Answers

Answer:

[tex] W= 34.3 \frac{kg}{s^2} (4^2-0^2)m^2 =548.8 \frac{kg m^2}{s^2} =548.8 J[/tex]

Step-by-step explanation:

Data Given: m = 70 kg , g = 9.8 ms^-2, h =10m.

For this case we can use the following formula:

[tex] W = \int_{x_i}^{x_f} F(x) dx[/tex]

For this case we need to find an expression for the force in terms of the distance. And since on this case the total distance is 10 m long we can write the expression like this:

[tex] F(x) = \frac{ma}{10m}= \frac{mg}{10m} x[/tex]

The only acceleration on this case is the gravity and if we replace the values given we got:

[tex] \frac{70 kg *9.8 m/s^2}{10m} x=68.6 x\frac{kg}{s^2}[/tex]

Now we can find the required work with the following integral:

[tex] W= 68.6 \frac{kg}{s^2} \int_{0}^4 x dx[/tex]

[tex] W= 34.3 \frac{kg}{s^2} x^2 \Big|_0^4[/tex]

[tex] W= 34.3 \frac{kg}{s^2} (4^2-0^2)m^2 =548.8 \frac{kg m^2}{s^2} =548.8 J[/tex]

The amount of work that is required to raise one end of the chain is 548.8 Joules.

Given the following data:

Length of chain = 10 meters.Mass of chain = 70 kg.Height = 4 meters.

To calculate the amount of work that is required to raise one end of the chain:

How to calculate the work done.

We would solve for the magnitude of the force acting on the chain with respect to the distance and this is given by this expression:

[tex]Force = \frac{mgx}{10} \\\\Force = \frac{70 \times 9.8 \times x}{10}[/tex]

Force = 68.6x Newton.

Now, we can calculate the amount of work by using this formula:

[tex]W=\int\limits^{x_2}_{x_1} F({x}) \, dx \\\\W= 68.6 \int\limits^{4}_{0} x \, dx\\\\W= 34.3 x^2 |^4_0\\\\W=34.3 [4^2 -0^]\\\\W=34.3 \times 16[/tex]

W = 548.8 Joules.

Read more on work done here: https://brainly.com/question/22599382

Which of the following is independent variable?

Answers

I think the answer is D. hours because its variation does not depend on another variable

Step1: find the Laplace transform of the solution Y(s).Y(s). Write the solution as a single fraction in s

Answers

Complete Question :

  The question is shown on the first uploaded image

Answer:

The solution is the second uploaded image

Step-by-step explanation:

The step by step explanation is on the third, fourth and fifth uploaded image

What is the variable x and y equal in the equation 0.4x+0.6y=6.2?

Answers

Answer:

The solution is (6.2,6.2)

Step-by-step explanation:

we have

[tex]0.4x+0.6y=6.2[/tex] ----> equation A

For variable x and y equal

[tex]x=y[/tex] ----> equation B

Solve the system by substitution

substitute equation B in equation A

[tex]0.4y+0.6y=6.2[/tex]

solve for y

combine like terms

[tex]y=6.2[/tex]

so

[tex]x=6.2[/tex]

therefore

The solution is (6.2,6.2)

State all possible names for each figure.

Answers

Answer:

Step-by-step explanation:

square

quadrilateral - all of these

polygon - squares

trapezoid - others - non square

rhombus - squares

hope this helps.

A statistician controls ____________ by establishing the risk he or she is willing to take in terms of rejecting a true null hypothesis.
a) Alpha
b) beta
c) mean
d) standard deviation

Answers

Answer:

a) Alpha

Step-by-step explanation:

The correct option is alpha because alpha known as type I error is the probability of reject the null hypothesis when null  hypothesis is true. If we take alpha 5%, it means that we are taking 5 out of 100 chance of rejecting the null hypothesis when it is true.

So, statistician controls alpha by establishing the risk of rejecting a null hypothesis when its true.

Mary wants to get her boyfriend a nice birthday present. She has to decide on a choice of one of five books that he would like, one of four ties or one of four X-box games. What is the total number of different outcomes available to her?

Answers

Answer: 13 outcomes

Step-by-step explanation:

Given:

She wants to get a gift from the following choices;

- one of five books

- one of four ties

- one of four X-box

Since, the three groups of choices are joined with "OR" but not "AND" that means she is getting just one gift from any of the 3 groups.

Total number of gift she needed = 1

Total number of choices = 3 groups with total of 13 options

N = 13P1 = 13!/(13-1)! = 13!/12! =13

N = 13 outcomes.

Two random variables X and Y are independent. Each has a binomial distribution with success probability 0.4 and 2 trials.

(a) Find the joint probability distribution function f(x,y).
(b) Give the joint probabilities using a table. Hint, the size of the tables is 3 by 3.

Answers

Answer:

Step-by-step explanation:

Given that two random variables X and Y are independent. Each has a binomial distribution with success probability 0.4 and 2 trials.

When x and y are independent joint probability would be product of individual probabilities

pdf of X

X is Binom (2,0.4)

and Y is Binomi (2,0.4)

Hence joint distribution of XY would be

P(X=x, Y=y) =[tex]2Cx (0.4)^x (0.6)^{2-x} *2Cy (0.4)^y (0.6)^{2-y}[/tex]

for x=0,1,2 and y =0,1,2

b) Joint probability using table

PDF of X is

X        0            1           2

p       0.36    0.48      0.16

and same for Y also

Joint prob would be

X  Y       0            1              2

0      0.1296     0.1728      0.0576

1       0.1728      0.2304     0.0768

2      0.0576     0.0768     0.0256

Joint probability distribution function are used to represent the probability of multiply variables

The joint probability distribution function is [tex]f(x,y) = ^2C_x *0.4^x * 0.6^{2- x} *^2C_y * 0.4^y * 0.6^{2- y}[/tex]

The given parameters are:

[tex]p = 0.4[/tex] --- the probability of success

[tex]n = 2[/tex] ----the number of trials

The joint probability distribution function f(x,y) is calculated as:

[tex]f(x,y) = ^nC_x * p^x * (1 -p)^{n- x} *^nC_y * p^y * (1 -p)^{n- y}\\[/tex]

So, we have:

[tex]f(x,y) = ^2C_x *0.4^x * (1 -0.4)^{2- x} *^2C_y * 0.4^y * (1 -0.4)^{2- y}[/tex]

Evaluate the differences

[tex]f(x,y) = ^2C_x *0.4^x * 0.6^{2- x} *^2C_y * 0.4^y * 0.6^{2- y}[/tex]

The above represents the joint probability distribution function f(x,y)

When x = 0, y = 0;

We have:

[tex]f(0,0) = 0.130[/tex]

When x = 0, y = 1;

We have:

[tex]f(0,1) = 0.173[/tex]

When x = 0, y = 2;

We have:

[tex]f(0,2) = 0.058[/tex]

When x = 1, y = 0;

We have:

[tex]f(1,0) = 0.173[/tex]

When x = 1, y = 1;

We have:

[tex]f(1,1) = 0.230[/tex]

When x = 1, y = 2;

We have:

[tex]f(1,2) = 0.077[/tex]

When x = 2, y = 0;

We have:

[tex]f(2,0) = 0.058[/tex]

When x = 2, y = 1;

We have:

[tex]f(2,1) = 0.077[/tex]

When x = 2, y = 2;

We have:

[tex]f(2,2) = 0.026[/tex]

So, the joint probability as a table is:

X /Y       0            1              2

0      0.1296     0.1728      0.0576

1       0.1728      0.2304     0.0768

2      0.0576     0.0768     0.0256

Read more about probability at:

https://brainly.com/question/25870256

what is the answer for 6+3×2​

Answers

12
Pemdas
3*2=6
6+6=12
3 • 2 = 6
6 + 6 = 12
Answer = 12

Data obtained from a nominal scale: A. must be alphabetic B. can be either numeric or nonnumeric C. must be numeric D. must rank order the data

Answers

Answer:

Option B

Step-by-step explanation:

The data constitutes nominal scale of measurement when the observations can be classified into groups. For example, students are classified into groups on the basis of eye color. The numerical values can also be use in nominal scale for grouping. For example, the students can be categorize into 1,2 and 3  if they have brown, black and green eye color. But they have no numerical significance. Thus, data obtained from a nominal scale can be either numeric or non-numeric.

If the interest rate is 7%, how many years will it take for your bank balance to double from $1,000 to $2,000?Enter the following data into your calculator:

Answers

It takes 10.3 years for your bank balance to double from $1,000 to $2,000.

Given that,

The interest rate is 7%.

Principal amount = $1000

Final amount = $2000

Used the formula for the time,

A = P (1 + r)ⁿ

Where, A = Final amount

P = Principal amount

r = interest rate

n = number of years

Substitute all the values,

2000 = 1000 (1 + 0.07)ⁿ

2000/1000 = (1.07)ⁿ

2 = (1.07)ⁿ

Take natural logs on both sides,

ln 2 = n ln (1.07)

0.69 = n × 0.067

n = 0.69/0.067

n = 10.3 years

Therefore, the time for your bank balance to double from $1,000 to $2,000 is 10.3 years.

To learn more about the Interest visit:

https://brainly.com/question/7639734

#SPJ4

It will take approximately 10.1351 years for your bank balance to double from $1,000 to $2,000 at an interest rate of 7%.

To calculate the number of years it will take for your bank balance to double from $1,000 to $2,000 at an interest rate of 7%, we can use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where:

A is the final amount (in this case, $2,000),

P is the initial principal (in this case, $1,000),

r is the annual interest rate (7% or 0.07 as a decimal),

n is the number of times interest is compounded per year (we'll assume it's compounded annually),

and t is the number of years.

We can rearrange the formula to solve for t:

t = (log(A/P) / log(1 + r/n)) / n

Plugging in the values:

A = $2,000

P = $1,000

r = 0.07

n = 1 (since it's compounded annually)

t = (log(2,000/1,000) / log(1 + 0.07/1)) / 1

Simplifying the expression:

t = (log(2) / log(1.07)) / 1

Using a calculator to evaluate the logarithms:

t ≈ (0.3010 / 0.0296) / 1

t ≈ 10.1351 / 1

t ≈ 10.1351

for such more question on interest rate

https://brainly.com/question/29451175

#SPJ8

Consider the vector b⃗ b→b_vec with length 4.00 mm at an angle 23.5∘∘ north of east. What is the y component bybyb_y of this vector?

Answers

Answer:

[tex]\large\boxed {1.59 mm}[/tex]

Explanation:

1. Given vector:

length: 4.00 mm = magnitude of the vectorangle: 23.5º north of east = 23.5º from the x-axys (counterclockwise)

2. y-component

The y-component may be determined using the sine ratio, the angle from the x-axys (counterclockwise direction), and the magnitude of the vector.

sine (23.5º) = y-component / magnitude

y-component = magnitude × sine (23.5º) = 4.00 mm × sine (23.5º) = 1.59 mm.

[tex]\large\boxed{y-component = 1.59 mm}[/tex]

Harry Potter approaches with a strange bag full of balls, numbered 1 to k. As you reach in to pick one, he notes that they are not all equally likely because of magic: ball 1 is least likely to be chosen, with probability c, where c is some constant. Ball 2 has probability 2c, Ball 3 has probability 3c, . . . , Ball k − 1 has probability (k − 1)c, and Ball k has probability kc.
1. What is the expected value of the ball number you pick? Your answer can’t use the constant c, but will use k.

Answers

Answer:

[k*(k+1)*(2*k+1)] / 6

Step-by-step explanation:

We have balls numbered as: 1, 2, 3, ... , k with probabilities as: c, 2*c, 3*c, ... , k*c

Let Y be the discrete random variable defined as: Y = ball number

We know that Expected value of discrete Random Variable is:

E[X] =  Σ₁ⁿ xₐ*f(xₐ)            ,where f(xₐ) is probability of xₐ

then,

E[Y] = 1*c + 2*2*c + 3*3*c + ... + k*k*c

E[Y] = c*(1 + 2*2 + 3*3 + ... + k*k)

E[Y] = c*(1^2 + 2^2 + 3^2 + ... + k^2)

consider c = 1  (because it's constant so you can suppose any you wish)

E[Y] = 1^2 + 2^2 + 3^2 + ... + k^2

using formula of first n squares natural numbers (as attached picture)

E[Y] = [k*(k+1)*(2*k+1)] / 6

In a survey of 447 registered voters, 157 of them wished to see Mayor Waffleskate lose her next election. The Waffleskate campaign claims that no more than 27% of registered voters wish to see her defeated. Does the 98% confidence interval for the proportion support this claim? (Hint: you should first construct the 98% confidence interval for the proportion of registered voters who wish to see Waffleskate defeated.) (0.299, 0.404)

A. No

B. Yes

Answers

Answer with explanation:

Let p be the true proportion of  registered voters wish to see Mayor Waffleskate defeated.

As per given , we have

[tex]H_0: p\leq0.27\\\\ H_a: p >0.27[/tex]

Sample size : n= 447

Number of of registered voters wish to see Mayor Waffleskate defeated = 157

I.e. sample proportion :  [tex]\hat{p}=\dfrac{157}{447}\approx0.3512[/tex]

Confidence interval for population proportion is given by :-

[tex]\hat{p}\pm z^*\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

, where n= sample size

[tex]\hat{p}[/tex] = sample proportion

z* = critical z-value.

Critical z-value for 98% confidence interval is 2.33.  (By z-table)

Then, the 98% confidence interval for the proportion of registered voters who wish to see Waffleskate defeated will be :

[tex]0.3512\pm2.33\sqrt{\dfrac{0.3512(1-0.3512)}{447}}\\\\=0.3512\pm (2.33)(0.022577656)\\\\=0.3512\pm 0.05260593848\\\\=(0.3512-0.05260593848,\ 0.3512+0.05260593848)\\\\=(0.29859406152,\ 0.40380593848)\approx(0.299,\ 0.404)[/tex]

Since the 0.27 < 0.299 , it means 0.27 does not belong to the above confidence interval.

So , we reject the null hypothesis ([tex]H_0[/tex]).

So ,  98% confidence interval does not support the claim.

Let Upper A equals left bracket Start 2 By 2 Matrix 1st Row 1st Column negative 2 2nd Column 4 2nd Row 1st Column 1 2nd Column 3 EndMatrix right bracketA=

−2 4
1 3
​, and Upper B equals left bracket Start 2 By 2 Matrix 1st Row 1st Column negative 2 2nd Column 1 2nd Row 1st Column 3 2nd Column 7 EndMatrix right bracketB=

−2 1
3 7
.a. Find

ABAB​,

if possible. b. Find

BABA​,

if possible.

c. Are the answers in parts a and b the ​same?

d. In​ general, for matrices A and B such that AB and BA both​ exist, does AB always equal​ BA?

a. Find

ABAB​,

if possible.

Answers

Answer:

not

Step-by-step explanation:

[tex]\left[\begin{array}{ccc}-2&4\\1&3\end{array}\right] *\left[\begin{array}{ccc}-2&1\\3&7\end{array}\right]=[/tex]

First is A and Second is B

Let's find A*B

[tex]\left[\begin{array}{ccc}-2(-2)+4*3&-2*1+4*7\\1(-2)+3*3&1*1+3*7\end{array}\right] =\left[\begin{array}{ccc}16&26\\7&22\end{array}\right][/tex]

b)

[tex]\left[\begin{array}{ccc}-2&1\\3&7\end{array}\right] \left[\begin{array}{ccc}-2&4\\1&3\end{array}\right] =[/tex]

Now let's find B*A

[tex]\left[\begin{array}{ccc}-2(-2)+1*1&-2*4+1*3\\3(-2)+7*1&3*4+7*3\end{array}\right] =\left[\begin{array}{ccc}5&-5\\1&23\end{array}\right][/tex]

c) They are not

Michael Beasley is shooting free throws. Making or missing free throws doesn't change the probability that he will make his next one, and he makes his free throws 75%, percent of the time. What is the probability of Michael Beasley making all of his next 4 free throw attempts?
A. .75^8
B. .375^4
C. .75^4
D. 1.50^2

Answers

Answer: C.  [tex]0.75^4[/tex]

Step-by-step explanation:

Let x be the binomial variable that denotes the number of makes.

Since each throw is independent from the other throw , so we can say it follows Binomial distribution .

So [tex]X\sim Bin(n=4 , p=0.75)[/tex]

Binomial distribution formula: The probability of getting x success in n trials :

[tex]P(X=x)=^nC_xp^n(1-p)^{n-x}[/tex] , where p = probability of getting success in each trial.

Then, the probability of Michael Beasley making all of his next 4 free throw attempts will be :

[tex]P(X=4)=^4C_4(0.75)^4(1-0.75)^{0}[/tex]

[tex]=(1)(0.75)^4(1)\ \ [\because\ ^nC_n=1]\\\\=(0.75)^4[/tex]

Thus, the probability of Michael Beasley making all of his next 4 free throw attempts is [tex]=0.75^4[/tex]

Hence, the correct answer is C.  [tex]0.75^4[/tex].

The family of functions y=ce−2x+e−x is solution of the equation y+2y=e−x
Find the constant c which defines the solution which also satisfies the initial condition y(−5)=6. c=

Answers

Answer:

c = 6*e^(-10) -  e^(-5)  ( ≈ -e⁻⁵ = -6.74*10⁻³)

Step-by-step explanation:

for the function

y=c*e^(−2x)+e^(−x)

as a solution of y'+2y=e^(−x)

then for  y(x=−5)=6

6 =c*e^(−2(-5))+e^(−(-5)) = c*e^10 + e^5

6 = c*e^10 + e^5

c = (6 -  e^5)/*e^10 = 6*e^(-10) -  e^(-5)

c = 6*e^(-10) -  e^(-5)  ( ≈ -e⁻⁵ = -6.74*10⁻³)

Find an equation of the largest sphere that is centered at (5,4,9) and has interior contained in the first octant.

Answers

Answer:

[tex](x - 5)^{2} + (y - 4)^{2} + (z - 9)^{2} = 16[/tex]

Step-by-step explanation:

The general equation of a sphere is as follows:

[tex](x - x_{c})^{2} + (y - y_{c})^{2} + (z - z_{c})^{2} = r^{2}[/tex]

In which the center is [tex](x_{c}, y_{c}, z_{c})[/tex], and r is the radius.

In this problem, we have that:

[tex]x_{c} = 5, y_{c} = 4, z_{c} = 1[/tex]

So

[tex](x - 5)^{2} + (y - 4)^{2} + (z - 9)^{2} = r^{2}[/tex]

Interior contained in the first octant:

The first octant is bounded by:

The xy plane, in which z is 0. The distance from the center of the sphere to the xy plane is 9.

The xz plane, in which y is 0. The distance from the center of the sphere to the xz plane is 4.

The yz plane, in which x is 0. The distance from the center of the sphere to the yz plane is 5.

This means that if the radius is higher than four, the sphere will cross into a different octant.

So the radius for the largest sphere is 4.

The equation is

[tex](x - 5)^{2} + (y - 4)^{2} + (z - 9)^{2} = 4^{2}[/tex]

[tex](x - 5)^{2} + (y - 4)^{2} + (z - 9)^{2} = 16[/tex]

Other Questions
The center of mass of a pitched baseball orradius 3.91 cm moves at 33.6 m/s. The ballspins about an axis through its center of masswith an angular speed of 52.1 rad/s.Calculate the ratio of the rotational energyto the translational kinetic energy. Treat theball as a uniform sphere. During an ice show a 60 kg skater leaps into the air and is caught by an initially stationary 75.0 kg skater.a. What is their final velocity assuming negligible friction and that the 60.0-kg skater's original horizontal velocity is 4.00 m/s?b. How much kinetic energy is lost? The duties of U.S. Marshals from 1790 to 1870 included______.taking the national censusrenting court rooms and jail spacepaying the fees of court clerksall of the choices What are sources of revenue for the Louisiana state government? Check all that apply.ad valorum taxesseverance taxeseducation taxesincome taxesgas royaltiesoil royalties STAAR Category 3Grade 8 MathematicsTEKS 8.1005. Two picture frames are similar. The dimensions of the smaller frame are 4 inches by 9 inches. Thelarger frame has dimensions 12 inches by x inches.4 inches12 inches9 inchesx inchesWhat is the perimeter of the larger frame?A 30 inchesB 42 inchesC 78 inchesD 96 inches types of run-on sentences include?1)fused2)comma splice3)predicate clause4)both a&c5)both a &b Let p: x=4 let q:y=-2 Universal Containers wants to standardize their business logic. They want to ensure that the workfloworder is guaranteed to be the same each time. Which feature can be used to accomplish this? Choose 2answers.A. Lightning Process BuilderB. WorkflowC. Chatter ActionsD. Visual Workflow g Why are there active volcanoes along the Pacific Coast of Washington and Oregon, but not along the east coast of the United States? Where are Richie and his mother when the film begins? How do they earn a living? - La Bamba Movie A nationwide survey of 1000 adults found that 50% of respondents favored a plan to break up the 12 megabanks, which then controlled about 69% of the banking industry. Complete parts (a) and (b) below. a. Identify the population and sample for this study.b. Is the percentage provided a descriptive statistic or an inferential statistic? Explain your answer. 3. Nghiep gave his mother half of his weekly earnings, and then spent half of what was left on a new shirt. He then had $32. What were his weekly earnings? Please help ASAP URGENT Will mark Brianlest NEED YOUR HELP!!!Which statements are true? Choose all answers that are correct. More that one answer.A. This social structure made most French people happy.B. French aristocrats belonged to the Second Estate. C. The Fourth Estate was made up of commoners.D. It was very difficult to change membership in an estate. the length of a rectangle is five times its width. If the perimeter of the rectangle is 120 inch find its area Dr. MacLeod is the chair of an institutional review board at a local university. He recently received a research proposal from Dr. Portree. Dr. Portree wants to conduct a study in which she tells graduating seniors that they have failed all of their classes and will not be graduating college to see how college students cope with stress. She wants to randomly choose enrolled students at the university to send her ""failing notices"" and she points out that she cannot have them sign a consent form because if they know that they are in a research study they might not believe that they are failing and it will ruin the results of her study. Should Dr. MacLeod allow Dr. Portree to conduct her study with the university students? A firm determines that it can hire one more worker at a wage of $80 per day, and its MRP would increase by $100 for the day. The firm also determines that it can rent one more piece of capital equipment at a cost of $200 per day, and its MRP would increase by $250 for the day. In order to maximize profit, the firm should a. hire one more worker but not rent a piece of equipment b. hire one more worker and also rent a piece of equipment c. reduce the number of workers and rent more equipment d. rent one piece of equipment but not hire a worker e. reduce the amount of equipment and hire more workers An example of a pattern that is very harmful but not generally defined as a social problem is ________________________________________________. Parker wants to improve their muscle ENDURANCE. Parker currently lifts every other day for each muscle group, with heavy weights at 60-90% of their 1 RM while completing 2 sets of 15 repetitions. What part of the FITT principle is Parker not correctly following to improve their muscle ENDURANCE?1. Frequency2.Time3.Parker is following the FITT principle for Endurance4. Intensity I NEED HELP ASAP PLS PLS PLS OR IMA FAIL Ms. Lee is packing orders for her soap business. One customer ordered 12 bars of her Orange You Fresh soap. If each bar of soap weighs 4 ounces, how many pounds will this order weigh? What is the difference between a continuous spectrum and a line spectrum Steam Workshop Downloader