Explain how to solve 7 + x > 12 .Tell what property of inequality you would use

Answers

Answer 1

Answer:

x > 5

Step-by-step explanation:

isolate x by subtracting 7 from both sides

x > 12 - 7

x > 5



Related Questions

How do you recognize if a binomial is a difference of perfect squares and how is the pattern used to factor the binomial?

Answers

Answer:

A difference of squares has the following form [tex]a^2-b^2[/tex]. Any two perfect squares connected by subtraction can be factored.

It factors to (a+b)(a-b).

Step-by-step explanation:

A binomial is an expression with only terms where at least one is a term with a variable. When we can factor for difference of squares, we can have two variable terms or just one with a constant.

A difference of squares has the following form [tex]a^2-b^2[/tex]. Any two perfect squares connected by subtraction can be factored.

It factors to (a+b)(a-b).

Help me please!!! 30 points! :)

Answers


[tex] \frac{625 {(5xy)}^{ - 3} }{ {(5x)}^{2} {y}^{7} } \: = \: 625 \times \frac{1}{ {(5xy)}^{3} } \times \frac{1}{ {(5x)}^{2} {y}^{7} } \: = \: 625 \times \frac{1}{125 {x}^{3} {y}^{3} } \times \frac{1}{25 {x}^{2} {y}^{7} } \: = \: \frac{1}{5 {x}^{5} {y}^{10} } [/tex]

Help plz 30 points!!

Answers

It is A. We have a ratio of

900 workers : 3.2×10⁵

Dividing by 9×10² becomes

1 worker :[tex]\frac{3.2}{9}[/tex] ×10³

3.2/9 is just 0.36 rounded so it is

1 worker : 0.36×10³

or A

Answer:

the answer is a

Step-by-step explanation:

If two angles are supplementary, which is the sum of their measurements? A. 45o B. 90o C. 120o D. 180o

Answers


Two supplementary angle when added together need to equal 180 degrees.



Answer:

Two supplementary angle when added together need to equal 180 degrees.

Step-by-step explanation:

Sketch the plane curve represented by the given parametric equations. Then use interval notation to give the relation's domain and range. X = 2t, y = t2 + t + 3

Answers

Answer:

Domain: [tex]( -\infty,\infty )[/tex] and Range: [tex][ -1,\infty )[/tex]

Step-by-step explanation:

We have the parametric equations [tex]x= 2t[/tex] and [tex]y=t^{2}+t+3[/tex].

Now, we will find the values of 'x' and 'y' for different values of 't'.

t                       :   -3       -2.5     -2     -1.5     -1     0       1      1.5      2

[tex]x= 2t[/tex]             :   -6       -5       -4       -3      -2    0      2      3        4

[tex]y=t^{2}+t+3[/tex]  :    9       6.75     5     3.75     3    3      5     6.75     9

Now, we can see that these parametric equations represents a parabola.

The general form of the parabola is [tex]y=ax^{2}+bx+c[/tex].

Now, we have the point ( x,y ) = ( 0,3 ). This gives that c = 3.

Also, we have the points ( x,y ) = ( -2,3 ) and ( 2,5 ). Substituting these in the general form gives us,

4a - 2b + 3 = 3 → 4a - 2b = 0 → b = 2a.

4a + 2b + 3 = 5 → 4a + 2b = 2 → 2a + b = 1 →  2a + 2a = 1 ( As, b = 2a ) → 4a = 1 → [tex]a=\frac{1}{4}[/tex].

So, [tex]b=\frac{1}{2}[/tex].

Therefore, the equation of the parabola obtained is [tex]y=\frac{x^{2}}{4}+\frac{x}{2}+3[/tex].

The graph of this function is given below and we can see from the graph that domain contains all real numbers and the range is [tex]y\geq -1[/tex].

Hence, in the interval form we get,

Domain is [tex]( -\infty,\infty )[/tex] and Range is [tex][ -1,\infty )[/tex]

Answer:

Domain:

[tex](-\infty,\infty)[/tex]

Range:

[tex][2.75,\infty)[/tex]

Step-by-step explanation:

we are given parametric equation as

[tex]x=2t[/tex]

[tex]y=t^2+t+3[/tex]

We can change into rectangular equation

we can eliminate t from first equation and plug into second equation

[tex]x=2t[/tex]

[tex]t=\frac{x}{2}[/tex]

now, we can plug that into second equation

[tex]y=(\frac{x}{2})^2+\frac{x}{2}+3[/tex]

now, we can draw graph

Domain:

we know that

domain is all possible values of x for which any function is defined

we can see that our equation is parabolic

and it is defined for all values of x

so, domain will be

[tex](-\infty,\infty)[/tex]

Range:

we know that

range is all possible values of y

we can see that

smallest y-value is 2.75

so, range will be

[tex][2.75,\infty)[/tex]


What is the fourth term of the expansion of the binomial (2x + 5)5? A. 10x2 B. 5,000x2 C. 1,250x3 D. 2,000x3

Answers

Answer:

B would be the answer for this question.


Step-by-step explanation:


Answer:  The fourth term is [tex]5000x^2.[/tex]

Step-by-step explanation:  We are given to find the fourth term in the expansion of the following binomial :

[tex]B=(2x+5)^5.[/tex]

We know that

the r-th term in the expansion of the binomial [tex](a+x)^n[/tex] is given by

[tex]T_r=^nC_ra^{n-(r-1)}b^{r-1}.[/tex]

For the given term, we have

n = 5  and  r = 4.

Therefore, fourth term is given by

[tex]T_4\\\\=^5C_{4-1}(2x)^{5-(4-1)}5^{4-1}\\\\=^5C_3(2x)^25^3\\\\=\dfrac{5!}{3!(5-3)!}\times4x^2\times125\\\\\\=\dfrac{5\times4}{2\times1}\times 500x^2\\\\=5000x^2.[/tex]

Thus, the fourth term is [tex]5000x^2.[/tex]

Drag and drop numbers into the boxes so that the paired values are in a proportional relationship.

x 1 3 _____ 5 8
y 4 12 16 20 _____

4
12
32
8
36

Answers

For x it would be 4 and then for y it would be 32

Answer:

4 and 32

Step-by-step explanation:

We are given paired values for two variables x and y and we are to fill in the missing values such that they are in a proportional relationship.

For x, we have the following paired values:

[tex]1, 3, ___, 5, 8[/tex]

So from the given options, 4 fits the best here which is greater than 3 and lesser than 5.

And for y, we have:

[tex]4, 12, 16, 20, ___[/tex]

Here, 32 fits the best from all the options as it is the next (available) number after 20.

Last year my family decided to put on a play It was A Great success . 200 people attended and we earned a total of 800 . If adults tickets cost 4 and children coat 2 dollar , how many adults were there

Answers

Answer:

200 adults

Step-by-step explanation:

We can set-up a system of equations to find the number of adults. We know children and adults attended. We will let c be the number of children and a be the number of adults. Since 200 people attended, then c+a=200.

We also know they made $800 and adult tickets cost $4 and child tickets cost $2. We can write 2c+4a=800.

We will solve by substituting one equation into the other. We start by solving the first equation for c. c+a=200 becomes c=200-a.

Now we substitute c=200-a into 2c+4a=800. Simplify and isolate the variable a.

2(200-a)+4a=800400-2a+4a=800400+2a=800400-400+2a=800-4002a=400a=200

This means that 200 adults attended and 0 children attended.

River rambler charges $25 per day to rent a kayak. How much will it cost to rent a kayak for 5 days? Write and solve an equation to solve this problem.

Answers

Answer:

C=25d

Step-by-step explanation:

We write an equation where C or cost is my output and d or days is my input. I should be able to put in any number of days and find the cost. Let's gather some data:

River Ramble

Day 1 $25(1)=25 cost

Day 2 $25(2)=50 cost

Day 3 $25(3)=75 cost

Day d $25(d)=C.

Our equation is C=25d.

Please help! Write the slope-intercept form of the equation for the line.
a. y=-8/7x-3/2
b. y=-3/2x+7/8
c. y=-7/8x-3/2
d. y=7/8x-3/2

Answers

Answer:

C

Step-by-step explanation:

The slope intercept of a line is y=mx +b where

m is the slope which is calculated as the vertical distance divided by the horizontal distance between two points.b is the y-intercept for value on the y-axis for which the line crosses it.

This graph crosses the y-axis (the vertical line) halfway between -1 and -2. This  is -3/2. This means only answers a, c, and d are options.

The graph moves up from -3/2 to its next point at (-4,0). We calculate the slope using:

Slope:[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

We substitute [tex]x_1=0\\y_1=-1.5[/tex] and [tex]x_2=-4\\y_2=2[/tex]

[tex]m=\frac{2-(-1.5)}{-4-0}[/tex]

[tex]m=\frac{2+1.5}{-4}=\frac{3.5}{-4} =-0.875[/tex]

This decimal is equivalent to -7/8. This means C is the answer.



This equation represents a line with a slope of [tex]\( -\frac{7}{8} \)[/tex](meaning the line slopes downward from left to right) and a y-intercept of [tex]\( -\frac{3}{2} \)[/tex](where the line crosses the y-axis). The correct answer is option c

The slope-intercept form of the equation of a line is [tex]\( y = mx + b \),[/tex] where m represents the slope of the line, and b represents the y-intercept (where the line crosses the y-axis).

Let's analyze each option:

a.[tex]\( y = -\frac{8}{7}x - \frac{3}{2} \):[/tex]

  - Slope [tex]\( m = -\frac{8}{7} \)[/tex]

  - y-intercept [tex]\( b = -\frac{3}{2} \)[/tex]

b. [tex]\( y = -\frac{3}{2}x + \frac{7}{8} \):[/tex]

  - Slope [tex]\( m = -\frac{3}{2} \)[/tex]

  - y-intercept[tex]\( b = \frac{7}{8} \)[/tex]

c.[tex]\( y = -\frac{7}{8}x - \frac{3}{2} \):[/tex]

  - Slope [tex]\( m = -\frac{7}{8} \)[/tex]

  - y-intercept [tex]\( b = -\frac{3}{2} \)[/tex]

d.[tex]\( y = \frac{7}{8}x - \frac{3}{2} \):[/tex]

  - Slope[tex]\( m = \frac{7}{8} \)[/tex]

  - y-intercept[tex]\( b = -\frac{3}{2} \)[/tex]

Among the given options, the correct slope-intercept form is option c:

[tex]\[ \boxed{y = -\frac{7}{8}x - \frac{3}{2}} \][/tex]

solve 14^x+1=36
Round to the nearest ten-thousandth.

Answers

Answer:

x = 1.3472 to the nearest ten thousandth.

Step-by-step explanation:

14^x + 1 = 36

14^x = 35

Taking logarithms:-

x ln 14 = ln 35

x = ln 35 / ln 14

= 1.3472.

The solution, rounded to the nearest ten-thousandth, is x = 1.5404.

To solve the equation [tex]14^x + 1 = 36[/tex], we first isolate the exponential term by subtracting 1 from both sides of the equation, which gives us [tex]14^x = 35.[/tex]

The next step is to take the logarithm of both sides of the equation.

We could use any base for the logarithm, but it's common to use base 10 or the natural logarithm base (e). In this case, let's use the natural logarithm:

[tex]ln(14^x) = ln(35)[/tex]

We can then use the property of logarithms which allows us to bring the exponent down as a multiplier:

[tex]x * times ln(14) = ln(35)[/tex]

Now, you can solve for x by dividing both sides by ln(14):

[tex]x = ln(35) / ln(14)[/tex]

Using a calculator, we find the quotient and then round to the nearest ten-thousandth:

x = 1.5404

This value is the solution to the original equation.

Shryia read a 480480-page-long book cover to cover in a single session, at a constant rate. After reading for1.51.5 hours, she had 402402 pages left to read.Let P(t)P(t) denote the number of pages to read PP as a function of time tt (measured in hours).Write the function's formula.P(t)=

Answers

Answer:

Function formula P(t) = -52t +480

Step-by-step explanation:

here, P(t) denotes the number of pages to read and t represents the time in hour.

Given the statement: Shryia read a 480-page-long book cover to cover in a single session, at a constant rate. After reading for 1.5 hours, she had 402 pages left to read.

Total number of page in a long book = 480

After reading for 1.5 hours, she had 402 pages left to read.

Then,

Total number of page Shryia read in 1.5 hours is:

[tex]480-402 = 78[/tex]

Constant rate at which she is reading her book = [tex]\frac{78}{1.5} = 52[/tex] page per hour

Then, the function formula is given by:

P(t) = -52t + 480 ;  where t is in hours.

Check:

P(t) = -52t + 480

P(1.5) = -52(1.5) + 480 = -78 + 480 = 402     True.

What is the answer to: (51 + 11.22 + 35.92)?

Answers

Answer:

It would equal 98.14

Step-by-step explanation:


the anwser is 98.14.

Simplify: (3–a)·2+a =

Answers

Answer:

The simplified form of the given expression is 6-a.

Step-by-step explanation:

The given expression is

[tex](3-a)\cdot 2+a[/tex]

According to distributive property.

[tex]a\cdot (b+c)=ab+ac[/tex]

Use distributive property.

[tex]3(2)-a(2)+a[/tex]

[tex]6-2a+a[/tex]

Combine like terms.

[tex]6+(-2a+a)[/tex]

[tex]6-a[/tex]

Therefore the simplified form of the given expression is 6-a.

someone help i cant do math bc im pretty

Answers

Answer:

52

Step-by-step explanation:

One way is to simply count the number of yellow squares.

I count 52, so the area is 52 square units.

Another way is to find the area of the larger rectangle and subtract from it the area of the smaller rectangle.

The larger rectangle is 11 by 6. Area = 11 * 6 = 66.

The smaller rectangle is 7 by 2. Area 7 * 2 = 14.

Area shaded in yellow = 66 = 14 = 52

Answer: area = 52 square units

Answer:

"i cant do math cuz im pretty" such pick me vibes LOL

Step-by-step explanation:

The expression 1/2bh gives the area of a triangle where b is the base of the triangle and h is the height of the triangle. What is the area of a triangle with the base of 7cm and a height of 4 cm?

Answers

[tex]A_{\triangle}=\dfrac{1}{2}bh\\\\\text{We have}\ b=7cm,\ h=4cm\\\\\text{Substitute:}\\\\A_{\triangle}=\dfrac{1}{2}(7)(4)=\dfrac{28}{2}=\boxed{14\ cm^2}[/tex]

A research study is done to find the average age of all U.S. factory workers. The researchers asked every factory worker in Ohio what their birth year is. This research is an example of a ______.

census
survey
convenience sample
simple random sample

Answers

Answer: Census.

Step-by-step explanation:

Given statement:- A research study is done to find the average age of all U.S. factory workers. The researchers asked every factory worker in Ohio what their birth year is.

This research is an example of a census because research in which information is obtained through the responses that all available members of an entire population give to questions.

In other words "Census is an official survey of population in a certain area and records various details about the individuals".

The study querying every factory worker in Ohio for their birth year to determine the average age of all U.S. factory workers is a census, as it attempts to gather data from every member of the entire population of interest. (First option)

The research study done to find the average age of all U.S. factory workers where the researchers asked every factory worker in Ohio their birth year is an example of a census. A census involves gathering information about every individual in the entire population of interest.

In this case, the population of interest would be all factory workers, and by querying every one of them (assuming it was indeed every single factory worker in Ohio), it constitutes a census, not a survey, which typically involves a representative sample.

It is not a convenience sample since that would imply a non-random selection based on ease of access, and it's not a simple random sample because not all members of the larger population (nationwide factory workers) have an equal chance of being included.

PLEASE HELP ME! What is the equation of a line that passes through the point (6, 1) and is perpendicular to the line whose equation is y=−2x−6?


Enter your answer in the box.

Answers

Answer:

y=0.5x-2

Step-by-step explanation:

if it is perpendicular to the line y=-2x-6, then you know that its slope is the negative reciprocal of that line, and it has a different y intercept which you need to solve for using the point given. You solve by plugging in the x and y values from the point and plugging in the slope into the standard equation, and solving for b, the y intercept

y=0.5x+b

1=0.5(6)+b

1=3+b

-2=b


The equation of the line that passes through the point (6, 1) and is perpendicular to the line whose equation is y=−2x−6  is y = 0.5x - 2.

How to find equation of straight line from concept of perpendicular line ?

From the classic definition of straight lines, we know that if we have to find an equation of a straight line being perpendicular to another straight line then the slope of the new equation of straight lines becomes negative reciprocal of the slope of given perpendicular line.

Finding the equation of the required straight line -

Mathematically, let m1 be the slope of the new straight line and m be the slope of the given perpendicular line, then we have

m1 = -(1/m)

Now, we have given equation y = -2x - 6

Thus slope of the required equation is say (m1) = -(-1/2) = 0.5

Thus the equation formed is y = (m1)x + c [where c is the y-intercept]

∴ y = 0.5x + c

The point given is (6,1) , thus y = 1 and x = 6

Thus the given equation can be formed as

⇒ 1 =  0.5*6 + c

∴  c = 1 - 0.5*6 = -2

The value of y-intercept of the required straight line is -2

The equation of straight line formed is y = 0.5x - 2.

Thus the equation of the line that passes through the point (6, 1) and is perpendicular to the line whose equation is y = − 2x − 6  is y = 0.5x - 2.

To learn more about equation of straight line, refer -

https://brainly.com/question/7669240

#SPJ2

The measure of an angle is 78 less than the measure or its complement.What is the measure of the angle

Answers

Answer:

84°

Step-by-step explanation:

2 complementary angles sum to 90°

let x be the angle then complement = x - 78, hence

x + x - 78 = 90 ( add 78 to both sides )

2x = 168 ( divide both sides by 2 )

x = 84

hence the angle is 84°


A satellite travels about 2272 miles in 8 minutes about how many miles does a satellite travel in 3 minutes

Answers

Answer:

852 miles

Step-by-step explanation:

We presume the speed is constant, so the satellite will travel 3/8 the distance in 3/8 the time.

... d = (3/8)·(2272 miles) = 852 miles

_____

1 minute is 1/8 of 8 minutes, so 3 minutes is 3/8 of 8 minutes.

Order the numbers from least to greatest. A) 1.5, 1.66, 2.4, 3.25, 3.33 B) 1.5, 1.66, 2.4, 3.33, 3.25 C) 1.66, 1.5, 2.4, 3.25, 3.33 D) 3.25, 3.33, 2.4, 1.66, 1.5

Answers

The answer is A yep definitely A

Solve for x: 5 over quantity x squared minus 4 plus 2 over x equals 2 over quantity x minus 2.

x = 8
x = –4
x = 8 and x = –4
No Solution

Answers

[tex]\text{The domain}\\\\x\neq0\ \wedge\ x\neq-2\ \wedge\ x\neq2[/tex]

[tex]\dfrac{5}{x^2-4}+\dfrac{2}{x}=\dfrac{2}{x-2}\qquad\text{subtract}\ \dfrac{2}{x-2}\ \text{from obth sides}\\\\\dfrac{5}{x^2-2^2}+\dfrac{2}{x}-\dfrac{2}{x-2}=0\\\\\dfrac{5}{(x-2)(x+2)}+\dfrac{2}{x}-\dfrac{2}{x-2}=0\\\\\dfrac{5x}{x(x-2)(x+2)}+\dfrac{2(x-2)(x+2)}{x(x-2)(x+2)}-\dfrac{2x(x+2)}{x(x-2)(x+2)}=0\\\\\dfrac{5x+2(x^2-4)-2x(x+2)}{x(x-2)(x+2)}=0\\\\\dfrac{5x+2x^2-8-2x^2-4x}{x(x-2)(x+2)}=0\\\\\dfrac{x-8}{x(x-2)(x+2)}=0\iff x-8=0\to\boxed{x=8}\in D[/tex]

If a right triangle has sides of length a, b and c and if c is the largest, then it is called the "hypotenuse" and its length is the square root of the sum of the squares of the lengths of the shorter sides (a and b). assume that variables a and b have been declared as doubles and that a and bcontain the lengths of the shorter sides of a right triangle: write an expression for the length of the hypotenuse.

Answers

Assuming this is for a programming language like c++, then the expression might look like

c = sqrt(a*a + b*b)

or you can use the pow function (short for power function)

c = sqrt( pow(a,2) + pow(b,2) )

writing "pow(a,2)" means "a^2"; similarly for b as well.

the length of hypotenuse can be found using the formula [tex]c = \sqrt{a^2+b^2}[/tex]

The pytharogas theorem states that:

[tex]hypotenuse^2 = perpendicular^2+ base^2[/tex]

The Pythagorean Theorem relates the length of the legs of a right triangle, labeled a and b, with the hypotenuse, labeled c. The relationship is given by:

[tex]a^2 + b^2 = c^2[/tex]

This can be rewritten, solving for c:

[tex]c = \sqrt{a^2+b^2}\\\\[/tex]

Thus, the length of hypotenuse can be found using the formula [tex]c = \sqrt{a^2+b^2}[/tex]

You are going to flip a coin 8 times. The first 3 times you flip the coin you get tails. What is the probability that all the remaining flips will also be tails?

Answers

Answer:

So when you flip the coin 8 times and you get tails 3 of the times then you should do 3 plus 5 and you will get 8 as your total again so then the answer is 5 out of 8 total.

Step-by-step explanation:


Final answer:

The probability that all the remaining flips will be tails is 1/32, or approximately 0.03125.

Explanation:

The probability of getting tails on each coin flip is 50 percent since a fair coin has two equally likely outcomes: heads or tails.

If the first three coin flips resulted in tails, the remaining five coin flips are independent events. The probability of getting tails on each of the remaining flips is still 50 percent.

The probability of getting all the remaining flips to be tails is calculated by multiplying the probabilities of each individual flip. Since there are five remaining flips, the probability is 0.5 raised to the power of 5, or 1/32 (approximately 0.03125).

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ12

Jupiter has 11 more than 4 times as many moons has Neptune. Neptune has 14 moons. Let j equal the number of moons Jupiter has.

Answers

Final answer:

Jupiter has 67 moons.

Explanation:

To solve this problem, let's define j as the number of moons Jupiter has. According to the given information, Jupiter has 11 more than 4 times as many moons as Neptune, which has 14 moons. So, we can set up an equation: j = 4n + 11, where n is the number of moons Neptune has. Since Neptune has 14 moons, we can substitute that value into the equation: j = 4(14) + 11. Simplifying further, we get j = 56 + 11 = 67. Therefore, Jupiter has 67 moons.

There are 65 students who walk to West Middle School each day. This is 12.5% 0f the total student at the school. How many students attend West Middle School

Answers

"This" refers to the 65 students who walk. "Is" can be written with an equal sign. 12.5% means 12.5/100 which is 0.125. "Of" in word problems means multiplication. We're trying to find the total number of students so we'll call this x.

Equation:
65=0.125x
Divide both sides by 0.125.
520=x
There are 520 students.

A formula for electrical circuits states that E=P/\I where E represents the force in volts, P represents power in watts, and I represents current in amps. Solve this formula for I. Then find I when the force E = 3.6 volts and the power P = 45 watts.

Answers

Answer:

[tex]I=12.5[/tex] amp

Step-by-step explanation:

The formula is,

[tex]E=\dfrac{P}{I}[/tex]

where,

E = Electromotive force in volts,

P = Power in watts,

I = Current in amps.

Given values are,

E = 3.6 volts,

P = 45 watts,

I = ??

Putting the values,

[tex]\Rightarrow 3.6=\dfrac{45}{I}[/tex]

[tex]\Rightarrow I=\dfrac{45}{3.6}=12.5[/tex] amp

Ryan will rent a car for the weekend. He can choose one of two plans. The first plan has an initial fee of $59 and costs an additional $0.08 per mile driven. The second plan has an initial fee of $46 and costs an additional $0.10 per mile driven.A) for what amount of driving do the two plans cost the same? B) What is the cost when the two plans cost the same

Answers

First you get the equations
1st's plan total cost = 0,08x + 59
2nd's = 0,10x + 46

(x stands for the total of miles)


a) For you two know when the costs will be the same, you set one equation equal to the other and you find out that if you drive 650 miles, you'd pay the same amount of money. It doesn't matter which plan you pick.

b) Knowing this, just place 650 into the equation and solve.

What is an equation of the line, in point-slope form, that passes through the given point and has the given slope?

Answers

Answer:  [tex]y -3 = \frac{4}{11} (x - 11)[/tex]

Step-by-step explanation:

We can use the point-slope formula to write the equation of a line given a point on the line and the slope of the line:  

Slope = m

Given point (x₁,y₁)

Formula = (y-y₁) = m(x-x₁)

Given point: (11,3); slope: 4/11

Answer : [tex]y - 3 = \frac{4}{11} (x - 11)[/tex]

[tex]\textit{\textbf{Spymore}}[/tex]​​​​​​

Can someone give 2 examples of a logarithmic equation with infinite solutions?

Answers

Assuming what is meant by "infinite solutions" are infinite number of solutions of a logarithmic equation.  

[tex]\frac{1}{2}\log x^2 - \log \sqrt{x} - \log \sqrt{x} = 0[/tex]

and

[tex]\frac{1}{2}x-2\ln e^x=-\frac{3}{2}x[/tex]

Logarithmic equations with infinite solutions have graphs that look like dying-out exponentials. They can have infinite solutions because there are infinitely many values of y that satisfy the equation.

Examples of Logarithmic Equations with Infinite Solutions:
1. Logarithms to the base 10 (common logarithms):

In the equations below, y is the exponent to which 10 must be raised to equal x, so y is the common logarithm (log) of x.
x = 10^y
x = 10^y+1

2. Logarithms to the base e (natural logarithms):

In the equations below, y is the power to which e must be raised to equal x, so y is the natural logarithm (ln) of x.
x = e^y
x = e^y+1

Both of these equations have graphs that look like dying-out exponentials. They have infinite solutions because there are infinitely many values of y that satisfy the equation. Whenever the base is positive and not equal to 1, logarithmic equations can have infinite solutions.

Other Questions
analyze how cultural diffusion impacted east asia south asia and southeast asia Nathan has just bought a new car. He models the value, V, in dollars, of the car after t years as V(t) = 21,000(0.861)t. Based on this model, by what percent does the value of Nathan's car decrease each year? Write a program that checks the initial value in memory location x4000 to see if it is a valid ascii code and if it is a valid ascii code, Which is an x-intercept of the graph of the function y=cot(3x) Pls solve this pleeeeeeeease City A's population of 1115000 is decreasing at a rate of 15000 per year. City B's population of 698000 is increasing at a rate of 45000 per year. In how many years will the populations be equal? Form the equation and round the answer to the nearest whole number. Frozen language occurs only in _____.A:meetingsB:conferencesC:written material PLEASE SHOW WORKSolve using substitutiony=x+4x-y=-4 The articles of confederation represented the Americans distrust of Which condition causes plaque to accumulate on the walls of the arterie which makes them thicken and lose elasticity Archaeologists determine what an artifact was used for by PLEASE HELP whats the rate of change per year? because desert would contain little organic material, their soil profiles have ___ horizons. Please explain your answer! president kennedy dealt with which of the following issues? Headlands are formed through wave deposition. true or false? The Lets Roll game uses a number cube with the numbers 2,4,6,8,10 and 12. There are prizes for rolling any number less than 6. solve this problem please A particle moves along the x-axis with position function s(t) = ecos(x). How many times in the interval [0, 2] is the velocity equal to 0? Evaluate (ab)^2 for a=3 and b=4 Steam Workshop Downloader