Answer:
The answer is
D.16
Step-by-step explanation:
Algebra 2, please help asap
A box contains 4 black shirts, 8 blue shirts, 4 black pants, and 10 blue pants. Determine the probability of randomly selecting a blue piece of clothing or a pair of pants. Use P(A or B) = P(A)+P(B)-P(A and B) to explain your answer
Answer: P(A or B) = 22/26 or 11/13
Step-by-step explanation:All in all there are 26 pieces of clothing available. The probability of randomly selecting a blue piece is equal to 18/26. Also, the probability of picking up a pants is 14/26. There are 10 blue pants and the probability of picking up one of those is 10/26. The answer can be computed as follows:
P(A or B) = (18/26) + (14/26) - (10/26) = 22/26
P(A or B) = 22/26 or 11/13
Which of the following describes a situation in which a soccer player ends up 0 m from his starting point? The player runs 7 meters forward and then runs 7 meters in the opposite direction The player runs 3 meters forward and then runs 7 meters in the opposite direction The player runs 0 meters forward and then runs 7 meters in the opposite direction The player runs 7 meters forward and then runs 0 meters in the opposite direction
Answer:
Seven forward, seven opposite. It's like saying a footballer runs from 0 yd line to 50 yd line then turns around and runs 50 yards again, ends up right back at the 0.
Answer:
a
Step-by-step explanation:
got it right on test
Identify the area of the rhombus. The answer with the red arrow is incorrect!
Answer:
[tex]\large\boxed{A=240\ cm^2}[/tex]
Step-by-step explanation:
Look at the picture.
The formula of an area of a rhombus:
[tex]A+\dfrac{d_1d_2}{2}[/tex]
d₁, d₂ - diagonals
We have d₁ = 30 cm.
Use the Pythagorean theorem to calculate d₂ = 2x.
[tex]x^2+15^2=17^2[/tex]
[tex]x^2+225=289[/tex] subtract 225 from both sides
[tex]x^2=64\to x=\sqrt{64}\\\\x=8\ cm[/tex]
d₂ = (2)(8) = 16 cm.
Substitute:
[tex]A=\dfrac{(30)(16)}{2}=(30)(8)=240[/tex]
Solve for x.
x - 8 = -20
Answer:
x = -12
Step-by-step explanation:
x - 8 = -20
+8 +8
x = -12Kat is painting the edge of a triangular stage prop with reflective orange paint. The lengths of the edges of the triangle are (3x – 4) feet, (x2 – 1) feet, and (2x2 – 15) feet. What is the perimeter of the triangle if x = 4?
Answer:
40 feet
Step-by-step explanation:
The perimeter of a triangle is the distance around the triangle. It can be found by adding all the sides together. First, find the amount each side is by substituting x = 4 and simplifying.
3x - 4 = 3(4) - 4 = 12 - 4 = 8
x² -1 = (4)² - 1 = 16 - 1 = 15
2x² - 15 = 2(4)² - 15 = 32 - 15 = 17
Add the sides together, 8 + 15 + 17 = 40 feet
Find a reasonable estimate of the limit
Answer:
The answer is (c) ⇒ the value is 6.6667
Step-by-step explanation:
∵ [tex]\lim_{x\to \2} _2\frac{x^{5}-32}{x^{3}-8}[/tex]
∵ 32 = 2^5 , 8 = 2³
∴ [tex]\lim_{x \to \2}_2 \frac{x^{5}-2^{5}}{x^{3}-2^{3} }[/tex]
* by using the rule:
[tex]\lim_{x\to\a}_a \frac{x^{n}-a^{n}}{x^{m}-a^{m}}=\frac{n}{m}(a)^{n-m}[/tex]
∴ [tex]\frac{5}{3}(2)^{5-3}=\frac{5}{3}(2)^{2}=\frac{20}{3}[/tex]
∴ 20/3 = 6.6667 ⇒ answer (c)
Answer:
The correct option is c.
Step-by-step explanation:
The given limit is
[tex]lim_{x\rightarrow 2}\frac{x^5-32}{x^3-8}[/tex]
It is can be written as
[tex]lim_{x\rightarrow 2}\frac{x^5-2^5}{x^3-2^3}[/tex]
According to the property of limits,
[tex]lim_{x\rightarrow a}\frac{x^n-a^n}{x^m-a^m}=\frac{n}{m}(a)^{n-m}[/tex]
In the given limit, a=2, n=5 and m=3. Using the above property of limits we get
[tex]lim_{x\rightarrow 2}\frac{x^5-2^5}{x^3-2^3}=\frac{5}{3}(2)^{5-3}[/tex]
[tex]lim_{x\rightarrow 2}\frac{x^5-2^5}{x^3-2^3}=\frac{5}{3}(2)^{2}[/tex]
[tex]lim_{x\rightarrow 2}\frac{x^5-2^5}{x^3-2^3}=\frac{5}{3}(4)[/tex]
[tex]lim_{x\rightarrow 2}\frac{x^5-2^5}{x^3-2^3}=\frac{20}{3}[/tex]
[tex]lim_{x\rightarrow 2}\frac{x^5-2^5}{x^3-2^3}=6.6667[/tex]
Therefore the correct option is c.
Takeru has 444 birdfeeders. It takes \dfrac43 3 4 ? start fraction, 4, divided by, 3, end fraction bags of birdseed to fill each feeder. What is the minimum number of bags of birdseed Takeru needs to fill all the feeders?
Answer:
6 bags
Step-by-step explanation:
If the length of each leg of an isosceles triangle is 13 and the base is 24 the length of the altitude to the base is
Answer:
The altitude to the base is [tex]5\ units[/tex]
Step-by-step explanation:
we know that
To find the length of the altitude apply the Pythagoras Theorem
Let
h-----> the altitude
[tex]h^{2}=13^{2}-(24/2)^{2}[/tex]
[tex]h^{2}=13^{2}-(12)^{2}[/tex]
[tex]h^{2}=169-144[/tex]
[tex]h^{2}=25[/tex]
[tex]h=5\ units[/tex]
Answer:
The Answer C
Step-by-step explanation:
I just did the test
Determine the graph of the polar equation r =6/2-2cos theta.
Answer:
Choice D is correct
Step-by-step explanation:
The first step is to write the polar equation of the conic section in standard form by dividing both the numerator and the denominator by 2;
[tex]r=\frac{3}{1-cos(theta)}[/tex]
The eccentricity of this conic section is thus 1, the coefficient of cos θ. Thus, this conic section is a parabola since its eccentricity is 1.
The value of the directrix is determined as;
d = k/e = 3/1 = 3
The denominator of the polar equation of this conic section contains (-cos θ) which implies that this parabola opens towards the right and thus the equation of its directrix is;
x = -3
Thus, the polar equation represents a parabola that opens towards the right with a directrix located at x = -3. Choice D fits this criteria
Answer:
D
Step-by-step explanation:
edge
Find the are of a triangle (picture provided)
Answer:
B
Step-by-step explanation:
Use the Heron's formula for the area of the triangle:
[tex]A=\sqrt{p(p-a)(p-b)(p-c)},[/tex]
where a, b, c are lengths of triangle's sides and [tex]p=\dfrac{a+b+c}{2}.[/tex]
Since [tex]a=11.5,\ b=13.7,\ c=12.2,[/tex] then
[tex]p=\dfrac{11.5+13.7+12.2}{2}=18.7.[/tex]
Hence,
[tex]A=\sqrt{18.7(18.7-11.5)(18.7-13.7)(18.7-12.2)}=\sqrt{18.7\cdot 7.2\cdot 5\cdot 6.5}=\\ \\=\sqrt{11\cdot 1.7\cdot 9\cdot 4\cdot 0.2\cdot 5\cdot 5\cdot 1.3}=30\sqrt{11\cdot 1.7\cdot 0.2\cdot 1.3}=30\sqrt{4.862}\approx 66.1\ un^2.[/tex]
Answer:
Choice b is correct.
Step-by-step explanation:
We have given the sides of triangle.
a = 11.5, b = 13.7 and c = 12.2
We have to find the area of the triangle.
The formula to find the area of the triangle when three sides are given is:
A = √p(p-a)(p-b)(p-c)
where p = (a+b+c) / 2
p = (11.5+13.5+12.2)/2
p = 18.7
A = √18.7(18.7-11.5)(18.7-13,7)(18.5-12.2)
A = 30√4.862 units²
A≈ 66.1 units²
Which of the following equations is equivalent to 1/2x - 2/3y = 5?
x - 2y = 30
4x - 3y = 30
3x - 4y = 30
Answer:
[tex]\large\boxed{3x-4y=30}[/tex]
Step-by-step explanation:
[tex]\dfrac{1}{2}x-\dfrac{2}{3}y=5\qquad\text{multiply both sides by LCM(2, 3) = 6}\\\\6\!\!\!\!\diagup^3\cdot\dfrac{1}{2\!\!\!\!\diagup_1}x-6\!\!\!\!\diagup^2\cdot\dfrac{2}{3\!\!\!\!\diagup_1}y=6\cdot5\\\\(3)(x)-(2)(2y)=30\\\\3x-4y=30[/tex]
Given: 2x + 11 = 15 Prove: x = 2 Statements Reason 1. 2x + 11 = 15 1. Given 2. 2x = 4 2. 3. X = 2 3. Division Property of Equality
Answer:
Statements Reasons
1. 2x + 11 = 15 1. Given
2. 2x = 4 2. Subtraction Property of Equality
3. X = 2 3. Division Property of Equality
Step-by-step explanation:
An equation can be solved and its solution proven using algebraic theorems and properties. To create a proof, form two columns. Label one side Statements and the other Reasons.
Begin your proof listing the any information given to you. List as the reason - Given.
Then list the next step which here would be to subtract by 11 on both side. The reason is Subtraction Property of Equality. Subtraction is the inverse of addition. Inverse axiom is another acceptable reason.
Then divide both sides by 2. The reason is Division Property of Equality or Inverse axiom once again. See the proof below.
Statements Reasons
1. 2x + 11 = 15 1. Given
2. 2x = 4 2. Subtraction Property of Equality
3. X = 2 3. Division Property of Equality
50 POINTS PLEASE HELP ME!!!!!!!! HURRY!!!!
17. Evaluate
6!
8P5
12C4
Step-by-step explanation:
[tex]n!=\underbrace{1\cdot2\cdot3\cdot...\cdot n}\\\\6!=1\cdot2\cdot3\cdot4\cdot5\cdot6=720\\=======================\\_nP_r=\dfrac{n!}{(n-r)!}\\\\_8P_5=\dfrac{8!}{(8-5)!}=\dfrac{8!}{3!}=\dfrac{3!\cdot4\cdot5\cdot6\cdot7\cdot8}{3!}=4\cdot5\cdot6\cdot7\cdot8=6,720\\=======================\\_nC_r=\dfrac{n!}{r!(n-r)!}\\\\_{12}C_4=\dfrac{12!}{4!(12-4)!}=\dfrac{4!\cdot5\cdot6\cdot...\cdot12}{4!\cdot8!}=\dfrac{5\cdot6\cdot7\cdot8\cdot9\cdot10\cdot11\cdot12}{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8}=495[/tex]
PLZ HELPPPP
GREATLY APPRECIATED!!
Your answer’s 5! If not, message me, I’ll be happy to help.
The answer is 5! Hope this helps :)
I need help with this question.
For the right triangle shown match the equivalent expressions.
Answer:
The solution in the attached figure
[tex]sin(A)=\frac{12}{13}[/tex]
[tex]sin(B)=\frac{5}{13}[/tex]
[tex]cos(A)=\frac{5}{13}[/tex]
[tex]cos(B)=\frac{12}{13}[/tex]
[tex]sin(A)=cos(B)[/tex]
[tex]sin(B)=cos(A)[/tex]
Step-by-step explanation:
we know that
In the right triangle ABC
sin(A)=cos(B) and cos(A)=sin(B)
because
[tex]A+B=90\°[/tex] -------> by complementary angles
step 1
Find sin(A)
The function sine of angle A is equal to divide the opposite side angle A by the hypotenuse
[tex]sin(A)=\frac{BC}{AB}[/tex]
substitute the values
[tex]sin(A)=\frac{12}{13}[/tex]
step 2
Find sin(B)
The function sine of angle B is equal to divide the opposite side angle B by the hypotenuse
[tex]sin(B)=\frac{AC}{AB}[/tex]
substitute the values
[tex]sin(B)=\frac{5}{13}[/tex]
step 3
Find cos(A)
The function cosine of angle A is equal to divide the adjacent side angle A by the hypotenuse
[tex]cos(A)=\frac{AC}{AB}[/tex]
substitute the values
[tex]cos(A)=\frac{5}{13}[/tex]
[tex]cos(A)=sin(B)[/tex]
step 4
Find cos(B)
The function cosine of angle B is equal to divide the adjacent side angle B by the hypotenuse
[tex]cos(B)=\frac{BC}{AB}[/tex]
substitute the values
[tex]cos(B)=\frac{12}{13}[/tex]
[tex]cos(B)=sin(A)[/tex]
HELP ASAP PLEASE
A customer went to a garden shop and bought some potting soil for $17.50 and 4 shrubs. The total bill was $53.50. Write and solve an equation to find the price of each shrub.
4p + $17.50 = $53.50; p = $11.25
4(p + $17.50) = $53.50; p = $4.00
4p + $17.50 = $53.50; p = $9.00
4p + 17.5 p = $53.50; p = $2.49
You would need to multiply the quantity of shrubs bought by the price of each one, so 4p and add that to the price of the soil to get the total cost
The equation becomes 4p + 17.50 = 53.50
Now solve for p:
4p +17.50 = 53.50
Subtract 17.50 from both sides:
4p = 36
Divide both sides by 4:
p = 36/4
p = 9
The answer would be: 4p + $17.50 = $53.50; p = $9.00
In a chemistry lab experiment, you use the conical filter funnel shown at the right. How much filter paper do you need to line the funnel?
Answer:
[tex]7,561.12\ mm^{2}[/tex]
Step-by-step explanation:
we know that
The lateral area of a cone is equal to
[tex]LA=\pi rl[/tex]
where
r is the radius of the base
l is the slant height
we have
[tex]r=80/2=40\ mm[/tex] ----> the radius is half the diameter
[tex]h=45\ mm[/tex]
To find the slant height apply the Pythagoras theorem
[tex]l^{2}=r^{2}+h^{2}[/tex]
substitute the values
[tex]l^{2}=40^{2}+45^{2}[/tex]
[tex]l^{2}=3,625[/tex]
[tex]l=60.2\ mm[/tex]
Find the lateral area
assume [tex]\pi=3.14[/tex]
[tex]LA=(3.14)(40)(60.2)=7,561.12\ mm^{2}[/tex]
What is 2|u| – |v|, if u = –9 and v = –2?
A. –18
B. 16
C. –20
D. 20
Answer:
B
Step-by-step explanation:
Note that the absolute value always returns a positive value, that is
| - 2 | = | 2 | = 2
given
2| u | - | v | with u = - 9 and v = - 2, then
2 | - 9 | - | - 2 |
= 2 × 9 - 2 = 18 - 2 = 16 → B
You roll a number cube numbered from 1 to 6. What is the probability that the number is a composite number?
it had a 50 &#>#*(@?'ndhdjeke
our football team won 3/4 of the game that you played it was 12 games how many games did it play
Answer:
24
Step-by-step explanation:
Determine any asymptotes (Horizontal, vertical or oblique). Find holes, intercepts and state it's domain.
[tex]g(x) = \frac{(2x+1)(x-5)}{(x-5)(x+4)^{2} }[/tex]
Answer:
1.
Horizontal Asymptote is y = 0
2.
Vertical Asymptote is x = -4
3.
No Slant Asymptote
4.
Hole at (5, 0.14)
5.
x-intercepts:
x-intercept [tex](-\frac{1}{2},0)[/tex]
y-intercepts:
y-intercept [tex](0,\frac{1}{16})[/tex]
6.
Domain is [tex]{x|x\neq -4,5}[/tex]
Step-by-step explanation:
1. Horizontal Asymptotes
* If the degree of the numerator is less than the degree of the denominator (this is our case since multiplying will give the numerator a degree of 2 and denominator a degree of 3), then y = 0 is the only horizontal asymptote
Horizontal Asymptote is y = 0
2. Vertical Asymptotes
* To get VA (vertical asymptote), we set the denominator equal to zero.
Before doing this, we see that we can cancel out (x-5) from both numerator and denominator so the denominator becomes (x+4)^2. Now we find VA:
[tex](x+4)^2=0\\x+4=0\\x=-4[/tex]
Vertical Asymptote is x = -4
3. Oblique asymptotes
* If the degree of numerator is less than the degree of the denominator (this is our case as explained above), then there is no slant asymptote.
No Slant Asymptote
4. Holes
There is hole in a rational function if there is the same factor in both numerator and denominator (before simplifying, only after factoring). Set that equal to 0 and solve. Then, cross out the common factor and put the x-value into the function and get the y-value of the hole.
We can see that there is a factor of (x-5) in both the numerator and denominator. We set it equal to 0 and solve for x:
[tex]x-5=0\\x=5[/tex]
Putting x = 5, we get:
Y value of hole = [tex]g(x)=\frac{2x+1}{(x+4)^2}\\g(5)=\frac{2(5)+1}{(5+4)^2}\\g(5)=0.14[/tex]
Hole at (5, 0.14)
5. Intercepts
To get x-intercepts, we set y = 0 (g(x) = 0) and for y-intercepts we set x = 0.
x-intercepts:
[tex]0=\frac{2x+1}{(x+4)^2}\\2x+1=0\\2x=-1\\x=-\frac{1}{2}[/tex]
x-intercept [tex](-\frac{1}{2},0)[/tex]
y-intercepts:
[tex]y=\frac{2x+1}{(x+4)^2}\\y=\frac{2(0)+1}{(0+4)^2}\\y=\frac{1}{16}[/tex]
y-intercept [tex](0,\frac{1}{16})[/tex]
6. Domain
This is the set of allowed x-values of the function. We simply disregard any value that would make the denominator equal to 0.
So we have:
x - 5 = 0, x = 5
and
(x+4)^2 = 0, x = -4
Domain is the set of all real numbers x EXCEPT x = -4 and x = 5
Domain is [tex]{x|x\neq -4,5}[/tex]
Test the claim that the proportion of men who own cats is smaller than the proportion of women who own cats at the .005 significance level.
The null and alternative hypothesis would be:
H0:pM=pFH0:pM=pF
H1:pM
H0:μM=μFH0:μM=μF
H1:μM>μFH1:μM>μF
H0:pM=pFH0:pM=pF
H1:pM>pFH1:pM>pF
H0:μM=μFH0:μM=μF
H1:μM<μFH1:μM<μF
H0:μM=μFH0:μM=μF
H1:μM≠μFH1:μM≠μF
H0:pM=pFH0:pM=pF
H1:pM≠pFH1:pM≠pF
The test is:
two-tailed
right-tailed
left-tailed
Based on a sample of 40 men, 25% owned cats
Based on a sample of 40 women, 35% owned cats
The test statistic is: (to 2 decimals)
The p-value is: (to 2 decimals)
Based on this we:
Fail to reject the null hypothesis
Reject the null hypothesis
Answer:
The null and alternate hypothesis would be
H0: pm = pf
H1: pm < pf
Test is left tailed
The test statistic: z = -0.98
The p-value: 0.1365
We fail to reject the null hypothesis
Conclusion: There is not enough evidence to support the claim that the proportion of men who own cats is less than the proportion of women who own cats
Step-by-step explanation:
The null and alternate hypothesis would be
H0: pm = pf
Ha: pm < pf
because they say that the test claim is the proportion of men is smaller less than the proportion of women. The null hypothesis always get the statement of equality (the equals sign). In this case, the alternate hypothesis is the claim.
The test is left tailed because the alternate hypothesis has a < sign. It's strictly less than a value, so it's one tailed, and the < or > sign points to the area of rejection, so in this case, it's pointing left
The test statistic is calculation is attached as a photo
The p-value is found by looking it up on the chart using z = -0.98
Since 0.1365 > 0.005, we fail to reject the null hypothesis
Because we fail to reject the null, there is not enough evidence to support the claim
We perform a hypothesis test for the difference between two proportions. The null hypothesis states the proportion of men owning cats equals the one of women, while the alternative hypothesis says it's smaller. We do a one-tailed test, and if the p-value<=0.005, we reject the null hypothesis.
Explanation:In order to test the claim that the proportion of men who own cats is smaller than the proportion of women who own cats at a .005 significance level, we need to perform a hypothesis test for the difference between two proportions.
The null hypothesis (H0) is that the proportion of men who own cats (pM) equals the proportion of women who own cats (pF), while the alternative hypothesis (H1) is that pM smaller than pF. So they are:
H0: pM = pF
H1: pM < pF
Basing on the samples, 25% of 40 men and 35% of 40 women owned cats. We are making a one-tailed (left-tailed) test because we want to know if pM is less than pF.
The test statistic and p-value have to be calculated using these formulas or a statistical software. If the p-value is less or equal to .005 (our alpha), we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.
Learn more about Hypothesis Testing here:https://brainly.com/question/34171008
#SPJ2
How do you do this problem?
Answer:
Step-by-step explanation:
Remarks
They want only the exponential equation, here's the point.
You need to be dividing by a number barely over one. You need to reflect the idea that every 500 ft. the % is going to go down by approximately 1.8%. The model for an exponential result is not as good as a linear one (this is really better done a s a linear result, but I will be obedient to what is asked for).You ought to try so values just to see if the equation works.Equation
[tex]\text{Amount the pressure becomes} = \dfrac{101 kpa}{(1+\dfrac{ 1.8}{100} )^\frac{h}{500} }[/tex]
What this gives you is the equation for a rise every 500 feet. To figure out the %
Use
[tex]\text {\% =} \frac{\text{101 - answer from above equation}}{101}*100\%[/tex]
Example
Let h = 1000 feet
101 / (1 + 1.8/100) ^ (1000/500)
101 / (1.018)^2
101 / 1.036324
97.46
Now take this number and use the second formula
% = (101 - 97.46)/101 * 100%
% = 3.54%
The answer should be 3.6% (2 * 1.8%)
This is close enough. The question does say approximately.
1500 feet will give you 5.2% which is close to 5.4 (1.8 * 3). The higher you go, the more it is going to be out, but the results will always be close.
PLEASE HELP! I WILL MARK AS BRAINLIEST!! I REALLY NEED SOMEONES HELP!
Error analysis: describe the error in the way the difference of the two polynormials is set up and/or solved. Please be specific.
(6x^2 - 5x) - (2x^2 + 3x - 2)
= 6x^2 - 5x - 2x^2 + 3x - 2
= 4x^2 - 2x - 2
Solve the problem in the question above correctly. Please show your work!
Since this is subtraction, everything must be turned negative in the second polynomial.
(6x^2 - 5x) - (2x^2 + 3x - 2)
6x^2 - 5x - 2x^2 - 3x - (-2)
6x^2 - 5x - 2x^2 - 3x + 2
Now, reorder the terms to make it easier.
6x^2 - 2x^2 - 5x - 3x + 2
Now, just combine like terms.
4x^2 - 5x - 3x + 2
4x^2 - 8x + 2
There’s the answer!
Please consider marking this answer as Brainliest to help me advance.
Scientist can determine the age of ancient objects by a method called radiocarbon dating. The bombardment of the upper atmosphere by cosmic rays converts nitrogen to a radioactive isotope of carbon, 14C, with a half-life of about 5730 years. Vegetation absorbs carbon dioxide through the atmosphere and animal life assimilates 14C through food chains. When a plant or animal dies, it stops replacing its carbon and the amount of 14C begins to decrease through radioactive decay. Therefore, the level of radioactivity must also decay exponentially. A parchment fragment was discovered that had about 74% as much 14C radioactivity as does plant material on Earth today. Estimate the age of the parchment. (Round your answer to the nearest hundred years.) yr
Answer: 2500 years
Step-by-step explanation:
I'm not quite sure if I'm doing this right myself but I'll give it a shot.
We use this formula to find half-life but we can just plug in the numbers we know to find t.
[tex]A(t)=A_{0}(1/2)^t^/^h[/tex]
We know half-life is 5730 years and that the parchment has retained 74% of its Carbon-14. For [tex]A_{0[/tex] let's just assume that there are 100 original atoms of Carbon-14 and for A(t) let's assume there are 74 Carbon-14 atoms AFTER the amount of time has passed. That way, 74% of the C-14 still remains as 74/100 is 74%. Not quite sure how to explain it but I hope you get it. h is the last variable we need to know and it's just the half-life, which has been given to us already, 5730 years, so now we have this.
[tex]74=100(1/2)^t^/^5^7^3^0[/tex]
Now, solve. First, divide by 100.
[tex]0.74=(0.5)^t^/^5^7^3^0[/tex]
Take the log of everything
[tex]log(0.74)=\frac{t}{5730} log(0.5)[/tex]
Divide the entire equation by log (0.5) and multiply the entire equation by 5730 to isolate the t and get
[tex]5730\frac{log(0.74)}{log(0.5)} =t[/tex]
Use your calculator to solve that giant mess for t and you'll get that t is roughly 2489.128182 years. Round that to the nearest hundred years, and you'll find the hopefully correct answer is 2500 years.
Really hope that all the equations that I wrote came out good and that that's right, this is definitely the longest answer I've ever written.
Alyssa wants to tile a room with an área of 480 square feet.The width of the room is 12 feet.What is the length of the room?
Answer:
40
Step-by-step explanation:
You do 480 divided by 12
To find the length of the room Alyssa wants to tile, given its area is 480 square feet and its width is 12 feet, divide the area by the width. The length is found to be 40 feet.
The question asks to find the length of a room given its area is 480 square feet and its width is 12 feet. To find the length, you use the formula for the area of a rectangle, which is Area = Length × Width. Since we're given the area and the width, we can rearrange the formula to solve for the length by dividing the area by the width.
Therefore, Length = Area / Width = 480 sq ft / 12 ft = 40 feet.
This means that the length of the room Alyssa wants to tile is 40 feet.
Please answer this multiple choice question!
Point C must be the center of the circle, since all of the radii connect there.
If you bought a stock last year for a price of $92, and it has gone down 4.4% since then, how much is the stock worth now, to the nearest cent?
Answer:
$87.95
Step-by-step explanation:
1. multiply the stock (92) time 4.4% (or 0.044)
92*0.044 = 4.048
2. subtract 4.048 from 92
92-4.048 = 87.952
3. Round to the nearest cent (2 in the thousandth place means the 5 stays the same)
87.95
Steven bought 8 shirts. The least expensive was $8.95, and the most expensive was $15.79, which is the most reasonable estimate of the total cost of the shirts before tax was added?
A- between $36.00 and $64.00
B- between $64.00 and $76.00
C- between $76.00 and $120.00
D- between $120.00 and $200.00
The answer is C because you multiply 8×8.95 to get your lowest range, and 8×15.79 to get your highest range.
An office manager needs to decide between two tables for the conference room. One is rectangular, 5 feet wide by 10 feet long. The other is a circle with an 8-foot diameter. Which table can seat more people? Explain your answer be sure to support your answer using facts about the tables.
Answer:
The rectangular 5 x 10 table.
Step-by-step explanation:
To find which table the office manager needs to get so he can sit more people at it is decided by one factor, the perimeter. The rectangular one, which is 5 x 10 the perimeter is (5 x 2) + (10 x 2) = 10 + 20 = 30. The circular one can be calculated by the equation[tex]\pi * d[/tex] where d = 8. Putting [tex]/pi[/tex] x 8 in my calculator and it comes out approximately at 25.132, having a less amount of perimeter space to work with, making the rectangular table the way to go.
The rectangular and circular tables offer roughly the same area, approximately 50 square feet. However, due to space utilization, traditionally, rectangular tables can seat more people as it allows seating around the sides and ends instead of wasting some space at the edges, a common issue with circular tables.
Explanation:Determining which table can seat more depends on how much space each person needs. However, as a basic comparison, we can calculate the area of each table as a starting point.
The rectangular table is 5 feet wide and 10 feet long. Therefore, its area is 5 * 10 = 50 square feet.
For the circular table, we can use the formula for the area of a circle, which is pi * r^2, where r is the radius. The radius is half the diameter, so it is 4 feet here. Thus, the area is about 3.14 * 4^2 = 50.24 square feet.
Both tables have very similar areas. However, people can sit around both the sides and ends of a rectangular table, while some space might be wasted around the edges of the circular one. Therefore, the office manager might find that the rectangular table can seat more people comfortably.
Learn more about Comparing Areas here:https://brainly.com/question/22440219
#SPJ3