Dan picks up a 15-m-long pole and begins running very fast, holding the pole horizontally and pointing in the direction he's running. He heads toward a barn that is12 m long and has open doors at each end. Dan runs so fast that, to Farmer Brown standing by his barn, the ladder is only 5 m long. As soon as the pole is completely inside the barn, Farmer Brown closes both doors so that Dan and the pole are inside with both doors shut. Then, just before Dan reaches the far door, Farmer Brown opens both doors and Dan emerges, still moving at high speed. According to Dan, however, the barn is contracted to only 4 m and the pole has its full 15 m length. Farmer Brown sees the pole completely inside the barn with both doors closed.


In the farmer's reference frame, eight events occur in the following order:
1. The front of the pole reaches the back of the barn (FB).
2. The back of the pole reaches the back of the barn (BB).
3, 4. (simultaneous events) The farmer shuts the front door (SF); the farmer shuts the back door (SB).
5. The front of the pole reaches the front of the barn (FF).
6, 7. (simultaneous events) The farmer opens the front door (OF). The farmer opens the back door (OB).
8. The back of the pole reaches the front of the barn (BF).
What does Dan see happening (in the chronological order)?

In the farmer's reference frame, eight events occur in the following order:
1. The front of the pole reaches the back of the barn (FB).
2. The back of the pole reaches the back of the barn (BB).
3, 4. (simultaneous events) The farmer shuts the front door (SF); the farmer shuts the back door (SB).
5. The front of the pole reaches the front of the barn (FF).
6, 7. (simultaneous events) The farmer opens the front door (OF). The farmer opens the back door (OB).
8. The back of the pole reaches the front of the barn (BF).
What does Dan see happening (in the chronological order)?

1. FB; 2, 3. FF and OF are simultaneous; 4. SF; 5, 6. BB and OB are simultaneous; 7. SB; 8 BF.
1. FB; 2. FF; 3, 4. SF and OF are simultaneous; 5, 6. OB and SB are simultaneous; 7. BB; 8 BF.
1. FB; 2, 3. SF and OF are simultaneous; 4. FF; 5, 6. OB and SB are simultaneous; 7. BB; 8 BF.
1. FB; 2. SF; 3, 4. FF and OF are simultaneous; 5, 6. BB and SB are simultaneous; 7. OB; 8 BF.

Answers

Answer 1

Answer:

1. FB; 2. SF; 3, 4. FF and OF are simultaneous; 5, 6. BB and SB are simultaneous; 7. OB; 8 BF

Explanation:

According to the report the listed below are what Dan saw in the exact chronological order.

1. FB; 2. SF; 3, 4. FF and OF are simultaneous; 5, 6. BB and SB are simultaneous; 7. OB; 8 BF

These represents the series of events as described in the question.


Related Questions

If the amount of work done on a book was 10 J and the force required to move the book was 2.5 N, what was the distance the book was moved?​

Answers

Answer:

Explanation:4meters

Work=10J

Force=2.5N

Distance=work ➗ force

Distance=10 ➗ 2.5

Distance=4meter

Final answer:

Given that the work done on a book was 10 J and the force required to move the book was 2.5 N, we use the formula Work = Force x Distance to find that the book was moved a distance of 4 meters.

Explanation:

The question asks to calculate the distance a book was moved given that the work done on the book was 10 J and the force required to move the book was 2.5 N.

To find the distance, we can use the formula for work, which is:

Work (W) = Force (F) * Distance (d)

From the formula, we can solve for distance (d) by rearranging the equation:

Distance (d) = Work (W) / Force (F)

Plugging in the given values:

d = 10 J / 2.5 N

This calculation yields:

d = 4 m

Therefore, the book was moved a distance of 4 meters.

Specimen of steel has a rectangular cross section 20 mm wide and 40 mm thick, an elastic modulus of 207 GPa, and a Poisson’s ratio of 0.30. If this specimen is pulled in tension with a force of 60,000 N, what is the change in width if deformation is totally elastic? (A) Increase in width of 3.62  10−6 m (B) Decrease in width of 7.24  10−6 m (C) Increase in width of 7.24  10−6 m (D) Decrease in width of 2.18  10−6 m

Answers

Answer:

(D) Decrease in width of 2.18 x [tex]10^{-6[/tex]m

Explanation:

Given:

force 'F'= 60,000 N

elastic modulus 'E' = 207 GPa => 2.07 x  [tex]10^{11[/tex]N/m²

cross section area ' [tex]A_{0}[/tex]'= 20 mm x 40 mm => 800mm² =>8 x [tex]10^{-4}[/tex] m²

∈z = б/E => (F/ [tex]A_{0}[/tex])/E => F/ [tex]A_{0}[/tex]E

∈z = 60,000/(8 x [tex]10^{-4}[/tex] x 2.07 x  [tex]10^{11[/tex])

∈z =3.62 x  [tex]10^{-4}[/tex]

Lateral strain is given by,

∈x= -v∈z => -(0.30)(3.62 x  [tex]10^{-4}[/tex])

∈x=1.09  x  [tex]10^{-4}[/tex]

Next is to calculate the change in width

ΔW= Wo x ∈x =>20 x 1.09  x  [tex]10^{-4}[/tex]

ΔW= -2.18 x  [tex]10^{-6[/tex] m

Therefore, the correct option is 'D'

Final answer:

The steel specimen, when pulled in tension, will experience a decrease in width. This decrement is calculated to be about 1.75*10^-7 m, closest to option (D) decrease in width of 2.18  10−6 m.

Explanation:

The change in the width of a steel specimen being pulled in tension can be found using the formula for strain in the lateral direction = -Poisson's ratio * (stress/Young's modulus). Here, the stress (force/area) is 60,000N/(20mm*40mm), the Young's modulus is 207 GPa, and the Poisson's ratio is 0.30. Plugging these values in, we get a lateral strain of -8.74*10^-6. The change in width, which is this lateral strain times the original width (20mm), will thus be a decrease of about 1.75*10^-4 mm, or 1.75*10^-7 m. Amongst the given options, this is closest to (D) decrease in width of 2.18  10−6 m.

Learn more about Elastic Deformation here:

https://brainly.com/question/31577326

#SPJ3

٠Light bulb A is rated at 60 W and light bulb B is rated at 100 W. Both are designed to operate at 110 V. Which statement is correct?

A-The 60 W bulb has a greater resistance and greater current than the 100 W bulb.

B-The 60 W bulb has a greater resistance and smaller current than the 100 W bulb.

C-We need to know the resistivities of the filaments to answer this question.

D-The 60 W bulb has a smaller resistance and greater current than the 100 W bulb.

F-The 60 W bulb has a smaller resistance and smaller current than the 100 W bulb

Answers

Answer:B

Explanation:

Power=p

Voltage=v

Resistance=r

Voltage for both:110v

For 60 watts bulb:

Resistance=v^2/p

Resistance=110^2/60

Resistance=(110x110)/60

Resistance=12100/60

Resistance=201.7 ohms

Current=power/voltage

Current=60/110

Current=0.55 amperes

For 100watts bulb:

Resistance=v^2/p

Resistance=110^2/100

Resistance=(110 x 110)/100

Resistance=(12100)/100

Resistance =121 ohms

Current=power/voltage

Current=100/110

Current=0.91

Final answer:

The 60W bulb has greater resistance and smaller current than the 100W bulb, based on calculations from the power, voltage and Ohm's Law.

Explanation:

In the case of light bulbs, power (P) is given by the formula P = IV, where I is the current and V is the voltage. Bulb A is rated at 60W and Bulb B at 100W, both functioning at a voltage (V) of 110V. To find the current (I) for each bulb, you would divide the power (P) by the voltage (V). This shows that Bulb B, with a higher wattage, has a greater current.

The resistance (R) of the bulbs can be found using Ohm's Law, which states R = V/I. This shows that Bulb A, with a smaller current, has a greater resistance.

Therefore, option B-'The 60W bulb has a greater resistance and smaller current than the 100 W bulb' is the correct statement.

Learn more about Electricity and Resistance here:

https://brainly.com/question/33719176

#SPJ2

To practice Problem-Solving Strategy 16.1 Standing waves. An air-filled pipe is found to have successive harmonics at 800 HzHz , 1120 HzHz , and 1440 HzHz . It is unknown whether harmonics below 800 HzHz and above 1440 HzHz exist in the pipe. What is the length of the pipe

Answers

Answer:

Length of the pipe = 53.125 cm

Explanation:

given data

harmonic frequency f1  = 800 Hz

harmonic frequency f2  = 1120 Hz

harmonic frequency f3  = 1440 Hz

solution

first we get here fundamental frequency that  is express as

2F = f2 - f1    ...............1

put here value

2F = 1120 - 800

F = 160 Hz

and

Wavelength is express as

Wavelength  = Speed ÷ Fundamental frequency    ................2

here speed of waves in air  = 340 m/s

so put here value

Wavelength  =340 ÷ 160

Wavelength   = 2.125 m

so

Length of the pipe will be

Length of the pipe = 0.25 × wavelength    ......................3

put here value

Length of the pipe = 0.25 × 2.125

Length of the pipe = 0.53125 m

Length of the pipe = 53.125 cm

Final answer:

The length of the pipe, which resonates at odd harmonics and has successive frequencies of 800 Hz, 1120 Hz, and 1440 Hz, is calculated to be approximately 32.2 centimeters. This calculation assumes that the pipe is closed at one end, and uses the relationship between the harmonics and the fundamental frequency.

Explanation:

The student is inquiring about determining the length of a pipe based on the frequencies of its successive harmonics. Since the successive harmonics are at 800 Hz, 1120 Hz, and 1440 Hz, and these frequencies are not direct multiples of each other, it suggests that we're dealing with a pipe that is closed at one end. Such pipes produce odd harmonics only. The given frequencies thus correspond to the fundamental (first harmonic), the third harmonic, and the fifth harmonic, respectively.

The frequency of the nth harmonic in a pipe closed at one end is given by:

fn = n(f1), where n is an odd integer and f1 is the fundamental frequency, which in this case is 800 Hz. So, the third harmonic would be 3(800 Hz) = 2400 Hz, which is incorrect given our second frequency is 1120 Hz. The provided frequencies imply that 800 Hz is, in fact, the third harmonic (800 Hz = 3f1). Hence, the fundamental frequency (f1) is 800 Hz / 3 = 266.67 Hz.

The wavelength (λ1) of the fundamental frequency in a tube closed at one end is given by λ1 = 4L. Using the formula for frequency (
f = v / λ), where v is the velocity of sound in air (approximately 343 m/s), we can calculate the length of the pipe by rearranging it to L = v / (4f1).

Therefore, L = 343 m/s / (4 * 266.67 Hz) = 0.322 meters or 32.2 cm.

The binding energies of K-shell and L-shell electrons in a certain metal are EK and EL, respectively, If a Kαx ray from this metal is incident on a crystal and gives a first-order Bragg reflection at an angle θ measured relative to parallel planes of atoms, what is the spacing between these parallel planes? State your answer in terms of the given variables, using h and c when needed.

Answers

Answer:

The separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)

Explanation:

The relationship between energy and wavelength is expressed below:

E = hc/λ

λ = hc/EK - EL

Considering the condition of Bragg's law:

2dsinθ = mλ

For the first order Bragg's law of reflection:

2dsinθ = (1)λ

2dsinθ = hc/EK - EL

d = hc/2sinθ(EK - EL)

Where 'd' is the separation distance between the parallel planes of an atom, 'h' is the Planck's constant, 'c' is the velocity of light, θ is the angle of reflection, 'EK' is the energy of the K shell and 'EL' is the energy of the K shell.

Therefore, the separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)

Which are characteristics of concave mirrors? Check all that apply.
surface curves inward
image can be upside down
image is always virtual
surface curves outward
image can be real

Answers

Answer:

1, 2, and 5

Explanation:

Answer:

1, 2 and 5

Explanation:

A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it is true to say that Group of answer choices the moment of inertia of the system increases and the angular speed increases. the moment of inertia of the system increases and the angular speed decreases. the moment of inertia of the system decreases and the angular speed increases. the moment of inertia of the system decreases and the angular speed decreases.

Answers

Answer:

The moment of inertia of the system decreases and the angular speed increases.

Explanation:

This very concept might not seem to be interesting at first, but in combination with the law of the conservation of angular momentum, it can be used to describe many fascinating physical phenomena and predict motion in a wide range of situations.

In other words, the moment of inertia for an object describes its resistance to angular acceleration, accounting for the distribution of mass around its axis of rotation.

Therefore, in the course of this action, it is said that the moment of inertia of the system decreases and the angular speed increases.

Final answer:

When Diego moves quickly to the center along a radius of the merry-go-round, the moment of inertia of the system increases and the angular speed decreases.

Explanation:

When Diego moves quickly to the center along a radius of the merry-go-round, the moment of inertia of the system increases and the angular speed decreases.

The moment of inertia is a measure of how resistant an object is to changes in its rotation. As Diego moves closer to the center, the distribution of mass in the system changes, resulting in an increase in moment of inertia.

According to the conservation of angular momentum, if the moment of inertia increases, the angular speed must decrease in order to maintain a constant angular momentum.

Learn more about Moment of inertia and angular speed here:

https://brainly.com/question/14190791

#SPJ3

wyatt is designing a hollow cylindrical metal can with volume 1000 cm3.the materialused to make the circular top and bottom of the can costs twice as much as the material used tomake the side of the can. what dimensions should wyatt choose in order to minimize the cost ofthe can?show all your work, round off the numerical part of your final answer to four (4) decimal places,and express your final answer in the form of a complete sentence, using the correct units.

Answers

Answer:

Explanation:

Let r be the radius of circular top and h be the height of the cylinder

Given

π r² h = 1000

Let cost of making side of can be p per unit area , the cost of making top and bottom will be 2p per unit area.

total cost

C = 2 x π r² x 2p + 2πrh x p

= 2(1000 / h) x 2p + 2π x (1000 / π) x  [tex]\frac{1}{\sqrt{h} }[/tex] x h x p

= 2(1000 / h) x 2p + 2π x (1000 / π) x √h x p

differenciating

dC / dh =  2(- 1000 / h²) x 2p + 2π x (1000 / π) x [tex]\frac{1}{2\sqrt{h} }[/tex] x p  = 0 for minimum cost

- 4 / h² + 1 / √h = 0

h³ = 16

h = 2.519 cm .

π r² h = 1000

π r²  x 2.519 = 1000

r = 11.24 cm

The cylinder will have height of 2.519 cm and radius of 11.24 cm.

Wyatt should design the can with a radius of approximately 3.4198 cm and a height of approximately 27.2837 cm to minimize cost. This considers the volume constraint of 1000 cm³ and the different material costs for the top/bottom and side. Detailed steps involve deriving these dimensions mathematically.

Let's denote the radius of the base of the cylinder by r and the height by h. The volume V of the cylinder is given by V = πr²h. Given that the volume is 1000 cm³, we have:

Step 1: V = πr²h = 1000 cm³

Therefore, h = 1000 / (πr²).

Step 2: Next, we need to express the cost of the material. The cost for the top and bottom parts is double the cost of the side. The surface area A of the can is:

Area of the top and bottom (each): [tex]A_t[/tex] = πr²

Area of the side: [tex]A_s[/tex] = 2πrh

Total area A:

A = 2πr² + 2πrh

Considering the cost factor, the effective cost area C is:

C = 2(2πr²) + 2πrh

C = 4πr² + 2πrh

Step 3: Substitute h from the volume equation:

C = 4πr² + 2πr(1000 / (πr²))

C = 4πr² + 2000 / r

Step 4: To minimize the cost, take the derivative of C with respect to r and set it to zero:

[tex]\frac{dC}{dr}[/tex] = 8πr - 2000 / r² = 0

8πr = 2000 / r²

8πr³ = 2000

r³ = 250 / π

r ≈ 3.4198 cm

Step 5: Calculate the height h:

h = 1000 / (πr²)

h ≈ 1000 / (π * (3.4198)²)

h ≈ 27.2837 cm

In summary, Wyatt should design the can with a radius of approximately 3.4198 cm and a height of approximately 27.2837 cm to minimize the cost.

Wyatt should choose a radius of approximately 3.4198 cm and a height of approximately 27.2837 cm for the metal can to minimize the cost, given the volume constraint of 1000 cm³.

The hydraulic oil in a car lift has a density of 8.53 x 102 kg/m3. The weight of the input piston is negligible. The radii of the input piston and output plunger are 5.43 x 10-3 m and 0.135 m, respectively. What input force F is needed to support the 22600-N combined weight of a car and the output plunger, when (a) the bottom surfaces of the piston and plunger are at the same level, and (b) the bottom surface of the output plunger is 1.20 m above that of the input plunger

Answers

Answer:

(a) the input force is 36.56 N

(b) the input force is 37.49 N

Explanation:

Given;

density of hydraulic oil, ρ =  8.53 x 10² kg/m³

radius of plunger, r₁ = 0.135 m

radius of piston, r₂ = 5.43 x 10⁻³ m

Part (a) The input force needed to support 22600-N weight, when the bottom surfaces of the piston and plunger are at the same level;

[tex]P =\frac{F}{A}[/tex]

Where;

P is pressure

F is force

A is circular area = πr²

[tex]\frac{F_1}{A_1} =\frac{F_2}{A_2} \\\\F_2 = \frac{F_1*A_2}{A_1} =\frac{F_1* \pi r_2^2}{\pi r_1^2} = \frac{F_1* r_2^2}{ r_1^2} \\\\F_2 = \frac{22600*(5.43*10^{-3})^2 }{(0.135)^2}\\\\F_2 = 36.56 \ N[/tex]

Part (b) The input force needed to support 22600-N weight, when the  bottom surface of the output plunger is 1.20 m above that of the input plunger

[tex]P_2 = P_1 + \rho gh[/tex]

But, F = PA  and  A = πr²

[tex]F_2 = F_1(\frac{A_2}{A_1} ) + \rho gh*A_2\\\\F_2 = F_1(\frac{r_2^2}{r_1^2} )+\rho gh(\pi r_2^2)\\\\F_2 = 22600(\frac{5.43*10^{-3}}{0.135})^2 \ + 853*9.8*1.2*\pi (5.43*10^{-3})^2\\\\F_2=36.56 + 0.93\\\\F_2 = 37.49 \ N[/tex]

The solution of this problem involves the use of Pascal's principle and a concept known as hydrostatic pressure.

First, let's identify the given parameters:
- The density (ρ) of the hydraulic oil is 8.53 x 10ˆ2 kg/m³
- The radius of the input piston is 5.43 x 10ˆ-3 m
- The radius of the output plunger is 0.135 m
- The total weight (W) being lifted is 22600 N
- The acceleration due to gravity (g) is approximately 9.81 m/s²
- The height difference (Δh) between the pistons is 1.2 m

We will use these in our calculations.

We begin by determining the areas of the input piston and the output plunger using the formula for the area of a circle A = πr². We denote the area of the input piston as Ain and the area of the output plunger as Aout.

Let's now focus on when the pistons are at the same level.
Part (a) requires us to find the input force (F) needed to support the weight of the car and output plunger. This is governed by Pascal's principle, which states that for an incompressible, non-viscous fluid in a hydraulic system, pressure is transmitted undiminished throughout the fluid and acts with equal force on all areas. Using Pascal's principle, the force required on the input piston is equal to the weight divided by the ratio of the areas. F = W * (Ain / Aout). After performing the calculation, we find that F equivales to approximately 36.562893827160494 N.

Next, let's turn to when the bottom surface of the output plunger is 1.2 m above the input piston.
Part (b) of the problem asks us to calculate the input force needed in this scenario. We must consider not only Pascal's principle but the additional hydrostatic pressure due to the height difference between the pistons. Firstly, we calculate the hydrostatic pressure difference (ΔP): ΔP = ρ * g * Δh. We then add this pressure difference to the force required when pistons were at the same level. Remember that pressure is force divided by area, thus when we add pressure we need to multiply it by the area of the input piston to maintain the units consistent. F = F_same_level + ΔP * Ain. The result of this calculation yields an input force of approximately 37.49208673165364 N.

In conclusion, the input force required to support the specified weight when the bottom surfaces of the pistons are at the same level is about 36.56 N. This force increases to roughly 37.49 N when the output plunger is pushed 1.2 m above the input piston due to the added hydrostatic pressure.

Learn more about hydraulics here:

https://brainly.com/question/20876092

#SPJ11

What factors does the kinetic energy of a body depend
on?
Ans​

Answers

Answer:

Kinetic energy depends on the mass of a body and the velocity it is travelling at

Explanation:

Referring to the equation of Kinetic Energy

EK = 0.5 m [tex]v^{2}[/tex]

We can see that Kinetic energy depends on the mass of a body and the velocity it is travelling at

Answer:

The amount of translational kinetic energy (from here on, the phrase kinetic energy will refer to translational kinetic energy) that an object has depends upon two variables: the mass (m) of the object and the speed (v) of the object. The following equation is used to represent the kinetic energy (KE) of an object.

Lightning bolts can carry currents up to approximately 20 kA. We can model such a current as the equivalent of a very long, straight wire. You may want to review (Pages 926 - 929) . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Magnetic field of a single wire. Part A If you were unfortunate enough to be 4.9 m away from such a lightning bolt, how large a magnetic field would you experience? Express your answer using two significant figures. B1 = nothing T Request Answer Part B How does this field (B1) compare to one (B2) you would experience by being 4.9 cm from a long, straight household current of 10 A? Express your answer using two significant figures.

Answers

Given Information:

Current due to Lightning bolt = I₁ = 20 kA

Current of household = I₂ = 10 A

Distance = r₁ = 4.9 m

Distance = r₂ = 4.9 cm = 0.049 m

Required Information:

a) Magnetic field due Lightning bolt = B₁ = ?

b) Magnetic field due to household current = B₂ = ?

Answer:

a) Magnetic field due Lightning bolt = B₁ = 8.16×10⁻⁴ T

b) Magnetic field due to household current = B₂ = 4.08×10⁻⁵ T

B₁ = 20B₂

Explanation:

The magnetic field produced in a long straight wire carrying a current (I) at distance r is given by  

B = μ₀I/2πr  

Where μ₀ is the permeability of free space and its value is 4π×10⁻⁷

a) The magnetic field produced due to the lightning bolt current is

B₁ = μ₀I₁/2πr₁

B₁ = (4π×10⁻⁷*20,000)/2π*4.9

B₁ = 0.000816

B₁ = 8.16×10⁻⁴ T

Therefore, the strength of magnetic field due to the lightning bolt current is 8.16×10⁻⁴ T

b) The magnetic field produced due to the household current is

B₂ = μ₀I₂/2πr₂

B₂ = (4π×10⁻⁷*10)/2π*0.049

B₂ = 0.00004081

B₂ = 4.08×10⁻⁵ T

Therefore, the strength of magnetic field due to the household current is 4.08×10⁻⁵ T

The ratio of magnetic field produced by the lightning bolt current to the magnetic field produced by the household current is

B₁/B₂ = 8.16×10⁻⁴/4.08×10⁻⁵

B₁/B₂ = 20

B₁ = 20B₂

Which means that the magnetic field produced by the lightning bolt current is 20 time greater than the magnetic field produced by the household current.

a) The magnetic field due Lightning bolt  will be 8.16×10⁻⁴ T

b)The magnetic field due to household current will be 4.08×10⁻⁵ T

What is a magnetic field?

It is the type of field where the magnetic force is obtained. With the help of a magnetic field. The magnetic force is obtained it is the field felt around a moving electric charge.

The number of magnetic flux lines on a unit area passing perpendicular to the given line direction is known as induced magnetic field strength .it is denoted by B.

a) The magnetic field due Lightning bolt  will be 8.16×10⁻⁴ T

The magnetic field produced in a long straight wire carrying a current (I) at distance r is given by  

B = μ₀I/2πr  

Where μ₀ is the permeability of free space and its value is 4π×10⁻⁷

[tex]\rm B_1= \frac{\mu_0i_1}{2 \pi r} \\\\ \rm B_1= \frac{4 \pi \times 10^{-7} \times 20,00}{2 \times 3.14 4.9} \\\\ \rm B_1= 8.16 \times 10^{-4} \ T[/tex]

b) Magnetic field due to household current will be 4.08×10⁻⁵ T

[tex]\rm B_2= \frac{\mu_0i_2}{2 \pi r} \\\\ \rm B_2= \frac{4 \pi \times 10^{-7} \times 10}{2 \times 3.14 0.049} \\\\ \rm B_2= 4.08\times 10^{-5} \ T[/tex]

Hence the magnetic field due to household current will be 4.08×10⁻⁵ T

The magnetic field created by lightning bolt current divided by the magnetic field produced by home electricity equals

[tex]\rm \frac{B_1}{B_2} = \rm \frac{8.16 \times 10^{-4}}{4.08 c\times 10^{-5}} \\\\ \rm \frac{B_1}{B_2} = 20 \\\\[/tex]

That is, the magnetic field created by a lightning bolt current is 20 times stronger than the magnetic field produced by a home current.

Hence the magnetic field due to the Lightning bolt will be 8.16×10⁻⁴and the magnetic field due to household current will be 4.08×10⁻⁵ T.

To learn more about the magnetic field refer to the link;

https://brainly.com/question/19542022

Determine how fast the length of an edge of a cube is changing at the moment when the length of the edge is 5cm and the volume of the edge is decreasing at the rate of 100cm^3/sec​

Answers

Answer:

1.333 cm/s

Explanation:

The formula for the volume of the cube V in term of its edge s is:

[tex]V = s^3[/tex]

By using chain rule we have the following equation between the rate of change of the volume and the rate of change of the edge:

[tex]\frac{dV}{dt} = \frac{dV}{ds}\frac{ds}{dt}[/tex]

[tex]100 = \frac{d(s^3)}{ds}\frac{ds}{dt}[/tex]

[tex]100 = 3s^2\frac{ds}{dt}[/tex]

[tex]\frac{ds}{dt} = \frac{100}{3s^2}[/tex]

We can substitute s = 5 cm:

[tex]\frac{ds}{dt} = \frac{100}{3*5^2} = 100 / 75 = 1.333 cm/s[/tex]

An alpha particle (a helium nucleus, consisting of two protons and two neutrons) has a radius of approximately 1.6 × 10-15 m. A certain heavy nucleus contains 79 protons in addition to all its neutrons and has a radius of approximately 5.8 × 10-15 m. An alpha particle is shot directly from a large distance at such a resting heavy nucleus.


What is the initial momentum of the alpha particle?

Answers

Final answer:

To find the initial momentum of an alpha particle, we can use the equation: momentum = mass x velocity. The mass of an alpha particle is approximately 4 atomic mass units (amu). The velocity can be determined by considering the initial kinetic energy of the alpha particle.

Explanation:

The initial momentum of an alpha particle can be calculated using the equation:

momentum = mass x velocity

The mass of an alpha particle is approximately 4 atomic mass units (amu). The velocity of the alpha particle can be determined by considering its initial kinetic energy. Since the alpha particle is shot directly at a resting heavy nucleus, we can assume that its initial kinetic energy is equal to the energy of the system.

Using the equation:

kinetic energy = (1/2) x mass x velocity^2

we can solve for velocity. Then, using the calculated velocity, we can find the momentum of the alpha particle.

Learn more about Initial momentum of an alpha particle here:

https://brainly.com/question/14863785

#SPJ3

what is the only part of a motor through which a current does not flow

Answers

Answer:

An electric motor

Explanation:

Answer:

the only part it doesn't flow through is an insulator

Explanation:

A conductor is material through which current flows easily; an insulator is material through which current does not flow easily.

Match the descriptions to the feature,
principal axis
Center of the spherical mirror from which a
curved mirror was cut
center of curvature
Distance from the center of a mirror to the
focal point
Line that runs through the center of
curvature to a mirror
focal point
Point where reflected light converges or
appears to diverge
focal length
Point where the principal axis and mirror
vertex
meet

Answers

Answer:

Vertex: Point where the principal axis and mirror meet

Focal point: Point we are reflected light converges or appears to diverge

Focal length: distance from the center of a mirror to the focal point

Principal axis: line that runs to the center of curvature to a mirror

Center of curvature: sensor of spherical mirror from which a curved mirror was cut

Explanation:

Just did the assignment on Edge.

A spherical mirror is a mirror which has the shape of a piece cut out of a spherical surface. There are two types of spherical mirrors: concave, and convex.

What is a spherical mirror?

A spherical mirror is a mirror which has the shape of a piece cut out of a spherical surface. There are two types of spherical mirrors: concave, and convex. These are illustrated in.

The most commonly occurring examples of concave mirrors are shaving mirrors and makeup mirrors.

As is well-known, these types of mirrors magnify objects placed close to them. The most commonly occurring examples of convex mirrors are the passenger-side wing mirrors of cars.

These types of mirrors have wider fields of view than equivalent flat mirrors, but objects which appear in them generally look smaller

The answers to the given questions are:

Vertex: Point where the principal axis and mirror meet

Focal point: Point we are reflected light converges or appears to diverge

Focal length: distance from the centre of a mirror to the focal point

Principal axis: line that runs to the centre of curvature of a mirror

Center of curvature: sensor of spherical mirror from which a curved mirror was cut

To know more about Spherical mirrors follow

https://brainly.com/question/7512320

What is the gravitational potential energy of a 2.5kg object that is 300m above the surface of the earth? g=10m/s

Answers

Answer:

7350 J

Explanation:

Gravitational Potential Energy: This is defined as the energy possessed by a body due to it's position in the gravitational field. The S.I unit is Joules(J).

Applying,

E.p = mgh..................... Equation 1

Where E.p = Gravitational potential Energy, m = mass of the object, h = height of the object above the surface of the earth, g = acceleration due to gravity.

Given: m = 2.5 kg, h = 300 m

Constant: g = 9.8 m/s²

Substitute these values into equation 1

E.p = 2.5(300)(9.8)

E.p = 7350 J.

An oil tanker has collided with a smaller vessel, resulting in an oil spill in a large, calm-water bay of the ocean. You are investigating the environmental effects of the accident and need to know the area of the spill. The tanker captain informs you that 18000 liters of oil have escaped and that the oil has an index of refraction of n = 1.1. The index of refraction of the ocean water is 1.33. From the deck of your ship you note that in the sunlight the oil slick appears to be blue. A spectroscope confirms that the dominant wavelength from the surface of the spill is 485 nm. Assuming a uniform thickness, what is the largest total area o

Answers

Complete Question

An oil tanker has collided with a smaller vessel, resulting in an oil spill in a large, calm-water bay of the ocean. You are investigating the environmental effects of the accident and need to know the area of the spill. The tanker captain informs you that 18000 liters of oil have escaped and that the oil has an index of refraction of n = 1.1. The index of refraction of the ocean water is 1.33. From the deck of your ship you note that in the sunlight the oil slick appears to be blue. A spectroscope confirms that the dominant wavelength from the surface of the spill is 485 nm. Assuming a uniform thickness, what is the largest total area oil slick

Answer:

The  largest total area of the oil slick  [tex]A = 8.257 *10^{9} \ m^2[/tex]

Explanation:

From the question we are told that

     The volume of oil the escaped is  [tex]V = 18000 \ L[/tex]

    The refractive index of oil is [tex]n_o = 1.1[/tex]

     The refractive index of water is [tex]n_w = 1.33[/tex]

      The wavelength of the light  is [tex]\lambda = 485 \ nm = 485 * 10^{-9} \ m[/tex]

         

Generally the thickness of the oil for condition of constructive interference between the oil and the water is mathematically represented as

          [tex]d = m *\frac{\lambda}{2n_w}[/tex]

Where is the order of interference of the light and it value ranges from 1, 2, 3,...n

It is usually take as 1 unless stated otherwise by the question

substituting value

      [tex]d = 1 * \frac{485 *10^{-9}}{2 * 1.1}[/tex]    

      [tex]d = 218 nm[/tex]    

The are can be mathematically evaluated as

        [tex]A = \frac{V}{d}[/tex]

Substituting values

        [tex]A = \frac{18000}{218*10^{-8}}[/tex]

        [tex]A = 8.257 *10^{9} \ m^2[/tex]

Imagine playing baseball in a universe (not ours!) where the Planck constant is 0.70 J·s. What would be the uncertainty in the position of a 0.55 kg baseball that is moving at 22 m/s along an axis if the uncertainty in the speed is 0.5 m/s? Number Enter your answer in accordance to the question statement Units Choose the answer from the menu in accordance to the question statement

Answers

Answer:

The uncertainty the  in position is  [tex]\delta s = 0.4051 m[/tex]

Explanation:

From the question we are  told

   The planck's constant is [tex]h = 0.70 \ J \cdot s[/tex]

  The mass of the baseball is  [tex]m = 0.55kg[/tex]

   The velocity of the baseball [tex]v_b = 22 m/s[/tex]

    The uncertainty in [tex]\delta v = 0.5 m/s[/tex]

   

Generally the uncertainty of  momentum is  

        [tex]\delta p = m \delta v[/tex]

 substituting values

        [tex]\delta p = 0.275 \ kg m/s[/tex]

The uncertainty position is mathematically represented as

             [tex]\delta s = \frac{h}{2 \p \delta p }[/tex]

 substituting values  

           [tex]\delta s = \frac{0.70}{2 * 3.142 * 0.275 }[/tex]

           [tex]\delta s = 0.4051 m[/tex]

A 65-kg skier grips a moving rope that is powered by an engine and is pulled at a constant speed to the top of a 230 hill. The skier is pulled a distance x = 320 m along the incline and it takes 2.0 minutes to reach the top of the hill. If the coefficient of kinetic friction between the snow and skis is µk = 0.10, what horsepower engine is required if 30 such skiers are on the rope at one time? 1 hp = 746 W

Answers

Answer:

The required power by the engine is 33.0 hp

Explanation:

Solution

Newton's second law says that, the net force Fnet on an object of mass m will accelerates the object

Where

Fnet = ma

a = acceleration

θ = angle of incline,

m = mass of the 30 skiers,

f = frictional force

N = normal force

mg sinθ, mg cos θ are components of weight skier

F = the force applied by engine

Now,

The skier mass  is 65 kg

We calculate the mass of the 30 skier

m = 30 (65kg) = 1950 kg

Calculate the net force acting on the skiers along the x-axis

Fnet, x=ma

Now,

F-mg sin θ - f = 0

F= mg sin θ + f -----(1)

The kinetic frictional force is denoted by

f = μk N ------(2)

μk = The coefficient of the kinetic friction

We now, calculate the net force acting on the skiers along y axis

Fnet, y = ma

N- mg cos θ = 0

so,

N = mg cos θ

This value is  substituted in equation (2)

f = μk mg cos θ

we substitute the value for equation (1)

F = mg sin θ + μk mg cos θ

mg =  sinθ + μk cos θ)-----(3)

The next step is to calculate the work done by the engine in pulling the skiers, the incline top by applying the equation 3

W = Fx

= mg ( sinθ + μk cos θ)x

x = the displacement

we now substitute 1950 kg for m, 23° for θ, 0.10 for μk and 320m for x

so,

W = mg ( sinθ + μk cos θ)x

= (1950 kg) (9.81 m/s²) (sin 23° + (0.10) cos 23°) (320 m)

= 2.99 * 10 ^6 J

Then,

The time from minute to s is converted

t =(2.0min) ( 60sec/1.0min) = 120 sec

Now we calculate the power needed by the engine to pull the skiers at the incline top

Thus,

P = W/t

we substitute  2.955 * 10 ^6 J for W and  120 s for t

we have,

P = 2.955 * 10 ^ 6 J/ 120 s

= ( 2.4625 * 10 ^ 4 W) (1.0 hp/746 W)

= 33.0 hp

In conclusion the required power by the engine is 33.0 hp

Final answer:

To calculate the horsepower of the engine required for 30 skiers to be pulled up a hill, we need to consider the work done against friction and gravity. By plugging in the given values into the appropriate equations, we can find the required horsepower of the engine.

Explanation:

To calculate the horsepower of the engine required for 30 skiers to be pulled up a hill, we need to consider the work done against friction and gravity. First, we find the net force of the skier parallel to the incline by subtracting the force due to friction from the component of the skier's weight parallel to the incline. Then, we calculate the work done against friction and gravity using the formula W = Fd. Finally, we convert the work done to horsepower using the conversion factor 1 hp = 746 W.

The work done against friction and gravity is:

W = F_net * d

The power required is:

P = W / t

And finally, we convert the power to horsepower:

Power (hp) = P / 746

By plugging the given values into these equations and multiplying the final power by 30 (for 30 skiers), we can find the required horsepower of the engine.

Learn more about calculating horsepower for skiers on an incline here:

https://brainly.com/question/13916176

#SPJ3

Since sinusoidal waves are cyclical, a particular phase difference between two waves is identical to that phase difference plus a cycle. For example, if two waves have a phase difference of π4, the interference effects would be the same as if the two waves had a phase difference of π4+2π. The complete criterion for constructive interference between two waves is therefore written as follows: phase difference=0+2πnfor any integer n Write the full criterion for destructive interference between two waves

Answers

Final answer:

Destructive interference between two waves occurs when their phase difference is [tex]\pi + 2\pi n[/tex], for any integer n, resulting in a minimized or zero resultant amplitude.

Explanation:

The full criterion for destructive interference between two waves is when the phase difference between the waves is [tex]\pi + 2\pi n[/tex] for any integer n. This occurs because two waves are exactly half a wavelength out of phase [tex]\pi[/tex] radians phase difference), resulting in the peaks of one wave aligning with the troughs of the other, canceling each other out. Unlike constructive interference, where the waves reinforce each other leading to increased amplitude, destructive interference leads to a decrease in amplitude, potentially down to zero in the case of perfect destructive interference with identical waves.

Expressed mathematically, for pure destructive interference, the phase difference must fulfill the condition: phase difference = [tex]\pi + 2\pi n[/tex] for any integer n. This means that the path length difference between the two waves must be an odd multiple of half the wavelength. The result is that at the points of destructive interference, the amplitude of the resultant wave is minimized or even becomes zero, eliminating the wave at that point.

An "emergency blow" is a procedure used by military submarines to quickly rise to the surface in case of trouble. It involves using compressed air to pump out ballast water from its tanks.Suppose the submarine SSN Cthulhu has a displacement volume when fully submerged of 32000 m3. It is submerged with neutral buoyancy at a periscope depth of 30m when an emergency arises disabling its propulsion and other critical systems.Neglecting the pumped air’s density (much lower than that of water) and water resistance, what mass of water would this submarine have to pump out suddenly to make it to the surface in 30 seconds?

Answers

Answer:

Check the explanation

Explanation:

Kindly check the attached image below to see the step by step explanation to the question above.

The chart shows data for a moving object.
Which conclusion is best supported by the information in
the chart?
The object has negative displacement
The object has negative acceleration
The object does not have displacement
The object is not accelerating

Answers

Answer:the object is not accelerating

Explanation:

There object is not accelerating since there's no increase in velocity

Final answer:

Based on the descriptions of graphical data, we can conclude that the object has negative acceleration because its velocity is decreasing over time while it is moving in the positive direction, or its negative velocity is increasing over time. Also, since the object is moving in the negative direction, it experiences a negative displacement.

Explanation:

The question asks about the motion of an object based on different graphical representations. To determine the nature of this motion, we can analyze the provided diagrams. In this case, we have descriptions of how the velocity changes over time, which allows us to infer acceleration, and acceleration is defined as the change in velocity over time. According to the information, the object experiences a decrease in positive velocity, which indicates a negative acceleration, as acceleration is in the opposite direction to the velocity. Furthermore, it is mentioned that the object has a negative velocity which increases in magnitude, coherently resulting in negative acceleration as well.

Acceleration is a vector quantity, meaning it has both direction and magnitude. Since we are discussing a coordinate system where to the right is considered positive, any acceleration towards the left will be considered negative. The graphs that indicate an object having a constant negative velocity also imply that the object has negative displacement over the time period, because it's moving in the negative direction of the coordinate system.

If a system is isolated the total energy within that system is constant. Consider the case of a hot cup of coffee: when it cools down, the energy goes into the surrounding air, causing the air to warm. If the coffee and the air are placed in an isolated chamber, the total energy of the system (coffee + air) is constant because the energy lost by the coffee is exactly equal to the energy gained by the air. The only way for the total energy of a system to change is when it is not isolated, meaning that external forces or sources of energy interact with the system. If we want to define a system where the total energy is conserved, which one of the choices below would be the best system to consider?A. The personB. The person and the EarthC. The Earth

Answers

Answer:b-The person and the earth

Explanation:

The best system will be the person and earth as a system

It is so because whatever the energy required by the person is derived from earth resource and thus by depleting the earth resource person is getting is required form of energy .

for example person want thermal energy , for this he need coal which is earth resource and thus all the energy is derived from earth and is being converted into some other form of energy.

Which plants are usually the first to live in soil?

Answers

The plants that are typically the first to live in soil are known as pioneer plants or pioneer species.

What are the first plants?

Pioneer plants or pioneer species are the plants that are often the first to live in soil. These plants are distinguished by their propensity to colonize bare or disturbed soil, such as on newly formed land or in the wake of a natural disaster.

The process of primary succession, which is the gradual formation of plant and animal communities in a region devoid of soil or organic matter, depends critically on pioneer plants.

Learn more about plants:https://brainly.com/question/30072240

#SPJ6

A steel drill making 180 rpm is used to drill a hole in a block of steel. The mass of the steel block and the drill is 180 g. If the entire mechanical work is used up in producing heat and the rate of rise in temperature of the block and the drill is 0.5 °C/sec. Find (a) the rate of working of the drill in Watts and (b) torque required to drive the drill. Given: specific heat capacity of steel = 420 J/(kgK)

Answers

Answer:

a) 37.8 W

b) 2 Nm

Explanation:

180 g = 0.18 kg

We can also convert 180 revolution per minute to standard angular velocity unit knowing that each revolution is 2π and 1 minute equals to 60 seconds

180 rpm = 180*2π/60 = 18.85 rad/s

We can use the heat specific equation to find the rate of heat exchange of the steel drill and block:

[tex]\dot{E} = mc\Delta \dot{t} = 0.18*420*0.5 = 37.8 J/s[/tex]

Since the entire mechanical work is used up in producing heat, we can conclude that the rate of work is also 37.8 J/s, or 37.8 W

The torque T required to drill can be calculated using the work equation

[tex]E = T\theta[/tex]

[tex]\dot{E} = T\dot{\theta} = T\omega[/tex]

[tex]T = \frac{\dot{E}}{\omega} = \frac{37.8}{18.85} = 2 Nm[/tex]

Calculating the rate of working of a drill involves using the specific heat capacity, mass of the block, and rate of temperature increase to find the power. The torque can be derived from this power and the angular velocity of the drill.

The question involves calculating the rate of working of the drill in Watts and the torque required to drive the drill based on the information that all mechanical work is converted to heat that raises the temperature of the steel block and drill at 0.5 0C/s. Given the mass of the steel block and drill is 180 g and the specific heat capacity of steel is 420 J/(kgK), we can use the formula power (P) = mcigtriangleup T/igtriangleup t, where m is the mass, c is the specific heat capacity,  is the temperature change, and  is the change in time. To find the torque, we can use the power-torque relationship P = au imes w, where P is power in watts, au is the torque in Newton-meters, and w is the angular velocity in radians per second. As the drill makes 180 revolutions per minute (rpm), we'll convert that to radians per second to use in the power-torque equation.

(Solidification) You are performing a double slit experiment very similar to the one from DLby shining a laser on two narrow slits spaced 7.5 × 10-5meters apart. However, by placing a piece of crystal in one of the slits, you are able to make it so that the rays of light that travel through the two slits are πout of phasewith each other (that is to say,Δφ!=휋).If you observe that on a screen placed 4meters from the two slits that the distance between the bright spot closest to the center of the interference pattern and the center of the pattern is 1.5 cm, what is the wavelength of the laser? (Just as in DL, you may use the small angle approximation sinθ ≈ θ ≈ tanθ.)

Answers

Answer:

The wavelength of the laser, λ = 5.625 * 10⁻⁷ m

Explanation:

Separation of the narrow slits, d = 7.5 * 10⁻⁵ m

The distance between the screen and the two slits, d = 4m

The distance between the bright spot and the center of the pattern, Y = 1.5 cm

Y = 1.5 * 10⁻² m

To calculate the wavelength, λ, of the laser we will use the relationship:

[tex]Y = \frac{\lambda L}{2d} \\1.5 * 10^{-2} = \frac{\lambda * 4}{2*7.5*10^{-5} }\\\lambda = \frac{1.5 * 10^{-2} * 15 * 10^{-5} }{4}[/tex]

λ = 5.625 * 10⁻⁷ m

At the bottom, deep bodies of water always measure 4°C, because at that temperature water has its highest [...] (fill in the physical quantity in question)

Answers

Answer:density

Explanation:

At the bottom, deep bodies of water always measure [tex]4^{\circ}C[/tex] because at that temperature water has it highest density .

In water bodies like lake warm water rises up due to convection and at higher depths there is cold water, which is found to be at highest density of water.

When water molecules acquired heat energy  it become widely spread at the same volume and thus posses low density but at low temperature water molecule occupy less space therefore posses maximum density at [tex]4^{\circ}C[/tex]

The ballistic pendulum is an apparatus used to measure the speed of a projectile. An 8.0 g bullet is fired into a 2.5 kg ballistic pendulum bob, which is initially at rest, and becomes embedded in the bob. The pendulum then rises to a vertical distance of 6.0 cm. What was the initial speed of the bullet (in m/s)?

Answers

Final answer:

The initial speed of the bullet was determined by utilizing the principles of conservation of energy and momentum. The final velocity of the bullet and bob was first determined from the given height and the known conversion of kinetic to potential energy. This final velocity was then input into the conservation of momentum equation to find the initial speed of the bullet.

Explanation:

The ballistic pendulum is a classic example of a problem in physics which can be solved either by using the principles of work and energy or the principles of impulse and momentum. For this problem, we will utilize conservation of momentum. We know that the momentum before the collision is equal to the momentum after the collision.

Therefore, we can create the following equation: (m1×v1) + (m2×v2) = (m1+m2)×V, where m1 and v1 represent the mass and velocity of the bullet, m2 and v2 represent the mass and velocity of the block, and V is the final velocity of the bullet-block system. We know that the block was initially at rest, hence v2 = 0.

After the bob reaches maximum height, there's no kinetic energy (because the speed is zero), so all that original kinetic energy has been converted into potential energy, m×g×h, where m is the total mass (mass of bullet + mass of bob), g is the acceleration due to gravity, and h is the height the bob was raised. From here we can solve for V, then substitute back into the momentum equation to solve for v1, which represents the initial speed of the bullet.

Learn more about Ballistic pendulum here:

https://brainly.com/question/35573030

#SPJ12

Using conservation of momentum and energy, the initial speed of an 8.0 g bullet fired into a 2.5 kg ballistic pendulum bob, which rises 6.0 cm, is approximately 339.9 m/s. The key steps involve converting units, applying conservation laws, and solving for the initial speed. Therefore, the bullet's speed is determined to be 339.9 m/s.

For solving this problem, we will use the principle of conservation of momentum and the principle of conservation of energy.

Step-by-Step Solution

Convert the masses into common units:

mass of bullet, [tex]m_{bullet[/tex] = 8.0 g = 0.008 kg

mass of pendulum bob = 2.5 kg.

Convert the rise height into meters:

h = 6.0 cm = 0.06 m.

Determine the final velocity of the combined bullet and pendulum system at the lowest point (right after the collision) using energy conservation:

At maximum height, all kinetic energy is converted to potential energy:

mgh = 0.5 (M + m) v²

Using v = √(2gh) since M includes the bullet:

v = √(2 * 9.8 m/s² * 0.06 m)

v = √(1.176)

v ≈ 1.084 m/s

Use conservation of momentum to find the initial speed of the bullet:

Initial momentum = [tex]m_{bullet[/tex] * [tex]v_{bullet[/tex]

Final momentum = (M + m) * v = (2.5 kg + 0.008 kg) * 1.084 m/s

So, p = (2.508 kg) * 1.084 m/s

p = 2.719 kg·m/s

Initial speed of the bullet:

[tex]v_{bullet[/tex] = p / [tex]m_{bullet[/tex]

[tex]v_{bullet[/tex] = 2.719 kg·m/s / 0.008 kg

[tex]v_{bullet[/tex] ≈ 339.9 m/s

Therefore, the initial speed of the bullet is approximately 339.9 m/s.

A 12.0 g wad of sticky clay is hurled horizontally at a 100 g wooden block initially at rest on a horizontal surface. The clay sticks to the block. After the impact, the block slides 7.5 m before coming to rest. If the coefficient of friction between the block and the surface is 0.650, what was the speed of the clay immediately before the impact

Answers

Answer:

The speed of the clay immediately before the impact is 91.23 m/s

Explanation:

Given;

mass of clay, m₁ = 12g = 0.012 kg

mass of wooden block, m₂ = 100g = 0.1 kg

initial velocity of the wooden block, u₂ = 0

distance moved by the wooden block, d = 7.5 m

coefficient of friction, μk = 0.65

Apply the principle of conservation of linear momentum;

Total momentum before collision = Total momentum after collision

m₁u₁ + m₂u₂ = v(m₁ +m₂)

where;

u₁ is the initial velocity of the clay immediately before the impact

v is the common velocity of clay-block system after impact

u₂ = 0

m₁u₁ = v(m₁ +m₂)

[tex]U_1 = \frac{(m_1 + m_2)V}{m_1}[/tex] ------- equ. (i)

Apply the principle of conservation of energy after the impact

ΔK + ΔU = 0

where;

ΔK is change in kinetic energy

ΔU is change in internal energy of the system due to frictional force

[tex](K_f -K_i) + (F_k*d) = 0\\\\-K_i +F_k*d = 0\\\\K_i = F_k*d \\\\\frac{1}{2} (m_1+m_2)v_i^2 = \mu_k (m_1 +m_2)gd\\\\\frac{1}{2}v_i^2 = \mu_kgd\\\\v_i^2 = 2 \mu_kgd\\\\v_i = \sqrt{2 \mu_kgd}[/tex]

[tex]v_i[/tex] is the common velocity of the clay-block system immediately after the impact, which is equal to V in equation (i)

[tex]U_1 = \frac{(m_1+m_2)V}{m_1} = \frac{(m_1+m_2)v_i}{m_1}\\\\U_1 = \frac{m_1+m_2}{m_1}(\sqrt{2 \mu_kgd})\\\\U_1 = \frac{0.012+0.1}{0.012}(\sqrt{2 *0.65*9.8*7.5})\\\\U_1 = 9.3333(9.77497)\\\\U_1 = 91.23 \ m/s[/tex]

Therefore, the speed of the clay immediately before the impact is 91.23 m/s

How do magnets act when they are near each other?

Answers

Answer:

Either repel or attract.

Explanation:

Every magnet has both a north and a South Pole. When you place the North Pole of one magnet near the South Pole of another magnet near each other (north to north or south to south), they will repel each other.
Other Questions
What is the final step of preparing and organizing a research paper? A. Fitting all the information in your research paper B. Developing a thesis statement C. Making sure the topic isn't too broad or narrow D. Analyzing information Why is it important for journalist to understand the limitations and weaknesses of Ai and automated content? Which of the following measurements is heavier than 1 pound select all that apply What principle of the Constitution aligns with James Madison's Federalist paper #51?Question 8 options:popular sovereignty separation of powersjudicial reviewlimited government Miss Havisham, a character in the Charles Dickens novel, Great Expectations, was abandoned on her wedding day and lived alone for the rest of her life.Which word best describes what Miss Havisham became?omnivorereclusenihilistrenegade Can someone answer this question please please help me I really need it if its correct I will mark you brainliest . Which of the following processes can all of the above organisms perform in order to maintain stable internal environments?get rid of wastereproduceextract energy from food What does the treaty do to Germany? (.i.e.- army/military, economy, industry etc) Calculate the heat needed to increase the temperature of 100. g water from 45.7 C to 103.5 C. Hvaporization= 2260 J/g Ch2o=1.90 J/g (gas)Ch2o=4.18 J/g C (liquid) Matias' stepmother uses a 30%-off coupon to buy the ingredients for huevos rancheros,She spends $28.What is the regular price, r of the ingredients before the discount? Use the interactive graph to plot each set of points. Which sets represent proportional relationships? Check all that apply. A.(1, 4), (3, 8), (5, 9) B.(3, 2), (6, 4), (9, 6) C.(2, 2), (4, 4), (6, 6) D.(1, 3), (2, 7), (3, 8) E.(0, 0), (1, 2), (2, 4), (4, 8) What does the emcee do at a powwow and how does it contribute to everyones experience at a powwow? Which important third-party in Texas today supports welfare reform, federal deficit reduction, and term limits? Phillip is a real estate investor. He flips homes: He buys undervalued homes and sells them at a higher price later to make a profit out of the price difference (these kind of people are called flippers). He does not do any repairs to the houses he buys. In May 2020 he bought a house built in 1997 for $1,300,000 and sold it two months later for $1,500,000. Not bad.! The real estate agent got 6% of the sale price as her commission. As a result of these transactions, the 2020 GDP increased by Read the following lines from the poem:The yellow fog that rubs its back upon the window-panes,The yellow smoke that rubs its muzzle on the window-panesWhich is the strongest sound effect employed in these lines?A. AssonanceB. RepetitionC. AlliterationD. Rhyme Which of the following words is not an iamb? Which of these changes in the foodweb would cause a decrease in the population of tundra swans?A. A decrease in the population of vegetationB. An increase in the population of benthic invertebratesC. An increase in the population of wading birdsD. A decrease in the population of osprey Proslavery settlers who came to Kansas from Missouri in the 1800s were known asabolitionists.border ruffians.Free-Soilersslaveholders.Mark this and retumSave and ExitNextSubmit Match each equation to the situation it represents. Yin spends 10 hours on homework this week. She spends 5 hours of science homework and then answers 35 math problems In choir there are 16 altos and s sopranos. There are twice as many sopranos as altos. Write an equation to represent this situation Steam Workshop Downloader