Answer:
The function has no undefined points nor domain constraints, therefore the Domain is (-∞ < x < ∞). Since your answers don't match the real results, the interval notation is (-∞,∞)
Step-by-step explanation:
Identify the graph of the equation. What is the angle of rotation for the equation? (Picture provided)
Answer:
The equation is that of ellipse withe angle of rotation 30° ⇒ answer (d)
Step-by-step explanation:
* Lets talk about the general form of the conic equations
- Ax² + Bxy + Cy² +D = 0 (center is the origin)
- A is the coefficient of x² , B is the coefficient of xy
C is the coefficient of y² , D is the numerical term
* Now we will study how to know the type of the graph of this equation
- If A and C have different signs (different values)
∴ The equation is that of an ellipse
- If A and C have different signs (different values)
∴ The equation is on a hyperbola
* Now look at the equation:
13x² + 6√3 xy + 7y² - 16 = 0
∵ A = 13 , B = 6√3 , C = 7 , D = -16
∵ A and C have same sign
∴ The equation is that of an ellipse
* Now lets find the angle of rotation by using the Rule:
- tan(2Ф) = B/(A - C) ⇒ Ф is the angle of rotation
- By using the value of A , B and C
∴ tan(2Ф) = 6√3/(13 - 7) = 6√3/6 = √3
∴ 2Ф = [tex]tan^{-1}\sqrt{3}=60[/tex]
∴ 2Ф = 60° ⇒ divide both sides by 2
∴ Ф = 30°
∴ The angle of rotation is 30°
∴ The equation is that of ellipse withe angle of rotation 30°
* The graph represent the ellipse
- The purple line represents the angle of rotation
What additional information is needed to prove triangle LMN is congruent to triangle KMN using the HL theorem?
∠LMN is a right angle
Step-by-step explanation:If we want to prove that two right triangles are congruent by knowing that the corresponding hypotenuses and one leg are congruent, we begin as follows:
Since two legs are congruent and we know this by the hash marks, then the triangle ΔLKN is isosceles.By definition LN ≅ NKIf ∠LMN is a right angle, then MN is the altitude of triangle ΔLKNAlso MN is the bisector of LK, so KM ≅ MLSo we have two right triangles ΔLMN and ΔKM having the same lengths of corresponding sides In conclusion, ΔLMN ≅ ΔKMNleg MN of both triangle is equal.
Step-by-step explanationHL stands for "Hypotenuse, Leg" (the longest side of a right-angled triangle is called the "hypotenuse", the other two sides are called 'legs', or 'base' and 'height'.
It means we have two right-angled triangles with
the same length of hypotenuse the same length for one of the other two legsSince ∠ LMN and ∠KMN are right angle , the hypotenuse LN and and one leg LN of one right-angled triangle LMN are equal to the corresponding hypotenuse KN and leg MN of another right-angled triangle MKN, hence the two triangles are congruent.
A simple random sample of size n is drawn from a population that is normally distributed. The sample mean, x overbar, is found to be 109, and the sample standard deviation, s, is found to be 10. (a) Construct a 96% confidence interval about mu if the sample size, n, is 29. (b) Construct a 96% confidence interval about mu if the sample size, n, is 25. (c) Construct a 90% confidence interval about mu if the sample size, n, is 29. (d) Could we have computed the confidence intervals in parts (a)-(c) if the population had not been normally distributed? LOADING... Click the icon to view the table of areas under the t-distribution.
Answer:
a: 105.2 < µ < 112.8
b: 104.872 < µ < 113.128
c: 105.841 < µ < 112.159
d: No, because n < 30
Step-by-step explanation:
For a - c, see attached photos for work. There are 2 formulas to use. The steps for constructing any confidence interval are the same, you will just use different numbers in the formula depending on what data is given to you.
d: With large sample sizes, the data often resembles normally distributed data, so we can still construct confidence intervals from the data.
Answer:
b
Step-by-step explanation:
2 fields of a state park are 1,200 meters from each other. On a map the 2 fields are 8 cm apart what scale is the map using
Answer: 150
Step-by-step explanation: a scale of 150 because 150 times 8 is 1,200.
Answer:
150
Step-by-step explanation:
In the diagram of circle C, diameter AB¯¯¯¯¯¯¯¯ is perpendicular to chord MN¯¯¯¯¯¯¯¯¯¯ at point O.
If MO=5x−7 and NO=18, what is the value of x? More help in the attachment.
Answer:
The value of x is equal to [tex]5[/tex]
Step-by-step explanation:
we know that
The diameter divide the circle into two equal parts
In this problem
MO=NO
substitute the values
[tex]5x-7=18[/tex]
solve for x
Adds 7 both sides
[tex]5x=18+7[/tex]
[tex]5x=25[/tex]
Divide by 5 both sides
[tex]x=25/5=5[/tex]
Geometry help needed!
Answer:
13.76
Step-by-step explanation:
Area of the whole
The area of the whole = s^2 (the firgure is a square
s = 8
Area of the whole = 8^2 = 64
Area of the unshaded part
The 2 half circles = 1 whole circle
The radius of the 1/2 circle = 4 (eight has been cut in half)
Area of two half circles = 2* (pi r^2/2)
Area of two half circles = 2 * (pi 4^2/2)
area of two half circles = 16*pi
Area of the shaded area
Area of the shaded area = area of the whole - area of the unshaded area
Area of the shaded area = 64 - 16*pi
Area of the shaded area = 64 - 3.14*16 = 13.76
Plz help8 Pamela is shopping for bottled water at the supermarket. Which is the best buy?
Answer:
Answer best buy is C 24 0.5-liter bottles for $5.25
Step-by-step explanation:
Answer:
its C trust me
What is a variable? a. A variable is an unknown number or value represented by a letter c. A variable represents a change in value b. A variable always represents the total amount d. A variable is always represented by the letter x Please select the best answer from the choices provided A B C D
ANSWER
a. A variable is an unknown number or value represented by a letter
EXPLANATION
In mathematics, we use letters to represent an unknown quantity or number.
For instance, we can use the letter , t, to represent time taken to cover a given distance.
We can use the letter , s, to represent displacement or distance covered by an object.
The letters that we use to represent the unknown values or numbers are called variables.
The correct answer is A.
A variable is a characteristic that can change in value across different instances. It can be represented by any letter and can be numerical or categorical. In mathematical contexts, it often represents an unknown value in an equation.
Explanation:A variable, which can be represented by any letter, and not just 'x', is a characteristic that can vary in value across different instances. It could refer to different types of measurables such as a numerical variable like 'x' representing the number of points earned by a student or a categorical variable like 'y' representing someone's party affiliation. Variables in mathematical contexts are often used in equations to represent unknown values.
For example, if 'x' represents the number of children in a family, each different integer value of 'x'(0, 1, 2, 3, etc) specifies a unique family structure. Therefore, option A : 'A variable is an unknown number or value represented by a letter' is the correct choice.
Learn more about Variable here:https://brainly.com/question/17344045
#SPJ3
An automatic car wash uses 5/8 gallon of soap on each car that is washed.Yesterday,the ,car wash used a total of 30 gallons of soap.How many cars washed yesterday?
Answer:
48
Step-by-step explanation:
divide 30 by 5/8
Answer: 48 cars washed yesterday.
Step-by-step explanation:
Given : An automatic car wash uses [tex]\dfrac{5}{8}[/tex] gallon of soap on each car that is washed.
Yesterday,the ,car wash used a total of 30 gallons of soap.
Then, the number of car washed yesterday is given by :-
[tex]30\div\dfrac{5}{8}\\\\=30\times\dfrac{8}{5}=48[/tex]
Hence, 48 cars washed yesterday.
find the product of this question down below
Answer:
[tex]\large\boxed{D)\ \dfrac{8}{7}}[/tex]
Step-by-step explanation:
[tex]8\left(-\dfrac{2}{7}\right)\left(-\dfrac{1}{2}\right)\\\\\text{the product of two negative numbers is positive}\\\\8\cdot\dfrac{2\!\!\!\!\diagup^1}{7}\cdot\dfrac{1}{2\!\!\!\!\diagup_1}=8\cdot\dfrac{1}{7}\cdot\dfrac{1}{1}=\dfrac{8}{7}[/tex]
Help with this question, please!!
Answer:
[tex]\large\boxed{C=22\pi y\ ft}[/tex]
Step-by-step explanation:
The formula of an area of a circle:
[tex]A=\pi r^2[/tex]
r - radius
The formula of a circumference of a circle:
[tex]C=2\pi r[/tex]
We have the area of a circle
[tex]A=121y^2\pi ft^2[/tex]
Substitute to the formula and solve for r:
[tex]\pi r^2=121y^2\pi[/tex] divide both sides by π
[tex]r^2=121y^2\to r=\sqrt{121y^2}\\\\r=11y\ ft[/tex]
Put the value of r to the formula of a circumference:
[tex]C=2\pi(11y)=22y\pi ft[/tex]
Richard practice each of 3 piano solos for 5/12 hours how long did he practice in all?
Answer: 1 hour and 15 minutes
Step-by-step explanation: When you multiply the 3 piano solos each for 5/12 of an hour you get 15/12 or 1 and 1/4. Then since 1/4 of an hour is 15 minutes, you will know that the answer is 1 hour and 15 minutes.
Assume the large circle is decreased in size, but it is still larger than the middle circle. Which is true? Answers in the pic
Answer:
haha I just answered a question kind of like this one. The answer would be 4.
Step-by-step explanation:
Although the 2 point circle is still the largest, the rim is skinnier now and the rim of the 4 point is now the biggest area avalible for the dart to be thrown at
Answer:
The answer is (a) The probability of scoring 0 is more likely.
Step-by-step explanation:
use naive gauss elimination as LU factorization to factor the following system10x1+2x2-x3=27-3x1-6x2+2x3=-61.5x1+x2+5x3=-21.5
Answer:
Sorry i do not know the answer but...
Step-by-step explanation:
can u sub to Pewdiepie on YT.. Plz? Brofist
At what value of x does the graph of the following function F(x) have a vertical asymptote?
F(x)= [tex]\frac{2}{x-2}[/tex]
A. 2
B. -2
C. 0
D. -1
Answer:
A. 2
Step-by-step explanation:
There is a vertical asymptote where the denominator is zero. (x-2) is zero when x=2.
Identify the graph of the equation. What is the angle of rotation for the equation?
2xy – 9 = 0
Answer:
The answer is hyperbola; 45° ⇒ answer (b)
Step-by-step explanation:
* At first lets talk about the general form of the conic equation
- Ax² + Bxy + Cy² + Dx + Ey + F = 0
∵ B² - 4AC < 0 , if a conic exists, it will be either a circle or an ellipse.
∵ B² - 4AC = 0 , if a conic exists, it will be a parabola.
∵ B² - 4AC > 0 , if a conic exists, it will be a hyperbola.
* Now we will study our equation:
* 2xy - 9 = 0
∵ A = 0 , B = 2 , C = 0
∴ B² - 4 AC = (2)² - 4(0)(0) = 4 > 0
∴ B² - 4AC > 0
∴ The graph is hyperbola
* To find the angle of rotation use the rule:
- cot(2Ф) = (A - C)/B
∵ A = 0 , B = 2 , C = 0
∴ cot(2Ф) = 0/2 = 0
∴ 2Ф = 90°
∴ Ф = 45°
* The answer is hyperbola; with angle of rotation = 45°
Segments WK, XL, and YJ are medians of triangle WXY.
What is the length of segment WK?
A. 1
B. 6
C. 9
D. 18
Carter's telephone bill is automatically deducting $48 from his bank account every month. How much will the deductions total for the year?
Answer:576
Step-by-step explanation: For every year, Carter’s telephone bill will be $576. This is because is we know how much he is charged a month, we can take that number and multiply it by 12. We are multiplying it by 12 because there are 12 months in 1 year. Once we multiplied it that’s how we find out the cost for 1 year.
Have a great day,
Eric
Determine the nature of the roots:
Answer:
A. 2 distinct roots.
Step-by-step explanation:
2x^2 + 8x + 3 = 0
Finding the discriminant:
b^2 - 4ac = 8^2 - 4 * 2 * 3
= 64 - 24
= 40
The discriminant is positive but not a perfect square
So there are 2 distinct ,real, irrational roots.
A right triangle has legs of length 10 feet and 13 feet. What is the area of the triangle?
A) 65 ft^2
B)100 ft^2
C) 130 ft^2
D) 150 ft^2
Answer:
Option A. [tex]65\ ft^{2}[/tex]
Step-by-step explanation:
we know that
In a right triangle the legs are perpendicular
so
the area is equal to multiply the two legs and divide by two
[tex]A=\frac{1}{2}(10)(13)=65\ ft^{2}[/tex]
Final answer:
To find the area of a right triangle with legs of length 10 feet and 13 feet, you multiply the lengths and divide by 2. The calculated area is 65 square feet, making option A the correct answer.
Explanation:
The question is asking about the area of a right triangle. To find the area of any triangle, you use the formula A = (base × height) / 2. Since a right triangle has two legs that are perpendicular to each other, these legs can be considered as the base and the height of the triangle. In our case, we have legs of lengths 10 feet and 13 feet, so applying the formula:
A = (10 ft × 13 ft) / 2
= (130 ft²)/2
= 65 ft²
So, the area of the right triangle is 65 square feet, which corresponds to option A.
What is the length of side BC of the triangle? Enter your answer in the box. units Triangle A B C with horizontal side B C. Vertex A lies above side B C. Angle B and angle C are marked congruent. The length of side A C is labeled as 2 x plus 7. The length of side A B is labeled as 4 x minus 7. The length of side B C is labeled as 4 x.
Answer:
The length of BC = 28 units
Step-by-step explanation:
* In triangle ABC
∵ Angles B and C are congruent
∴ m∠B = m∠C
* In any triangle if two angles are equal in measure, then the triangle is isosceles means the two sides which opposite to the congruent angles are equal in length
∴ AB = AC
∵ AB = 4x - 7
∵ AC = 2x + 7
∴ 4x - 7 = 2x + 7 ⇒ collect like terms
∴ 4x - 2x = 7 + 7
∴ 2x = 14 ⇒ divide both sides by 2
∴ x = 14 ÷ 2 = 7
* Now we can find the length of BC
∵ The length of BC = 4x ⇒ substitute the value of x
∴ The length of BC = 4 × 7 = 28 units
To find the length of side BC of the triangle, you can use the fact that angle B and angle C are congruent. Set up an inequality using the lengths of side AB and side AC, and solve for x. Substitute x with an appropriate value to find the length of side BC.
Explanation:To find the length of side BC of the triangle, we can use the fact that angle B and angle C are congruent. Let's represent the length of side AB as 4x - 7 and the length of side AC as 2x + 7. Since the sum of the lengths of the two smaller sides of a triangle must be larger than the length of the largest side, we can set up an inequality: 4x - 7 + 2x + 7 > 4x. Simplifying this inequality, we get 6x > 0, which tells us that x must be greater than 0.
Since side BC is labeled as 4x, we can substitute x with any positive value greater than 0. For example, if we let x = 1, then side BC would have a length of 4(1) = 4 units.
Learn more about Triangle side length here:https://brainly.com/question/24273594
#SPJ11
Solve the equation. Round to the nearest hundredth. Show work.
[tex]6e^{2x} - 13e^{x} = 5[/tex]
Answer:
x = 0.0116096 , 1.91705119
Step-by-step explanation:
I looked on a site to look this up.
Answer:
x = 0.92
Step-by-step explanation:
To solve this, we need first use the exponent rule of [tex]e^{bc}=(e^b)^c[/tex] on [tex]e^{2x}[/tex]. We can break it down to [tex]e^{2x}=(e^x)^2[/tex]. We can now re-write as:
[tex]6(e^x)^{2}-13(e^x)-5=0[/tex]
This looks like a trinomial that we can middle term factorize by letting [tex]y=e^x[/tex]. Thus we can write and factorize and solve as shown below:
[tex]6(e^x)^{2}-13(e^x)-5=0\\6y^2-13y-5=0\\6y^2+2y-15y-5=0\\2y(3y+1)-5(3y+1)=0\\(2y-5)(3y+1)=0[/tex]
Thus, 2y-5 = 0 OR 3y+1 = 0
Solving we have y = 5/2 and y = -1/3
Now bringing back the original variable of letting y = e^x, we have:
1. 5/2 = e^x, and
2. -1/3 = e^x
Solving 1:
[tex]\frac{5}{2}=e^x\\ln(\frac{5}{2})=ln(e^x)\\x=ln(\frac{5}{2})[/tex]
Solving 2:
We will have x = ln (-1/3) WHICH IS NOT POSSIBLE because ln is never negative.
So our answer is x = ln (5/2)
Rounding to nearest hundredth: x = 0.92
A single ball is taken at random from an urn containing 10 balls numbered 1 through 10. what is the probability of obtaining a ball whose number is less than 7?
To find probability you can use proportions
What i would do is 6/10 since it cant be 7 and then cross multiply it by 1/10.
This should get you 60%
The probability of selecting a ball numbered less than 7 from an urn containing balls numbered 1 to 10 is 6 favorable outcomes out of 10 possible outcomes, which simplifies to 3/5 or 0.6.
Explanation:The question is asking about the probability of selecting a ball with a number less than 7 from an urn with balls numbered from 1 to 10. To determine this probability, we count how many balls have numbers less than 7 which are 1, 2, 3, 4, 5, and 6. That gives us 6 balls. Since all balls are equally likely to be chosen, and there are 10 balls in total, the probability of drawing one with a number less than 7 is the number of favorable outcomes divided by the total number of outcomes.
Here is the calculation:
Count the favorable outcomes (balls numbered less than 7): 6.Count the total number of outcomes (all balls): 10.Calculate the probability: Number of favorable outcomes / Total number of outcomes = 6/10.Therefore, the probability of drawing a ball with a number less than 7 is 6/10 which simplifies to 3/5 or 0.6.
Can someone help me please. I can't figure out how to solve this problem.
Answer:
It's A . 13 / (5√10)
Step-by-step explanation:
AD = √(3^2 + 4^2) = √25
= 5 ( By the Pythagoras Theorem).
So sin 2α = 3/5 and cos 2α = 4/5.
m < B = α ( external angle of a triangle theorem)
and BD = AD = 5 (Isosceles triangle) and BC = 4+5 = 9.
AB = √(3^2 + 9^2) = √90 = 3√10
So sin α = 3 / 3√10 = = 1 /√10 and cos α = 9 /3√10 = 3/√10.
Finally sin 3α = sin (2α + α) = sin 2α cos α + cos 2α sin α
= 3/5 * 3 / √10 + 4/5 * 1/√10
= 13/(5√10).
The cheetah traveled 1.75 times faster for the first 8 minutes than it did for the second 8 minutes. Was the distance traveled during the first 8 minutes 1.75 times greater than the distance traveled during the second 8 minutes? Show the calculation to justify your answer.
Answer:
yes, distance travel in first 8 minute is 1.75 time higher than second 8 minutes
Step-by-step explanation:
Given data:
speed in first 8 minute is 1.75 faster than 2nd 8 minutes.
from the above information we can say that time remain same in both situation and we know that speed is given as
speed = distance / time
since time remain same in both case. Therefore speed is directly proportional distance having time as constant
As speed is 1.75 times higher in first 8 minutes than second 8 minutes therefore distance also behave in the same way i.e distance travel in first 8 minute is 1.75 time higher than second 8 minutes
ALGEBRA.
I have been stuck on this for awhile.
PLEASE HELP ME.
Solve for x in the denominator by setting it to zero:
(x+6) = 6
x = -6
Now using the given equation but replace the constant with c :
x^2 +8x +C
Replace x with -6:
(-6)^2 +8(-6) +c
36 - 48 +C = 0
-12 +c = 0
c = 12
The constant needs to be 12 in order for (x+6) to be a factor.
What is the value of x?
Answer:
x = 4
Step-by-step explanation:
We are given a figure QRST which has two right angled triangles in it and we are to find the value of x.
To find x, we first need to find the side length of RT.
[tex]sin 60=\frac{2\sqrt{3} }{RT}[/tex]
[tex]RT = \frac{2\sqrt{3} }{sin 60}[/tex]
[tex] RT = 4 [/tex]
Now finding the value of x:
[tex] tan 45 = \frac { x } { 4 } [/tex]
[tex] x = tan 45 \times 4 [/tex]
x = 4
If sinA=3/5 and cosB=5/13 and if A and B are measures of two angles in Quadrant I, find the exact value of the following functions.
cotB =
sin2A=
3)cos(5pi/6 + B) =
tan(A - pi/4) =
Answer:
1. [tex]\cot B=\frac{5}{12}[/tex]
2. [tex]\sin2A=\frac{24}{25}[/tex]
3. [tex]\cos(\frac{5\pi}{6}+B )=-\frac{5}{26}(\sqrt{3}+1)[/tex]
4. [tex]\tan(A-\frac{\pi}{4} )=-\frac{1}{7}}[/tex]
Step-by-step explanation:
If [tex]\sin A=\frac{3}{5}[/tex] and [tex]\cos B=\frac{5}{13}[/tex], then we can use the Pythagorean identity to find [tex]\cos A[/tex] and [tex]\sin B[/tex].
[tex]\sin^2A+\cos^2A=1[/tex]
[tex](\frac{3}{5} )^2+\cos^2 A=1[/tex]
[tex]\frac{9}{25}+\cos ^2A=1[/tex]
[tex]\cos^2 A=1-\frac{9}{25}[/tex]
[tex]\cos^2 A=\frac{16}{25}[/tex]
[tex]\cos A=\pm \sqrt{\frac{16}{25}}[/tex]
Since A is in quadrant I,
[tex]\cos A=\sqrt{\frac{16}{25}}[/tex]
[tex]\cos A=\frac{4}{5}[/tex]
Also;
[tex]\sin^2B+\cos^2B=1[/tex]
[tex](\frac{5}{13} )^2+\sin^2 B=1[/tex]
[tex]\frac{25}{169}+\sin ^2B=1[/tex]
[tex]\sin^2 B=1-\frac{25}{169}[/tex]
[tex]\sin^2 B=\frac{144}{169}[/tex]
[tex]\sin B=\pm \sqrt{\frac{144}{169}}[/tex]
Since A is in quadrant I,
[tex]\sin B=\sqrt{\frac{144}{169}}[/tex]
[tex]\sin B=\frac{12}{13}[/tex]
This implies that;
[tex]\cot B=\frac{\cos B}{\sin B}[/tex]
[tex]\cot B=\frac{\frac{5}{13} }{\frac{12}{13} }[/tex]
[tex]\cot B=\frac{5}{12}[/tex]
[tex]\sin2A=2\sin A \cos A[/tex]
[tex]\sin2A=2\times \frac{3}{5} \times \frac{4}{5}[/tex]
[tex]\sin2A=\frac{24}{25}[/tex]
[tex]\cos(\frac{5\pi}{6}+B )=\cos(\frac{5\pi}{6})\cos(B )-\sin(\frac{5\pi}{6})\sin(B)[/tex]
This implies that;
[tex]\cos(\frac{5\pi}{6}+B )=\cos(\frac{5\pi}{6})\times \frac{5}{13}-\sin(\frac{5\pi}{6})\times \frac{5}{13}[/tex]
[tex]\cos(\frac{5\pi}{6}+B )=-\frac{\sqrt{3}}{2}\times \frac{5}{13}-\frac{1}{2})\times \frac{5}{13}[/tex]
[tex]\cos(\frac{5\pi}{6}+B )=-\frac{5}{26}(\sqrt{3}+1)[/tex]
[tex]\tan(A-\frac{\pi}{4} )=\frac{\tan A-\tan \frac{\pi}{4} }{1+\tan A \tan \frac{\pi}{4}}[/tex]
But; [tex]\tan A=\frac{\sin A}{\cos A}[/tex]
[tex]\tan A=\frac{\frac{3}{5} }{\frac{4}{5} }=\frac{3}{4}[/tex]
[tex]\tan(A-\frac{\pi}{4} )=\frac{\frac{3}{4}-\tan \frac{\pi}{4} }{1+\frac{3}{4} \tan \frac{\pi}{4}}[/tex]
Simplify;
[tex]\tan(A-\frac{\pi}{4} )=\frac{\frac{3}{4}-1 }{1+\frac{3}{4}}[/tex]
[tex]\tan(A-\frac{\pi}{4} )=-\frac{1}{7}}[/tex]
Suppose a computer technical support representative can answer calls from 8 customers in an hour. What is the probability that a customer will be on hold less than 15 minutes?
Answer:
Option d
Step-by-step explanation:
We need 2 fundamental data to solve this problem.
1.- Average number of clients attended in 1 hour.
2.- Time in which it is expected that a client will be attended.
They tell us that the average number of clients served in an hour is m = 8
They tell us to calculate the probability that the client will be seen in less than 15 minutes.
But the time t in the formula is given in hours.
Therefore we must write 15 minutes according to hours.
We know that [tex]1\ hour = 60 minutes[/tex].
So:
[tex]15\ minutes[\frac{1\ hour}{60\ minutes}] = 0.25\ hours[/tex].
Now we substitute in the formula [tex]m = 8[/tex] and [tex]t = 0.25[/tex] to find P.
[tex]P = 1 -e^{-mt}\\\\P = 1- e^{-(8)(0.25)}\\\\P = 1 - e^{-2}\\\\P = 0.8646\\\\P= 86\%[/tex]
Answer:
D edge
Step-by-step explanation:
Find the surface area of a cylinder that has a raius of 13.5 cm., and a height of 90 cm. Show all work without using a calculator.
[tex]\bf \textit{surface area of a cylinder}\\\\ SA=2\pi r(h+r)~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=13.5\\ h=90 \end{cases}\implies SA=2\pi (13.5)(90+13.5) \\\\\\ SA=27\pi (103.5)\implies SA=2794.5\pi \implies SA\approx 8779.18[/tex]
well, the last part will be with a calculator, but you can simply use the area in π terms.