Answer:
METAL: found in periodic table, lithium, shiny, lose electrons easily, good conductor, elements
NONMETAL: brittle, ductile, semimetals, found in periodic table, often gain electrons, semiconductors, carbon, shiny, poor conductor, elements
METALLOID: solid, non- ductile, malleable, found in periodic table, silicon, shiny, can be liquids, elements
More _____ is required to halogenate alkanes than to halogenate alkenes. activation energy ionization energy electronegativity nuclear energy
Answer:
activation energy
Explanation:
Answer:
Activation Energy
Explanation:
Energy of Activation is the energy which must be provided to a chemical or nuclear system with potential reactants to result in: a chemical reaction.
More activation energy is required because it would take more energy to add elements across single bonds than it would take for double bonds.
ionization energy or ionisation energy, denoted Eᵢ, is the minimum amount of energy required to remove the most loosely bound electron, the valence electron, of an isolated neutral gaseous atom or molecule. This option is incorrect.
Electronegativity, symbol χ, is a chemical property that describes the tendency of an atom to attract a shared pair of electrons towards itself. This option is incorrect.
NUclear energy is the energy released during nuclear fission or fusion, especially when used to generate electricity. This option is incorrect.
In an endothermic reaction, a drop in temperature would be observed.
TRUE
or
FALSE
Which of the following solutions will have the lowest freezing point?A) 0.015 m MgCl2 B) 0.0100 m NaCl C) 0.035 m CH3CH2CH2OH D) 0.0100 m Li2SO4
The solution with the lowest freezing point would likely be the 0.015 m MgCl2 solution. This is due to the principle of freezing point depression, where a solution with more solute particles will generally have a lower freezing point than a solution with fewer solute particles.
Explanation:The question asks which of the given solutions will have the lowest freezing point. This is a question related to chemistry, specifically colligative properties, one of which is freezing point depression.
In a process known as freezing point depression, solutions typically freeze at lower temperatures than pure liquids. This is because the presence of solute particles disrupts the ability of the solvent to form a regular pattern in the solid state, thus requiring a lower temperature to freeze.
To determine which solution has the lowest freezing point, we must consider both the molality of the solution and the number of solute particles produced by each formula unit of solute. Those that yield more particles upon dissociation have a greater effect on freezing point depression. In this case, 0.015 m MgCl2 should have the lowest freezing point as MgCl2 dissociates into three ions (Mg2+ and two Cl- ions), thus producing more solute particles per formula unit compared to the other given solutions.
Learn more about Freezing Point Depression here:https://brainly.com/question/34610084
#SPJ3
The solution with the lowest freezing point is A) 0.015 m MgCl₂, because it results in the highest effective particle concentration due to its dissociation into three ions in solution.
To determine this, we need to use the concept that the freezing point decreases as the concentration of dissolved particles increases. This is calculated using the van 't Hoff factor (i), which indicates the number of particles a compound dissociates into in solution.
MgCl₂ dissociates into 3 ions (1 Mg²⁺ and 2 Cl⁻), so its van 't Hoff factor is 3.
NaCl dissociates into 2 ions (1 Na⁺ and 1 Cl⁻), so its van 't Hoff factor is 2.
CH₃CH₂CH₂OH (propanol) does not dissociate in solution, so its van 't Hoff factor is 1.
Li₂SO₄ dissociates into 3 ions (2 Li⁺ and 1 SO₄²⁻), so its van 't Hoff factor is 3.
We then multiply the molality by the van 't Hoff factor to find the effective particle concentration for each solution:
A) 0.015 m MgCl₂: 0.015 m x 3 = 0.045 m
B) 0.0100 m NaCl: 0.0100 m x 2 = 0.020 m
C) 0.035 m CH₃CH₂CH₂OH: 0.035 m x 1 = 0.035 m
D) 0.0100 m Li₂SO₄: 0.0100 m x 3 = 0.030 m
The lowest freezing point corresponds to the highest effective particle concentration. Therefore, Solution A) 0.015 m MgCl2 has the lowest freezing point.
A jar is tightly sealed at 22°C and 772 torr what is the pressure inside a jar after its been heated to 178°C
Answer:
P1/T1 = P2/T2
772torr / 295K = P2 / 451K
P2 = 1180.2torr
Explanation:
The pressure inside a jar after it's been heated to 178°C is 1180.2 torr.
What is an ideal gas equation?The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas.
Given data:
[tex]P_1[/tex]=772torr
[tex]T_1[/tex]=295K
[tex]P_2[/tex]=?
[tex]T_2[/tex]=451K
Applying formula:
[tex]\frac{P_1}{T_1} = \frac{P_2}{T_2}[/tex]
[tex]\frac{772torr}{295K} =\frac{P_2}{ 451K}[/tex]
P2 = 1180.2torr
Hence, the pressure inside a jar after it's been heated to 178°C is 1180.2 torr.
Learn more about the ideal gas equation here:
https://brainly.com/question/12818923
#SPJ2
The chemical definitions of acids and bases for Arrhenius are:
The chemical definitions of acids and bases for BrØnsted-Lowry are:
Answer:
Explanation:
Arrhenius defined an acid as a substance that interacts with water to produce excess hydrogen ions in aqueous solution.
A base is a substance which interacts with water to yield excess hydroxide ions, in an aqueous solution according to Arrhenius.
Bronsted-Lowry theory defined an acid as a proton donor while a base is a proton acceptor.
Final answer:
The Arrhenius definition classifies substances as acids or bases based on their ability to produce hydronium or hydroxide ions in aqueous solution, while the BrØnsted-Lowry definition is broader and is based on the ability to donate or accept protons (H+), not limited to aqueous solutions.
Explanation:
Arrhenius vs. BrØnsted-Lowry Acid-Base Definitions
The chemical definition of acids and bases according to Arrhenius involves the production of ions in aqueous solutions. An Arrhenius acid is a substance that when dissolved in water increases the concentration of hydronium ions (H₃O+), typically through the dissociation of hydrogen ions (H+), while an Arrhenius base is a substance that produces hydroxide ions (OH-) when dissolved in water. However, the Arrhenius definition is limited as it only considers aqueous solutions.
On the other hand, the BrØnsted-Lowry definitions, proposed in 1923, offer a broader understanding of acid-base chemistry. A BrØnsted-Lowry acid is any substance capable of donating a proton (H+), and a BrØnsted-Lowry base is any substance capable of accepting a proton. This definition includes but is not limited to water as a solvent, thereby expanding the number of substances that can be classified as acids or bases.
Thus, while all substances that are classified as acids and bases under the Arrhenius definition are also acids and bases under the BrØnsted-Lowry definitions, the reverse is not true. The BrØnsted-Lowry theory broadens the scope to include compounds that do not necessarily produce hydroxide ions but can still accept protons, such as ammonia (NH3).
An unknown substance has been shown to have metallic bonds.
Which of the following is most likely a property of this substance?
A. low conductivity
B. low boiling point
C. high malleability
D. high solubility in water
Answer:
C.) High malleability.
Explanation:
There is a strong force between the metal ions and free floating electrons, meaning a substance with a metallic bond may be shaped and molded without breaking/fracturing due to their strength.
As the unknown substance is metal it has a characteristic property of metals which is high malleability.
What are the characteristics of metals?
An element is the simplest form of matter.Elements are further classified as metal,non -metals and metalloids. Metals possess luster and are malleable that is they can be drawn into thin sheets.They are also ductile and can be drawn into thin wires and are hard due to the strong ionic bonding present in them.
They are good conductors of heat and electricity due to the presence of mobile electrons .They have high density because of the compact arrangement of atoms .As a result of the arrangement of atoms,they have high melting points.
Malleability and ductility of metals is due to the presence of layers of atoms which can slide over each other on application of force.
Learn more about characteristics of metals,here:
https://brainly.com/question/1030228
#SPJ6
Which of the following equations represents Photosynthesis? 16CO2 + 6H2O -----> C6H12O6 + 6O22C6H12O6 + 6O2 -----> CO2 + 6H2O3CO2 + H2O -----> C6H12O6 + 6O246O2 + 6H2O -----> C6H12O6 + 6CO2
Answer:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂Explanation:
Photosynthesis is the chemical process carried out by plants for the conversion of inorganic matter (carbon dioxide and water) into organic matter (glucose) with the release of oxygen, using light (sun energy).
So the chemical process may be represented by:
Word equation:
carbon dioxide + water + sun energy → glucose + oxygen
Skeleton equation:CO₂ + H₂O + sun energy → C₆H₁₂O₆ + O₂
Balanced chemical equation:6CO₂ + 6H₂O + sun energy → C₆H₁₂O₆ + 6O₂
Supressing the energy to show only the chemical compounds:6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
Photosynthesis is represented by the equation 6CO₂ + 6H₂O --> C6H12O6 + 6O₂. This complex process involves multiple stages and intermediate reactions that collectively result in the production of glucose and oxygen from carbon dioxide and water.
Explanation:The equation representing photosynthesis is 6CO₂ + 6H₂O --> C6H12O6 + 6O₂. This shows how carbon dioxide and water, in the presence of sunlight, are transformed into glucose (a type of sugar) and oxygen. This process, however, is quite complex and occurs in multiple stages, involving intermediate reactions and products.
There are two major phases in photosynthesis. The first is the light-dependent reactions which happen only in the presence of sunlight. The second phase is the light-independent reactions, also known as the Calvin Cycle. The overall equation for photosynthesis is a representation of a redox reaction, where carbon dioxide is reduced and water is oxidized, producing glucose and oxygen.
Though this equation may look simple, photosynthesis actually involves a series of complex biochemical reactions. In conclusion, the correct representation amongst the given options is 6CO₂ + 6H₂O --> C6H12O6 + 6O₂ .
Learn more about Photosynthesis here:https://brainly.com/question/29764662
#SPJ6
What type of defense mechanisms does our body have to fight off affections?
Answer:
The immune system uses white blood cells and antibodies to identify and eliminate organisms that get through the body's natural barriers.
Explanation:
When the immune system is weakened by the virus, the body is especially susceptible to infections by what are usually harmless pathogens because of the reduction of a specific group of T cells. Due to the lack of T cells, the immune system has difficulties properly coordinating the fight against the pathogens in the tissue. This is when white blood cells and antibodies begin their attack. Then the immune system can fight against the infection on all fronts.
White Blood Cell- a colorless cell that circulates in the blood and body fluids and is involved in counteracting foreign substances and disease; a white (blood) cell. There are several types, all amoebic cells with a nucleus, including lymphocytes, granulates, monocles, and macrophages.
Antibodies- a blood protein produced in response to and counteracting a specific antigen. Antibodies combine chemically with substances which the body recognizes as alien, such as bacteria, viruses, and foreign substances in the blood.
C3H8O3 - glycerol Major species present when dissolved in water
Answer:
[tex]\rm C_{3}H_{8}O_{3}(aq)[/tex]
Explanation:
Glycerol is a covalent molecule. The major species in an aqueous solution will be hydrated glycerol molecules.
[tex]\rm C_{3}H_{8}O_{3}(l) \longrightarrow \, C_{3}H_{8}O_{3}(aq)[/tex]
The major species present when glycerol is dissolved in water are glycerol molecules (C₃H₈O₃), hydronium ions (H₃O+) and hydroxide ions (OH⁻).
What are the species present in C₃H₈O₃?When glycerol (C₃H₈O₃) is dissolved in water, it undergoes complete ionization.
Glycerol is a polyol compound that is soluble in water, and it forms hydrogen bonds with water molecules.
The major species present when glycerol is dissolved in water are:
Glycerol molecules (C₃H₈O₃)Hydronium ions (H₃O+)Hydroxide ions (OH⁻)The overall equation for the ionization of glycerol in water can be represented as:
C₃H₈O₃ + H₂O ⇌ C₃H₇O₃⁻ + H₃O⁺
Learn more about dissolution of glycerol in water here: https://brainly.com/question/951099
#SPJ6
Write the electronic configuration of Cr^2+ (z=24) and predict the number of electrons having n+1 value equal to 3
The electronic configuration of [tex]Cr\(^{2+}\)[/tex] is [tex]\([Ar] \, 3d^4\)[/tex], and there are 4 electrons in the 3d subshell with an [tex]\(n+1\)[/tex] value equal to 3.
The electronic configuration of chromium [tex](\(Z = 24\))[/tex] in its ground state is [tex]\([Ar] 4s^2 3d^4\).[/tex] When chromium ionizes to form [tex]Cr\(^{2+}\)[/tex], it loses two electrons. The electronic configuration of [tex]Cr\(^{2+}\)[/tex] can be determined by removing two electrons from the outermost shell:
[tex]\[ [Ar] \, 3d^4 \][/tex]
In the case of the [tex]Cr\(^{2+}\)[/tex] ion, the 3d subshell is now fully filled, as it contains 4 electrons. The loss of two electrons leads to a stable electron configuration with a filled 3d subshell.
To predict the number of electrons having an [tex]\(n+1\)[/tex] value equal to 3, we look at the electronic configuration. In the 3d subshell, the [tex]\(n+1\)[/tex] value is 4. Therefore, there are 4 electrons in the 3d subshell of [tex]Cr\(^{2+}\)[/tex] that contribute to the [tex]\(n+1\)[/tex] value equal to 3.
In summary, the electronic configuration of [tex]Cr\(^{2+}\)[/tex] is [tex]\([Ar] \, 3d^4\)[/tex], and there are 4 electrons in the 3d subshell with an [tex]\(n+1\)[/tex] value equal to 3.
PLEASE HELP!!
A 100 gram sample is left undisturbed for 8 hours. At the end of that period, only 12.5 grams remain. What is the half-life of this sample?
Answer:
8/3 hours
Explanation:
12.5/100=1/8, 1/8*2=2/8=1/4 1/4*2=1/2 1/2*2 = 1 (whole)
we multiplyed 1/8 by two three times to get 1 so 8/3 hours is the answer
by the way i'm in 6th grade
How do we get the essential amino acids we need
Answer: through your diet
A solid that forms and separates from a liquid mixture is called ------
Answer:
Chemical change
Explanation:
A solid that forms and separates from a liquid mixture is called Chemical change.
Please mark brainliest and have a great day!
The process n01 → p11 + β−10 n 0 1 → p 1 1 + β - 1 0 represents a(n) _____.
alpha decay
beta decay
electron capture
fusion
Answer:
beta decayExplanation:
The process is represented by the nuclear equation:
[tex]^1_0n[/tex] → [tex]^1_1p+^0_{-1}\beta[/tex]Where:
n represents a neutron,p represents a proton, andβ represents an electron.The superscripts to the leff of each symbol is the mass number (number of protons and neutrons), and the subscript to the left means the atomic number (number of protons).
Then, in this process a neutron is being transformed into a proton by the emssion of an electron (from inside the nucleus of the atom).
This electron is named beta (β) particle, and the process is called beta decay, because the neutron is changing into other subatomic particles.
3. 200 ml of 0.2 M HCl is neutralized with 0.1 M
NaOH. Then during their half neutralization,
what will be the molarity of HCI?
a. 0.1 M
b. 0.5 M
C. 0.05 M
d. 1 M
In a neutralization reaction with HCl and NaOH, the molarity of HCl at half-neutralization is calculated to be 0.05 M. Moles of HCl and NaOH are used in calculations from molarity and volume, taking into account the fact that half the acid is neutralized.
Explanation:In a neutralization reaction, HCl is neutralized by NaOH. In this case, 200 ml of 0.2 M HCl is neutralized with 0.1 M NaOH. To calculate molarity during half neutralization, it is essential to remember that the number of moles of HCl will be half of the original amount as half the acid has been neutralized. Also, the total volume is the sum of the half-neutralized 200 ml HCl and volume of NaOH used for this half neutralization.
For half neutralization, moles of HCl = Molarity of HCl * Volume of solution / 2. This gives us 0.2 M * 0.2 L / 2 = 0.02 moles. According to stoichiometry of the reaction, equal moles of NaOH are required for neutralization, which gives Volume of NaOH = Moles of NaOH / Molarity of NaOH = 0.02 moles / 0.1 M = 0.2L. Total volume after half neutralization = Volume of HCl + Volume of NaOH = 0.2L + 0.2L = 0.4L. Thus, the molarity of HCl is Moles of HCl / Total Volume = 0.02 moles / 0.4L = 0.05 M. So the correct option is C. 0.05 M.
Learn more about Chemical Reactions here:https://brainly.com/question/34137415
#SPJ12
How long do balloons stay inflated with helium
Answer:
Balloons last between 12-21 hours filled with helium
Explanation:
latex balloons generally last between 12-20 hours filled with helium, and about 2-3 days when treated with Hi-Float
Balloons filled with helium deflate faster than balloons filled with heavier gases due to the effusion rate of helium.
Balloons filled with helium will stay inflated for a shorter time compared to balloons filled with heavier gases like air due to the greater effusion rate of helium.
Helium-filled balloons lose their buoyancy quicker because helium effuses much more rapidly through the microscopic pores in the rubber balloon.
What factors affect the temperature of sea water
Answer:
Two of the most important characteristics of seawater are temperature and salinity – together they control its density, which is the major factor governing the vertical movement of ocean waters. The temperature of seawater is fixed at the sea surface by heat exchange with the atmosphere.
Explanation:
plz mark as brainliest..
A rock can be broken down into different kinds of substances by physical processes. No chemical reactions are needed to separate different parts of a rock into pure substances. This is because a rock is a(n)
Answer:
Mixture
Explanation:
- Can be separated by physical means
- Does not have fixed ratios between components
Edu 2020
The number at the end of an isotope’s name is the ____ number. A) Atomic B)neutron C)mass D)electron
Answer:
The number at the end of an isotope's name is the (C.) mass number.
Which of the following is true for the actual yield of a reaction?
It is always calculated as a ratio.
It is the yield from the excess reactant.
It is the yield from the limiting reactant.
It is always less than the theoretical yield.
Answer:
It is always less than the theoretical yield
Explanation:
For many chemical reactions, the actual yield is usually less than the theoretical yield. This is due to possible loss in the process or inefficiency of the chemical reaction.
Answer:
It is always less than the theoretical yield.
Explanation:
Theoretical yield is obtained from stoichiometry calculation of a balanced equation. Actual yield is the amount of product formed from a reaction. Percentage yield is the ratio of actual yield to the theoretical yield of a product. Percentage yield is never 100 % or greater than 100%. Therefore, Actual yield of a product always less than the theoretical yield.
multiple choices
Select all the correct answers.
What are some applications of fission reactions?
A)as a zero-waste energy source
B) for generating large amounts of heat
C) for creating stable elements from unstable ones
D) for creating new, heavier elements
E)as the energy source in nuclear weapons
Answer:
B, C, & E
Explanation:
Fission reaction involves the splitting of heavy unstable atoms into stable lighter atoms, with the release of energy. Fission energy is advantageous in that it produces a huge amount of energy per mass compared to other energy sources (hence also used to make nuclear bombs). However, fission produces radioactive waste particles, such as beta and alpha particles, that have high ionizing energy and can be harmful to living things.
Answer:
B and E
Explanation:
When 2 grams of powdered lead (IV) oxide was added to 100 cm3 of hydrogen peroxide, water and oxygen were produced. Lead (IV) oxide was not used up in the reaction. Based on the information, which of the following is likely to decrease the rate of formation of the products?
Replacing the powdered lead oxide with its large crystals
Removing lead (IV) oxide from the reaction mixture
Using 50 cm3 of hydrogen peroxide
Using 1.0 gram of lead (IV) oxide
Answer:
Replacing the powdered lead oxide with large crystals
Explanation:
The large crystals have less surface area exposed to the other reagents than the powdered lead oxide. High surface area leads to a high rate of reaction thus the products are formed faster, while a low surface area leads to a lower rate of reaction since the reagent is less exposed to the other reagents.
Answer:
Replacing the powdered lead oxide with its large crystals
Explanation:
Powdered lead (IV) oxide has larger surface area than its crystal form. Surface area increases the rate of the reaction. Larger the surface larger is the effective collision thereby faster reaction completion.
Using large of crystals of lead (IV) oxide is likely to decrease the rate of formation of the products.
What happens to h the height of the mercury column
Answer:
it increases
Explanation:
Which of the following is NOT a difference between a compound and a mixture?
1 Some mixtures are homogenous, while others are heterogeneous. All compounds are homogeneous.
2 Mixtures are homogeneous while compounds are heterogeneous.
3 No chemical bonding occurs between the components of a mixture. The properties of atoms and molecules are not changed when they become part of a mixture.
3 Mixtures can be separated by physical means, for example, straining, filtering, or evaporation. 4Compounds can only be separated into their constituent atoms by chemically breaking bonds.
Answer:
2 Mixtures are homogeneous while compounds are heterogeneous.
Explanation:
Mixtures are often described in chemistry as impure substances. They have the following properties:
Their composition is indefinite and they contain two or more elements or compounds in any proportion by mass. The constituent of mixtures can be seperated into their components. They retain their identities i.e physical properties. Mixtures are heterogenous and can also be homogeneous. Homogeneous mixtures have their components in just a single phase. Heterogenous mixtures have their components in more than just a single phase.Determine the identity of the daughter nuclide from the electron capture by 3517cl. determine the identity of the daughter nuclide from the electron capture by . 4019k 3218ar 3516s 3215p 3718ar
Answer:
[tex]^{35}_{16}S[/tex]Explanation:
When the nucleus of an atom captures and electron, such electron combines with a proton and forms a neutron. Thus, the mass number remains the same (just a proton has been converted into a neutron) but the atomic number (the number of protons) decrease in one.
Then, the daughter nuclide will have the same mass number and the atomic number reduced in one.
The given parent isotope is [tex]^{35}_{17}Cl[/tex], which means that it has these features:
Chemical symbol: Cl Name of the element: chlorine Mass number (the superscript to the left): 35 Atomic number (the subscript to the left): 17And the daughter nuclide after the electron capture will be:
Mass number: 35 (the same of the parent nuclide)Atomic number: 17 - 1 = 16Identity: sulfur (search the element with atomic number 16 in a periodic table).Chemical symbol: SIdenity of the daughter nuclide using the isotope notation:[tex]^{35}_{16}S[/tex]
Hence, the answer is the third choice.
Final answer:
The daughter nuclide from electron capture by 35Cl is 35S
Explanation:
When an atom undergoes electron capture, an electron from an inner shell combines with a proton in the nucleus, resulting in the conversion of a proton to a neutron.
For the given question, electron capture by 3517Cl results in the formation of a daughter nuclide with an atomic number one less than that of chlorine (16) and the same mass number.
Therefore, the daughter nuclide after electron capture by 3517Cl is 3516S.
Using the spectra data below, which structure best matches this data? c4h8o 1h nmr triplet at 1.05 ppm (3h) singlet at 2.13 ppm (3h) quartet at 2.47 ppm (2h) ir spectrum: there is a strong peak near 1700 cm-1.
The spectral data for C4H8O with 1H NMR and IR spectra is indicative of an aldehyde or ketone functional group, but the exact structure requires additional information.
Explanation:The given spectral data for C4H8O includes: 1H NMR showing a triplet at 1.05 ppm (3H), a singlet at 2.13 ppm (3H), and a quartet at 2.47 ppm (2H). The IR spectrum shows a strong peak near 1700 cm-1.
The 1H NMR data indicates the presence of a methyl group (triplet at 1.05 ppm), a possible methyl or methoxy group (singlet at 2.13 ppm), and a methylene group (quartet at 2.47 ppm). The strong IR band near 1700 cm-1 suggests the presence of a carbonyl group. Considering the molecular formula C4H8O, these data best correspond to the presence of an aldehyde or a ketone. However, the specific structure cannot be precisely determined without more information. The presence of the carbonyl functional group is indicated by the IR data, and the NMR data give clues about the types of hydrogen environments present in the molecule.
The only bonds in a formula unit of CaF2 are __________. nonpolar covalent polar covalent ionic metallic
Answer:
ionic
Explanation:
Ionic bonds exist between Ca and F ions in CaF₂. Ionic bonds are interatomic bonds formed by the transfer of electrons from one atom to the other.
The donor atom here is Ca and it has two valence electrons. Fluorine is the receiving atom with 7 electrons in its outermost shell.
Ca would give one each of its two outermost electrons to the fluorine atoms to complete their octet. Ca ion would now resemble Argon and the flourine atoms would look more like Neon atoms.
This is an ionic bond
The reaction below shows a system in equilibrium.
How would a decrease in temperature affect this reaction?
A. The rate of formation of the gases would increase.
B. The equilibrium of the reaction would shift to the left.
C. The equilibrium would shift to cause the gases to sublime into solids.
D. The chemicals on the left would quickly form the chemical on the right.
The given question is incomplete, here is a complete question.
The reaction below shows a system in equilibrium.
[tex]H_2(g)+I_2(g)+Heat\rightarrow 2HI(g)[/tex]
How would a decrease in temperature affect this reaction?
A. The rate of formation of the gases would increase.
B. The equilibrium of the reaction would shift to the left.
C. The equilibrium would shift to cause the gases to sublime into solids.
D. The chemicals on the left would quickly form the chemical on the right.
Answer : The correct option is, (B) The equilibrium of the reaction would shift to the left.
Explanation :
The given reaction is endothermic reaction.
For an endothermic reaction, heat is getting absorbed during a chemical reaction and is written on the reactant side.
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle. This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
As, heat is getting absorbed during a chemical reaction. This means that temperature is getting increased on the reactant side.
If the temperature in the equilibrium is decreased, the equilibrium will shift in the direction where, temperature is getting increased. Thus, the reaction will shift in left direction that is towards the reactants.
Hence, the correct option is, (B) The equilibrium of the reaction would shift to the left.
The number at the end of an isotope’s name is the number.
Answer: The number written at the end of isotope is named as mass number.
Explanation:
Isotopes are defined as the chemical species of the same element which differ from its mass number. These species have same number of protons but have different number of neutrons among them.
For Example: The isotope of carbon which is C-14
Here, C represents the symbol of the element and the number represents the mass number of the element.
Hence, the number written at the end of isotope is named as mass number.
Assuming that the solubility of radon in water with 1 atm pressure of the gas over the water at 30 ∘C is 7.27×10−3M, what is the Henry's law constant for radon in water at this temperature?
The Henry's law constant for radon in water at 30 °C is calculated using the given solubility of 7.27×10⁻³M at 1 atm pressure, resulting in a value of 7.27×10⁻³ M/atm.
Explanation:The student has asked for the Henry's law constant for radon in water at 30 °C given the solubility of radon is 7.27×10⁻³M with a pressure of 1 atm of the gas over the water. Henry's law states that the solubility of a gas in a liquid is directly proportional to the pressure of the gas above the liquid. The Henry's law constant (kH) can be calculated using the formula Cg = kHPg, where Cg is the concentration of the gas in solution (molarity), and Pg is the partial pressure of the gas.
Given that the solubility (Cg) is 7.27×10⁻³M and the pressure (Pg) is 1 atm, the Henry's law constant for radon can be calculated as follows:
kH = Cg/Pg = 7.27×10⁻³ M / 1 atm = 7.27×10⁻³ M/atm.
Final answer:
The Henry's law constant for radon in water at 30 °C is calculated using the formula k = S / P, where S is the solubility and P is the pressure. Given the solubility of 7.27×10⁻³ M at 1 atm pressure, the Henry's law constant is 7.27×10⁻³ M/atm.
Explanation:
The question asks for the Henry's law constant for radon in water at 30 °C, given the solubility of radon in water under 1 atm pressure at that temperature. According to Henry's Law, at a constant temperature, the solubility of a gas (S) in a liquid is directly proportional to the pressure of the gas above the liquid (P). The Henry's law constant (k) can be calculated using the formula k = S / P. In this case, the solubility (S) is given as 7.27×10⁻³ M and the pressure (P) is 1 atm. Therefore, the Henry's law constant for radon in water at 30 °C is k = 7.27×10⁻³ M/atm.