An ellipse has vertices along the major axis at (0, 8) and (0, –2). The foci of the ellipse are located at (0, 7) and (0, –1). What are the values of a, b, h, and k, given the equation below? (y-k)^2/a^2+(x+h)^2/b^2=1

Answers

Answer 1
check the picture below, so it looks like so.

now  hmm, from the provided vertices and focus point, you can pretty much  see what "a" is, half of the major axis, is just 5.

now, the center is from either vertex to half-way up, or "a" units up, so say from -2 + 5, is at 3, so the center is at 0, 3.

now, the distance from a focus point to the center, is 4 units, like say from 0, 3 up to 0,7.

[tex]\bf \textit{ellipse, vertical major axis}\\\\ \cfrac{(y-{{ h}})^2}{{{ a}}^2}+\cfrac{(x-{{ k}})^2}{{{ b}}^2}=1 \qquad \begin{cases} center\ ({{ h}},{{ k}})\\ vertices\ ({{ h}}, {{ k}}\pm a)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{{{ a }}^2-{{ b }}^2}\\ ----------\\ h=0\\ k=3\\ a=5\\c=4 \end{cases} \\\\\\ \cfrac{(y-3)^2}{5^2}+\cfrac{(x-0)^2}{b^2}=1[/tex]

now, let' s find "b".

[tex]\bf c=\sqrt{a^2-b^2}\implies c^2=a^2-b^2\implies b^2=a^2-c^2 \\\\\\ b=\sqrt{a^2-c^2}\implies b=\sqrt{5^2-4^2}\implies b=3[/tex]

so, just plug that in.
An Ellipse Has Vertices Along The Major Axis At (0, 8) And (0, 2). The Foci Of The Ellipse Are Located
Answer 2

Answer: The values for a, b, h, and k are a = 5, b = 3, h = 0, k = -3.

Step-by-step explanation: In this problem, we know ellipse has vertices along the major axis at (0, 8) and (0, -2). The foci of the ellipse are located at (0, 7) and (0, -1). We are asked to determine the values of a, b, h, and k.

We were also then provided with the equation for vertical eclipse:

[tex]\frac{(x-h)^2}{b^2} + \frac{(y -k)^2}{a^2}[/tex]

Before we begin, we need to first define our values for a, b, h, and k.

a - distance to vertices from the centerb - distance to co-vertices from the center(h, k) - represents the center of the eclipse

The first step, we need to determine the center of the eclipse. We can use the midpoint formula to determine the midpoint between the vertices along the major axis: (0, 8) and (0, -2).

[tex]M = (\frac{x_{1} +x_{2} }{2} , \frac{y_{1} + y_{2} }{2} )[/tex]

[tex]M = (\frac{0 + 0}{2} , \frac{-2 + 8}{2} )\\M = (0, 3)[/tex]

We now know that our center (h, k) is (0, 3). Which means our values for h and k are 0 and 3. Next, we have to determine our values for a and b. Considering the center of our eclipse is not at the center, we can use one of our vertices to determine our value for a.

[tex]V_{1}[/tex] = (h, k±a)

(0, 8) = (0, 3±a)

3 ± a = 8

±a = 5

Now, we know that a = 5.  For us to get b, we need to use this formula: [tex]c^2 = a^2 - b^2[/tex]. Let's rewrite this formula, so we can focus on getting our b-value.

[tex]c^2 - a^2 = -b^2[/tex]

For us to use this formula, we need to determine our c value. To find our c-value, we have use of our foci points: (h, k±c). C is the units away/further from the center towards our foci points.

(0, 3±c) = (0, 7)

3 + c = 7

7 - 3 = c

4 = c

Now, we know that our value for c is 4. Now, let's plug into the formula.

[tex](4)^2 - (5)^2 = -b^2\\16 - 25 = -b^2\\\frac{-9}{-1} = \frac{-b^2}{-1} \\\sqrt{b^2} = \sqrt{9} \\b = 3[/tex]

Our value for b is 3. If we put into our eclipse formula:

[tex]\frac{(x-0)^2}{3^2} + \frac{(y -(-3))^2}{5^2}[/tex]

An Ellipse Has Vertices Along The Major Axis At (0, 8) And (0, 2). The Foci Of The Ellipse Are Located

Related Questions

Convert 64.32° into degrees, minutes, and seconds.

Answers

First, we already have 64°. We take out the remaining 0.32°. 

The conversion factors necessary to answer this item are,
                     1° = 60'
                      1' = 60''

number of minutes = (0.32°)(60' / 1°) = 19.2'

We already have 19' and 0.2'. 

number of seconds = 0.2' x (60'' / 1') = 12''

Thus, the answer is 64°19'12''. 

Triple my number add six and subtract twice my number my number plus three

Answers

3N + 6 - 2N = N + 3
N + 6 = N + 3
N cancels out.
Therefore it is a false statement.

How do you find a vector that is orthogonal to 5i + 12j ?

Answers

[tex]\bf \textit{perpendicular, negative-reciprocal slope for slope}\quad \cfrac{a}{b}\\\\ slope=\cfrac{a}{{{ b}}}\qquad negative\implies -\cfrac{a}{{{ b}}}\qquad reciprocal\implies - \cfrac{{{ b}}}{a}\\\\ -------------------------------\\\\[/tex]

[tex]\bf \boxed{5i+12j}\implies \begin{array}{rllll} \ \textless \ 5&,&12\ \textgreater \ \\ x&&y \end{array}\quad slope=\cfrac{y}{x}\implies \cfrac{12}{5} \\\\\\ slope=\cfrac{12}{{{ 5}}}\qquad negative\implies -\cfrac{12}{{{ 5}}}\qquad reciprocal\implies - \cfrac{{{ 5}}}{12} \\\\\\ \ \textless \ 12, -5\ \textgreater \ \ or\ \ \textless \ -12,5\ \textgreater \ \implies \boxed{12i-5j\ or\ -12i+5j}[/tex]

if we were to place <5, 12> in standard position, so it'd be originating from 0,0, then the rise is 12 and the run is 5.

so any other vector that has a negative reciprocal slope to it, will then be perpendicular or "orthogonal" to it.

so... for example a parallel to <-12, 5> is say hmmm < -144, 60>, if you simplify that fraction, you'd end up with <-12, 5>, since all we did was multiply both coordinates by 12.

or using a unit vector for those above, then

[tex]\bf \textit{unit vector}\qquad \cfrac{\ \textless \ a,b\ \textgreater \ }{||\ \textless \ a,b\ \textgreater \ ||}\implies \cfrac{\ \textless \ a,b\ \textgreater \ }{\sqrt{a^2+b^2}}\implies \cfrac{a}{\sqrt{a^2+b^2}},\cfrac{b}{\sqrt{a^2+b^2}} \\\\\\ \cfrac{12,-5}{\sqrt{12^2+5^2}}\implies \cfrac{12,-5}{13}\implies \boxed{\cfrac{12}{13}\ ,\ \cfrac{-5}{13}} \\\\\\ \cfrac{-12,5}{\sqrt{12^2+5^2}}\implies \cfrac{-12,5}{13}\implies \boxed{\cfrac{-12}{13}\ ,\ \cfrac{5}{13}}[/tex]

To find a vector orthogonal to 5i + 12j, we can use the property that orthogonal vectors have a dot product of 0. By setting up equations and solving them accordingly, you can find a vector that is perpendicular to 5i + 12j.

Orthogonal vectors: To find a vector orthogonal to 5i + 12j, we need to find a vector with a dot product of 0 with 5i + 12j. Since the dot product of orthogonal vectors is zero, we can set up equations and solve them to find a vector that is perpendicular to 5i + 12j.

Sidney made $26 more than seven times Casey's weekly salary. If x represents Casey's weekly salary, write an expression for sidney's weekly salary

Answers

7x+26 becase it is 7 times and then you add 26

An earthquake with a rating of 3.2 is not usually felt. What is the value of x when the Richter scale rating is 3.2? Round your answer to the nearest hundredth.

Answers

10^3.2=1584.893≈1584.89

Can someone please help me solve this triangle problem, picture is shown.

Answers

(4t + 4t + 4t)  (addition form)

3(4t) (multiplication form)

these are two forms you can use to get your answer

answer: 12t


hope this helps
perimeter = 4t + 4t + 4t

and

perimeter = 4t * 3

0.2(x + 1) + 0.5x = –0.3(x – 4)

Answers

the answer will be x=2

When patey pontoons issued 6% bonds on january 1, 2016, with a face amount of $600,000, the market yield for bonds of similar risk and maturity was 7%. the bonds mature december 31, 2019 (4 years). interest is paid semiannually on june 30 and december 31?

Answers

You are given a bond interest of 6% that was given on January 1, 2016, with a face value of $600,000. Also, the market yield for bonds of similar risk, that the market yield for bonds of similar risk and maturity was 7% and the interest is paid semiannually on June 30 and December 31. You are to find the bond value on January 1, 2016. In here, because the yield of the market is above 6%, the bonds will have a discount for bonds less than $600,000.

Cash interest
= 0.06 * $600,000 * 6/12 (because it is done semiannually)
= $18,000
7%/2 = 3.5%

PV of interest at 3.5%
= $18,000 * 6.87396
= $123,731

PV of face at 3.5%
= $600,000 * 0.75941
= $455,646

Value of bond
= PV on interest + PV of face
= $123,731 + $455,646
$579,377

Write the equation of the line that is parallel to the line 7−4x=7y 7 − 4x = 7 y through the point (2,0).

Answers

Final answer:

To find the equation of a line parallel to the given line, we can use the slope of the given line and the point-slope form of a line. The equation of the line parallel to 7−4x=7y and passing through the point (2,0) is y = (7/4)x - (7/2).

Explanation:

To find the equation of a line parallel to the given line, we need to find the slope of the given line first. The slope-intercept form of a line is y = mx + b, where m is the slope and b is the y-intercept. Rearranging the given equation, we have y = (7/4)x - 1. Dividing the coefficient of x by the coefficient of y, we find that the slope of the given line is 7/4. Since the line we're looking for is parallel to this line, it will also have a slope of 7/4. Now, we can use the point-slope form of a line, y - y1 = m(x - x1), where (x1, y1) is the given point on the line. Substituting in the values (2, 0) and slope (7/4), we can solve for y to find the equation of the line.

Using the point-slope form, we have y - 0 = (7/4)(x - 2). Simplifying, we get y = (7/4)x - (7/2), which is the equation of the line parallel to the given line and passing through the point (2, 0).

Final answer:

The equation of the line parallel to 7 - 4x = 7y through the point (2, 0) is y = (-4/7)x + 8/7.

Explanation:

To find the equation of a line parallel to the line 7 - 4x = 7y, we need to find the slope of the given line. First, rearrange the equation in the form y = mx + b, where m is the slope. So, 7y = 7 - 4x becomes y = (-4/7)x + 1. The slope of this line is -4/7. Since the line we want is parallel, it will have the same slope.

Next, we have the point (2, 0) through which the line passes. To find the equation, we'll use the point-slope form: y - y1 = m(x - x1). Substituting the given values, we have y - 0 = (-4/7)(x - 2). Simplifying, we get y = (-4/7)x + 8/7.

Therefore, the equation of the line parallel to 7 - 4x = 7y through the point (2, 0) is y = (-4/7)x + 8/7.

The principal $3000 is accumulated with 3% interest, compounded semiannually for 6 years.

Answers

The formula is
A=p (1+r/k)^kt
A accumulated amount?
P principle 3000
R interest rate 0.03
K compounded semiannually 2
T time 6 years
A=3,000×(1+0.03÷2)^(2×6)
A=3,586.85

Find the rectangular coordinates of the point with the polar coordinates. ordered pair negative 5 comma 5 pi divided by 3

Answers

[tex]\bf \begin{array}{rllll} (-5&,&\frac{5\pi }{3})\\ \uparrow &&\uparrow \\ r&&\theta \end{array}\qquad \begin{cases} x=rcos(\theta )\\ y=rsin(\theta )\\ ----------\\ x=(-5)cos\left( \frac{5\pi }{3} \right)\\ \qquad -5\cdot \frac{1}{2}\\ \qquad -\frac{5}{2}\\ y=(-5)sin\left( \frac{5\pi }{3} \right)\\ \qquad -5\cdot -\frac{\sqrt{3}}{2}\\ \qquad \frac{5\sqrt{3}}{2} \end{cases}\implies \left(-\frac{5}{2}\ ,\ \frac{5\sqrt{3}}{2} \right)[/tex]

Department w had 2,400 units, one-third completed at the beginning of the period; 16,000 units were transferred to department x from department w during the period; and 1,800 units were one-half completed at the end of the period. assume the completion ratios apply to direct materials and conversion costs. what is the equivalent units of production used to compute unit conversion cost on the cost of production report for department w? assume the company uses fifo.

Answers

Final answer:

The equivalent units of production for calculating conversion costs in Department W using FIFO are 16,900 units. This consists of 16,000 units transferred out and 900 equivalent units for the 1,800 units at half completion stage.

Explanation:

To calculate the equivalent units of production for unit conversion cost in Department W, using the FIFO method, we need to account only for the work done in the current period. Department W had 2,400 units at the beginning that were one-third completed, which means 800 units (2,400 units * 1/3) were already processed in the previous period. Therefore, these do not count for the current period. During the period, 16,000 units were transferred out. We also need to consider the 1,800 units at the end at one-half completion, which contributes 900 equivalent units (1,800 units * 1/2) for the current period.

To determine the number of equivalent units for conversion costs, we perform the following calculation:

Equivalent units for units transferred to Department X: 16,000 units (these are complete with respect to Department W's work).Equivalent units for ending work-in-process: 1,800 units * 1/2 = 900 units.Total equivalent units of production for conversion costs: 16,000 units + 900 units = 16,900 units.

hey can you just please help me solve these two problems
1- according to the bipartisan policy center (BPC), 57.5% of all eligible voted in the 20112 presidential elections. while there are over 350 million Americans, the BPC estimates that only 219 million are eligible to vote. how many eligible voters in 2012 election?

2-sarah's sandwich shop sells a specialty sandwich for $4.95 that contains a quarter of a pound of turkey. if sarah buys 12 pounds of turkey meat but eats a tenth of a pound on the way to her sandwich shop, what is the maximum number of sandwiches she can make?

Answers

2)

well, she needs 1/4lb to make a sandwich, well, she bought 12lbs and then she couldn't resist, because she got some ketchup also I gather, she couldn't resist giving it a nibble and ate 1/10lb

so.. is 12 - 1/10, and how many times 1/4 goes into that difference

[tex]\bf 12-\cfrac{1}{10}\implies \cfrac{120-1}{10}\implies \cfrac{119}{10} \\\\\\ \textit{how many times }\frac{1}{4}\textit{ goes in to }\frac{119}{10}? \\\\\\ \cfrac{\frac{119}{10}}{\frac{1}{4}}\implies \cfrac{119}{10}\cdot \cfrac{4}{1}\implies \cfrac{238}{5}\implies \boxed{47\frac{3}{5}} \\\\\\ \cfrac{47\cdot 5+3}{5}\implies \cfrac{238}{5}[/tex]

well, noone is going to buy a half-eaten sandwich or 3/5 of a sandwich, so, she can only make 47 whole sandwiches, hmmmm  I'm thinking she can just give the 3/5 to the dogs.

How many inches are in a foot?

Answers

there are 12 inches in a foot
There are 12 inches in a foot.

simplify the expression I-30I

Answers

it would be only 30        

A rocket is launched straight up from the ground, with an initial velocity of 224 feet per second. The equation for the height of the rocket at time t is given by:
h=-16t^2+224t

(Use quadratic equation)

A.) Find the time when the rocket reaches 720 feet.


B.) Find the time when the rocket completes its trajectory and hits the ground.


Answers

We can model the equation of the height of the rocket as ∩-shape curve as shown below

Part A: 

The time when the height is 720 feet

[tex]720 = -16 t^{2}+224t [/tex], rearrange to make one side is zero
[tex]16 t^{2}-224t+720=0 [/tex], divide each term by 16
[tex] t^{2} -14t+45 =0[/tex], factorise to give
[tex](t-9)(t-5)=0[/tex]
[tex]t=9[/tex] and [tex]t=5[/tex]

So the rocket reaches the height of 720 feet twice; when t=5 and t=9

Part B:

We will need to find the values of t when the rocket on the ground. The first value of t will be zero as this will be when t=0. We can find the other value of t by equating the function by 0

[tex]0=-16 t^{2}+224t [/tex]
[tex]0=-16t(t-14)[/tex]
[tex]-16t=0[/tex] and [tex]t-14=0[/tex]
[tex]t=0[/tex] and [tex]t=14[/tex]

So the time interval when the rocket was launched and when it hits the ground is 14-0 = 14 seconds




A.) The rocket reaches 720 feet in 5 seconds and 9 seconds.

B.) The rocket completes its trajectory and hits the ground in 14 seconds

Further explanation

A quadratic equation has the following general form:

[tex]ax^2 + bx + c = 0[/tex]

The formula to solve this equation is :

[tex]\large {\boxed {x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} } }[/tex]

Let's try to solve the problem now.

Question A:

Given :

[tex]h = -16 t^2 + 224t[/tex]

The rocket reaches 720 feet → h = 720 feet

[tex]720 = -16 t^2 + 224t[/tex]

[tex]16 t^2 - 224t + 720 = 0[/tex]

[tex]16 (t^2 - 14t + 45 = 0)[/tex]

[tex]t^2 - 14t + 45 = 0[/tex]

[tex]t^2 - 9t - 5t + 45 = 0[/tex]

[tex]t(t - 9) - 5(t - 9) = 0[/tex]

[tex](t - 5)(t - 9) = 0[/tex]

[tex]t = 5 ~ or ~ t = 9[/tex]

The rocket reaches 720 feet in 5 seconds and 9 seconds.

Question B:

The rocket hits the ground → h = 0 feet

[tex]0 = -16 t^2 + 224t[/tex]

[tex]16 (t^2 - 14t ) = 0[/tex]

[tex]t^2 - 14t = 0[/tex]

[tex]t( t - 14 ) = 0[/tex]

[tex]t = 0 ~ or ~ t = 14[/tex]

The rocket completes its trajectory and hits the ground in 14 seconds

Learn moremethod for solving a quadratic equation : https://brainly.com/question/10278062solution(s) to the equation : https://brainly.com/question/4372455best way to solve quadratic equation : https://brainly.com/question/9438071

Answer details

Grade: College

Subject: Mathematics

Chapter: Quadratic Equation

Keywords: Quadratic , Equation , Formula , Rocket , Maximum , Minimum , Time , Trajectory , Ground

What is the general form of the equation for the given circle centered at O(0, 0)? x2 + y2 + 41 = 0 x2 + y2 − 41 = 0 x2 + y2 + x + y − 41 = 0 x2 + y2 + x − y − 41 = 0

Answers

I would say the second one.
x^2 + y^2 = 41
Answer:

The  general form of the equation for the given circle centered at O(0, 0) is:

                                [tex]x^2+y^2-41=0[/tex]

Step-by-step explanation:

We know that the standard form of circle is given by:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

where the circle is centered at (h,k) and the radius of circle is: r units

1)

[tex]x^2+y^2+41=0[/tex]

i.e. we have:

[tex]x^2+y^2=-41[/tex]

which is not possible.

( Since, the sum of the square of two numbers has to be greater than or equal to 0)

Hence, option: 1 is incorrect.

2)

[tex]x^2+y^2-41=0[/tex]

It could also be written as:

[tex]x^2+y^2=41[/tex]

which is also represented by:

[tex](x-0)^2+(y-0)^2=(\sqrt{41})^2[/tex]

This means that the circle is centered at (0,0).

3)

[tex]x^2+y^2+x+y-41=0[/tex]

It could be written in standard form by:

[tex](x+\dfrac{1}{2})^2+(y+\dfrac{1}{2})^2=(\sqrt{\dfrac{83}{2}})^2[/tex]

Hence, the circle is centered at [tex](-\dfrac{1}{2},-\dfrac{1}{2})[/tex]

Hence, option: 3 is incorrect.

4)

[tex]x^2+y^2+x-y=41[/tex]

In standard form it could be written by:

[tex](x+\dfrac{1}{2})^2+(y-\dfrac{1}{2})^2=(\sqrt{\dfrac{83}{2})^2[/tex]

Hence, the circle is centered at:

[tex](\dfrac{-1}{2},\dfrac{1}{2})[/tex]

The sun’s rays are striking the ground at a 55° angle, and the length of the shadow of a tree is 56 feet. How tall is the tree?

select one:
a. 80.0 feet
b. 45.9 feet ( Incorrect)
c. 34.2 feet (incorrect)
d. 32.1 feet

Answers

tan 55 = h / 56  where h = height of the tree.
h = 56 tan 55
   =  79.98 feet

Its a

Find the value of x in 4000(1.5x) = 25,000. show all work

Answers

4000(1.5)x = 25,000
25000/4000 = 1.5x
6.25 = 1.5x
25/6 = x
4000(1.5x)=25000  divide both sides by 4000

1.5x=6.25  divide both sides by 1.5

x=25/6

x=4 1/6

But that is pretty simplistic, I suspect that you actually meant this was an exponential function of the form:

4000(1.5^x)=25000  divide both sides by 4000

1.5^x=6.25  take the natural log of both sides

xln(1.5)=ln(6.25)  divide both sides by ln(1.5)

x=ln(6.25)/ln(1.5)

x≈4.52  (to nearest hundredth)

write the smallest numeral possible using the digits 9, 3 and 6

Answers

Final answer:

The smallest numeral that can be created from the digits 9, 3, and 6 is 369. This is achieved by arranging the digits in ascending order.

Explanation:

The smallest numeral that can be formed using the digits 9, 3, and 6 is 369. In mathematics, when we are to create the smallest possible numeral from a given set of digits, we arrange the digits in increasing order from left to right, that means the smallest digit will be on the left-most side and the largest digit will be on the right-most side.

So, with the digits 9, 3, and 6, we place 3 first as it's the smallest, then 6 as it's the next smallest, and finally 9, resulting in the smallest numeral 369.

Learn more about Creating smallest numeral here:

https://brainly.com/question/32283211

#SPJ2

The smallest numeral possible using the digits 9, 3, and 6 is 369, arranged in ascending order.

To write the smallest numeral possible using the digits 9, 3, and 6, we arrange the digits in ascending order. The smallest digit is placed at the beginning, followed by the larger ones. Therefore, the smallest numeral we can create is 369.

Without solving, decide what method you would use to solve each system: graphing, substitution, or elimination. Explain. 4s-3t=8 ; t=-2s-1

Answers

I would use substitution. The value of t in terms of s is already given so you can just plug that into the equation like this.
4s-3(-2s-1)=8

What is the distance between (–6, 2) and (8, 10) on a coordinate grid?

Answers

Distance Formula: d = √(x₂ - x₁)² + (y₂ - y₁)²

(-6 , 2) and (8 , 10)
 x₁   y₁         x₂    y₂

d = √(8 - (-6))² + (10 - 2)²
d = √(8+6)² + (10 - 2)²
d = √(14)² + (8)²
d = √(196) + (64)
d = √ 260
d = 2√65

I think this is right, but I am not sure.

Answer:

D. √260

Step-by-step explanation:

Use the distance formula then input the points (–6, 2) and (8, 10) into it to get √(-6 −2)^2 + (2 −10)^2. Finaly simplify/solve and you get √260.

There is a line through the origin that divides the region bounded by the parabola
y=4x−3x^2 and the x-axis into two regions with equal area. What is the slope of that line?

Answers

First, solve f(x)=4x-3x^2=0,
or
x(4-3x)=0
=>
x=0, x=4/3
The area enclosed by the parabola over the x-axis is therefore
A=integral f(x)dx from 0 to 4/3=[2x^2-x^3] from 0 to 4/3 = 32/27
Let the line intersect the parabola at a point (a,f(a)) such that the area bounded by the line, the parabola and the x-axis is half of A, or A/2, then the area consists of a triangle and a section below the parabola, the area is therefore
a*f(a)/2 + integral f(x)dx  from a to 4/3  =  A/2 = 16/27
=>
2a^2-3a^3/2+a^3-2a^2+32/27=16/27
=>
(1/2)a^3=16/27
a=(32/27)^(1/3)
=(2/3)(4^(1/3))
=1.058267368...

Slope of line is therefore
m=y/x=f(a)/a=4-2(4^(1/3))
=0.825197896... (approx.)


Andrei has a job in the circus walking on stilts. Andrei is 11/10 meters tall. The foot supports of his stilts are 23/10 meters high.
How high is the top of Andrei's head when he is walking on his stilts?

Answers

[tex] \frac{23}{10} + \frac{11}{10} = \frac{34}{10}[/tex]
The top of his head will be 3.4m high.

A bag of fruit contains 3 apples and 2 oranges and 1 banana and 4 pears.Gerald will randomly selected two pieces of fruit one at a time from the bag and not put is back. What is the probability that the first piece of fruit Gerald selects will be a banana and the second piece of fruit will be a pear??

Answers

Final answer:

The probability that Gerald will first select a banana and then a pear from the bag without replacement is 2/45.

Explanation:

To determine the probability that Gerald selects a banana first and then a pear without replacement, we have to consider the total number of possible outcomes for each draw and the favorable outcomes for the event.

For the first draw, the total number of fruits is 10 (3 apples + 2 oranges + 1 banana + 4 pears). The favorable outcome of drawing a banana is 1 since there's only one banana.

The probability of drawing a banana on the first draw is therefore 1/10. After drawing the banana, there are 9 fruits left in the bag with 4 pears among them.

The probability of then drawing a pear is 4/9. To find the total probability of both events happening in sequence (a banana first and then a pear), multiply the two probabilities:

P(banana first and pear second) = P(banana first) × P(pear second)
= (1/10) × (4/9)
= 4/90
= 2/45.

The simplification process shows that the probability Gerald will first select a banana and then a pear is 2/45.

please factor this problem x^2+7x-8

Answers

(x+8)(x-1)

Check:
8-1=7
8*-1=-8

Please I'm stuck in this problem

Answers

The answer is 2wx^5(the root is 3) square root of 9w. I hope this makes sense.

There was 2/3 of a pan of a lasagna in the refrigerator. Bill and his friends ate half of what was left. Write a number sentence and draw a model to represent the problem. How much of the pan did they eat?

Answers

Bill and his friends ate 1/3 of the pan, you get this by doing: 2/3 / 1/2 = 1/3 or 0.3333

Quadrilateral ABCD is similar to quadrilateral EFGH. The lengths of the three longest sides in quadrilateral ABCD are 60 feet, 40 feet, and 30 feet long. If the two shortest sides of quadrilateral EFGH are 6 feet long and 12 feet long, how long is the 4th side on quadrilateral ABCD?

Answers

Final answer:

The length of the fourth side on quadrilateral ABCD is 120 feet.

Explanation:

Given that quadrilateral ABCD is similar to quadrilateral EFGH, we can use the property of similar figures to find the length of the fourth side on quadrilateral ABCD.

If the two shortest sides of quadrilateral EFGH are 6 feet and 12 feet long, we can set up a proportion using the corresponding sides of the two quadrilaterals.

Let x be the length of the fourth side on quadrilateral ABCD.

Using the property of similar figures, we have:

(60/6) = (x/12)

Cross multiplying, we get:

6x = 720

Dividing both sides by 6, we find:

x = 120

Therefore, the length of the fourth side on quadrilateral ABCD is 120 feet.

Use appropriate algebra and theorem 7.2.1 to find the given inverse laplace transform. (write your answer as a function of t.) −1 1 s2 − 720 s7

Answers

The inverse Laplace transform of [tex]\( \frac{1}{s^2 - 720s^7} \) is \( (1 - \frac{1}{720})t + e^{720t} \).[/tex]

To find the inverse Laplace transform of [tex]\( \frac{1}{s^2 - 720s^7} \),[/tex] we can use the method of partial fraction decomposition. First, factor the denominator:

[tex]\[ s^2 - 720s^7 = s^2(1 - 720s^5) \][/tex]

Now, we can write the partial fraction decomposition as:

[tex]\[ \frac{1}{s^2(1 - 720s^5)} = \frac{A}{s} + \frac{B}{s^2} + \frac{Cs^5 + D}{1 - 720s^5} \][/tex]

Multiplying both sides by [tex]\( s^2(1 - 720s^5) \)[/tex], we get:

[tex]\[ 1 = As(1 - 720s^5) + Bs(1 - 720s^5) + (Cs^5 + D)s^2 \]\[ 1 = As - 720As^6 + Bs - 720Bs^6 + Cs^7 + Ds^2 \][/tex]

Equating coefficients:

For [tex]\( s^6 \):[/tex]

-720A - 720B = 0

A + B = 0

A = -B

For [tex]\( s^7 \):[/tex]

C = 0

For [tex]\( s^2 \):[/tex]

D = 1

Substituting back:

A = -B

D = 1

C = 0

So, the partial fraction decomposition is:

[tex]\[ \frac{1}{s^2(1 - 720s^5)} = \frac{-B}{s} + \frac{1}{s^2} + \frac{D}{1 - 720s^5} \][/tex]

Now, we can find the values of [tex]\( A \), \( B \), and \( D \):[/tex]

A = -B

D = 1

Now, we can use Theorem 7.2.1 to find the inverse Laplace transform:

[tex]\[ \mathcal{L}^{-1}\left( \frac{1}{s^2(1 - 720s^5)} \right) = -B \mathcal{L}^{-1}\left( \frac{1}{s} \right) + \mathcal{L}^{-1}\left( \frac{1}{s^2} \right) + D \mathcal{L}^{-1}\left( \frac{1}{1 - 720s^5} \right) \][/tex]

[tex]\[ = -B + t + D \mathcal{L}^{-1}\left( e^{720t} \right) \][/tex]

[tex]\[ = -B + t + De^{720t} \][/tex]

Since [tex]\( B = \frac{1}{720} \), \( D = 1 \)[/tex], the inverse Laplace transform is:

[tex]\[ \mathcal{L}^{-1}\left( \frac{1}{s^2(1 - 720s^5)} \right) = -\frac{1}{720}t + t + e^{720t} \][/tex]

[tex]\[ = \left( 1 - \frac{1}{720} \right)t + e^{720t} \][/tex]

Complete Question:

Use appropriate algebra and theorem 7.2.1 to find the given inverse laplace transform. (write your answer as a function of [tex]\( \frac{1}{s^2 - 720s^7} \).[/tex]

Other Questions
A rectangle has a length of the cube root of 81 inches and a width of 3 to the 2 over 3 power inches. Find the area of the rectangle. 3 to the 2 over 3 power inches squared 3 to the 8 over 3 power inches squared 9 inches squared 9 to the 2 over 3 power inches squaredQuestion 4(Multiple Choice Worth 2 points)(MC)Rewrite the rational exponent as a radical.5 to the 3 over 4 power, to the 2 over 3 power the cube root of 5 squared the twelfth root of 5 the square root of 5 the cube root of 5 the fourth powerQuestion 5(Multiple Choice Worth 2 points)(MC)Rewrite the radical as a rational exponent.the cube root of 2 to the seventh power 2 to the 3 over 7 power 2 to the 7 over 3 power 2 to the power of 21 2 to the power of 4 212 tens divided by 10 = 1 gallon of paint pour the paint into a paint tray that measures 10 inch wide 10 inch long and 7 cm deep what will happen How many moles of water are needed to react with 2.2 moles of li2o? given: li2o + h2o 2 lioh? Find the first six terms of the sequence. a1 = -8, an = 5 an-18, -40, -200, -1000, -5000, -25,000-8, -40, -35, -30, -25, -200, 5, -40, -35, -30, -25-40, -200, -1000, -5000, -25,000, -125,000Plz help me Esperaban en la sala de espera. 2. quera ser enfermero. 3. de tomar mis antibiticos. 4. tuvimos un accidente de coche. 5. mi madre dorma profundamente. 6. me haca una radiografa. completa el siguiente prrafo con el pretrito o el imperfecto de los verbos entre parntesis, segn corresponda. cuando era ni?o, (7) (enfermarse) todo el tiempo. mis padres me (8) (llevar) al consultorio, pero nunca (9) (ser) nada grave. una vez, mientras jugaba en el patio de la escuela yo (10) (caerse) y (11) (romperse) un brazo. mi madre (12) (tener) que llevarme rpidamente a la sala de emergencia porque me dola mucho. Asking a guest to quickly answer a question such as what year did you graduate high school is one way to How many ounces are there in a gallon?and how would I come about solving this?.. If you lived in the eastern united states in 1849 and heard about the gold in california, what do you think you would do? why? A hiker seals a plastic bag that contains dried fruits before he climbs a mountain. What will most likely happen to the plastic bag as the hiker reaches the top of the mountain?The bag will expand.The bag will shrink.The bag will remain the same size.The bag will allow air to enter What is the circumference of a circular disc with a diameter of 10 centimeters? (Round your answer to the nearest tenth.) How does the real-life Dante differ from the fictional Dante? A.The real Dante feels religion should apply only to religious leaders and not spiritually incapable commoners. B.The real Dante is curious and seeks answers to his questions about life. C.The real Dante has uncompromising ideas about religion and human nature. D.The real Dante seeks peace at any cost and speaks politely when faced with enemies. You are telling your friend what you will do next month. Choose the sentence with the correct future tense:Je jouerai au tennis.J'ai jou au foot.Je joue au ping-pong.Je n'ai rien fait. PLEASE HELP!! Factor completely: x2 + 6x + 8 Classify each of the following as homozygous dominant, heterozygous, or homozygous recessive.A.GgB.rrC.TTD.Does not include any dominant allelesE.Does not include any recessive alleles Which of the following is an example of dramatic irony?A.) The three rioters hear a funeral procession outside the tavern.B.) The three rioters curse Death while sitting in the tavern.C.) The youngest rioter draws the lot that sends him to town for bread and wine.D.) The two rioters drink the poisoned wine believing they have safely disposed of the third rioter. Most people who divorce tend to remarry other divorced people. the women who are more likely to remarry are ________. HELP PLEASE ASAP!!!!What are the 3 methods for solving systems of equations?If a system has no solution, how does it look on a graph? A satisfying and complete result for a broad information query can be Fully Meets One of first thinkers who attempted to understand comparative politics by classifying different constitutional forms and comparing them was: Steam Workshop Downloader