An electron and a proton are separated by a distance of 1 m. What happens to the size of the force on the first electron if a second electron is placed next to the proton?

Answers

Answer 1

Answer:

The force on the electron will become zero.

Explanation:

As electron has negative charge and proton has positive charge. The magnitude of charge on both particles is equal. Therefore, there will be a force of attraction between electron and proton. When another electron is brought near the proton the net charge in that area will become equal to zero. Therefore, first electron will not experience any force.

Answer 2

Final answer:

The original force between the first electron and proton remains unchanged when a second electron is placed next to the proton, but the first electron will experience an additional repulsive force from the second electron. This alters the net force acting on the first electron but does not directly change the force between it and the proton.

Explanation:

The question inquires about the effect on the force on an electron when a second electron is placed next to a proton, with all particles separated by a distance of 1 meter.

According to Coulomb's Law, which governs the electrostatic force between two charged particles, the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

When a second electron is placed next to the proton, this setup introduces additional forces: a repulsive force between the two electrons and an attractive force between the new electron and the proton.

However, the original question seems to focus on how the force on the first electron changes with this new arrangement. The presence of a second electron does not alter the magnitude of the force between the first electron and the proton directly since the forces here are evaluated pairwise, and the distance between them remains unchanged.

What changes, though, is the overall electrical environment, introducing a new set of forces that need to be considered for the complete system. The addition of the second electron introduces a repulsive force on the first electron, which is separate from but concurrent with the attractive force from the proton.

It is important to consider the net force acting on any charge in such scenarios, which would involve adding vectorially the attractive force from the proton and the repulsive force from the second electron.

Thus, while the force due to the proton-electron pair remains constant, the first electron experiences an additional repulsive force due to the second electron, affecting the net force on it but not the force between it and the proton directly.


Related Questions

A race car travels 765 km around a circular sprint track of radius 1.263 km. How many times did it go around the track?

Answers

Answer:

It will go 96 times around the track.

Explanation:

Given that,

Distance covered by the race car, d = 765 km

Radius of the circular sprint track, r = 1.263 km

Let n times did it go around the track. It is given by :

[tex]n=\dfrac{d}{C}[/tex]

C is the circumference of the circular path, [tex]C=2\pi r[/tex]

[tex]n=\dfrac{d}{2\pi r}[/tex]

[tex]n=\dfrac{765}{2\pi \times 1.263}[/tex]

[tex]n=96.4[/tex]

Approximately, n = 96

So, it will go 96 times around the track. Hence, this is the required solution.

With a track radius of 1.263 km, the car completes approximately 96.50 laps.

The formula for the circumference (C) of a circle is: C = 2πr, where r is the radius of the circle, and π (pi) is approximately 3.14159. Using the given radius of 1.263 km, we can calculate the circumference of the track:

C = 2π(1.263 km) ≈ 2(3.14159)(1.263 km) ≈ 7.932 km (rounded to three decimal places).

Divide the total distance traveled by the circumference of the track:

Number of laps = Total distance traveled ÷ Circumference of the track
Number of laps = 765 km ÷ 7.932 km ≈ 96.50 laps.

Therefore, the race car would have completed approximately 96.50 laps around the track.

How would the period of a simple pendulum be affected if it were located on the moon instead of the earth?

Answers

Answer:

On moon time period will become 2.45 times of the time period on earth

Explanation:

Time period of simple pendulum is equal to [tex]T=2\pi \sqrt{\frac{l}{g}}[/tex] ....eqn 1 here l is length of the pendulum and g is acceleration due to gravity on earth

As when we go to moon, acceleration due to gravity on moon is [tex]\frac{1}{6}[/tex] times os acceleration due to gravity on earth

So time period of pendulum on moon is equal to

[tex]T_{moon}=2\pi \sqrt{\frac{l}{\frac{g}{6}}}=2\pi \sqrt{\frac{6l}{g}}[/tex] --------eqn 2

Dividing eqn 2 by eqn 1

[tex]\frac{T_{moon}}{T}=\sqrt{\frac{6l}{g}\times \frac{g}{l}}[/tex]

[tex]T_{moon}=\sqrt{6}T=2.45T[/tex]

So on moon time period will become 2.45 times of the time period on earth

Final answer:

The period of a pendulum on the Moon would be longer because the Moon's gravity is weaker. To achieve the same one-second period as on Earth, a pendulum needs to be much shorter due to the Moon's 1/6th gravitational acceleration. Consequently, a pendulum's frequency would decrease if taken from Earth to the Moon.

Explanation:

The period of a simple pendulum is affected by the acceleration due to gravity, which is less on the Moon than on Earth. Hence, if you took a pendulum clock, like a grandfather clock, to the Moon, its pendulum would swing more slowly because of the Moon's weaker gravity. To maintain a steady tick-tock of one second per period on the Moon, the pendulum would need to be much shorter. A grandfather clock pendulum designed to have a two-second period on Earth with a length of 50 cm would need to be only 8.2 cm long on the Moon to achieve the same period, since the Moon's gravity is 1/6th that of Earth. Therefore, if a pendulum from Earth was taken to the Moon, its frequency would decrease because the acceleration due to gravity on the Moon is less than that on Earth.

True or False? The superposition or overlapping of two waves always results in destructive interference between the different waves.

Answers

Answer:

Explanation:

False

When two waves overlap or superimpose over each other then they either undergo Constructive or destructive interference.

waves are the disturbance created by a force and add up to gives constructive interference when they are in the same line i.e. in the same phase.

When these disturbances are in the opposite phase then they superimpose to give destructive interference where the amplitude of the resulting wave will be much smaller as compared to original waves.

A 30.0-g ice cube at its melting point is dropped into an aluminum calorimeter of mass 100.0 g in equilibrium at 24.0 °C with 300.0 g of an unknown liquid. The final temperature is 4.0 °C . What is the heat capacity of the liquid?

Answers

Answer:

Cu = 1453.72J/Kg°C

The heat capacity of the liquid is 1453.72J/Kg°C

Explanation:

At equilibrium, assuming no heat loss to the surrounding we can say that;

Heat gained by ice + heat gained by cold water = heat loss by hot unknown liquid (24°C) + heat loss by aluminium calorimeter.

Given;

Mass of ice = mass of cold water = mc = 30g = 0.03kg

Mass of hot unknown liquid mh= 300g = 0.3kg

Mass of aluminium calorimeter ma= 100g = 0.1 kg

change in temperature cold ∆Tc = (4-0) = 4°C

Change in temperature hot ∆Th = 24-4 = 20°C

Specific heat capacity of water Cw= 4186J/Kg°C

Specific heat capacity of aluminium Ca = 900J/kg°C

Specific heat capacity of unknown liquid Cu =?

Heat of condensation of ice Li = 334000J/Kg

So, the statement above can be written as.

mcLi + mcCw∆Tc = maCa∆Th + mhCu∆Th

Making Cu the subject of formula, we have;

Cu = [mcLi + mcCw∆Tc - maCa∆Th]/mh∆Th

Substituting the values we have;

Cu = (0.03×334000 + 0.03×4186×4 - 0.1×900×20)/(0.3×20)

Cu = 1453.72J/Kg°C

the heat capacity of the liquid is 1453.72J/Kg°C

What is the electric potential V V due to the nucleus of hydrogen at a distance of 5.292 × 10 − 11 m 5.292×10−11 m ?

Answers

Answer:

27.1806500378 V

Explanation:

k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]

q = Charge = [tex]1.6\times 10^{-19}\ C[/tex]

r = Distance = [tex]5.292\times 10^{-11}\ m[/tex]

Voltage is given by

[tex]V=k\dfrac{q}{r}\\\Rightarrow V=8.99\times 10^9\dfrac{1.6\times 10^{-19}}{5.292\times 10^{-11}}\\\Rightarrow V=27.1806500378\ V[/tex]

The potential difference is 27.1806500378 V

An initially stationary 2.7 kg object accelerates horizontally and uniformly to a speed of 13 m/s in 4.0 s. (a) In that 4.0 s interval, how much work is done on the object by the force accelerating it? What is the instantaneous power due to that force (b) at the end of the interval and (c) at the end of the first half of the interval?

Answers

Explanation:

A.

Given:

V = 13 m/s

t = 4 s

Constant acceleration, a= (V-Vi)/t

= 13/4

= 3.25 m/s^2

F = mass * acceleration

= 2.7 * 3.25

= 8.775 N.

Using equations of motion,

distance,S = (13 * 4) - (1/2)(3.25)(4^2)

= 26 m

Workdone, W = force * distance

= 8.775 * 26

= 228.15 J

B.

Instantaneous power, P = Force *Velocity

= 8.775 * 13

= 114. 075 W

C.

t = 2 s,

Constant acceleration, a= (V-Vi)/t

= 13/2

= 6.5 m/s^2

Force = mass * acceleration

= 2.7 * 6.5

= 17.55 N

Instantaneous power, P = Force *Velocity

= 17.55 * 13

= 228.15 W.

= 114. 075 W.

Equations E = 1 2πε0 qd z3 and E = 1 2πε0 P z3 are approximations of the magnitude of the electric field of an electric dipole, at points along the dipole axis. Consider a point P on that axis at distance z = 4.50d from the dipole center (where d is the separation distance between the particles of the dipole). Let Eappr be the magnitude of the field at point P as approximated by E = 1 2πε0 qd z3 and E = 1 2πε0 P z3 (electric dipole). Let Eact be the actual magnitude. By how much is the ratio Eappr/Eact less than 1?

Answers

Answer:

The ratio of [tex]E_{app}[/tex] and [tex]E_{act}[/tex] is 0.9754

Explanation:

Given that,

Distance z = 4.50 d

First equation is

[tex]E_{act}=\dfrac{qd}{2\pi\epsilon_{0}\times z^3}[/tex]

[tex]E_{act}=\dfrac{Pz}{2\pi\epsilon_{0}\times (z^2-\dfrac{d^2}{4})^2}[/tex]

Second equation is

[tex]E_{app}=\dfrac{P}{2\pi\epsilon_{0}\times z^3}[/tex]

We need to calculate the ratio of [tex]E_{act}[/tex] and [tex]E_{app}[/tex]

Using formula

[tex]\dfrac{E_{app}}{E_{act}}=\dfrac{\dfrac{P}{2\pi\epsilon_{0}\times z^3}}{\dfrac{Pz}{2\pi\epsilon_{0}\times (z^2-\dfrac{d^2}{4})^2}}[/tex]

[tex]\dfrac{E_{app}}{E_{act}}=\dfrac{(z^2-\dfrac{d^2}{4})^2}{z^3(z)}[/tex]

Put the value into the formula

[tex]\dfrac{E_{app}}{E_{act}}=\dfrac{((4.50d)^2-\dfrac{d^2}{4})^2}{(4.50d)^3\times4.50d}[/tex]

[tex]\dfrac{E_{app}}{E_{act}}=0.9754[/tex]

Hence, The ratio of [tex]E_{app}[/tex] and [tex]E_{act}[/tex] is 0.9754

A light bulb is connected to a 120.0-V wall socket. The current in the bulb depends on the time t according to the relation I = (0.644 A) sin [(394 rad/s)t]. (a) What is the frequency of the alternating current? (b) Determine the resistance of the bulb's filament. (c) What is the average power delivered to the light bulb?

Answers

Final answer:

The frequency of the alternating current is 394/2π Hz. The resistance of the bulb's filament can be determined using Ohm's Law. The average power delivered to the light bulb can be calculated using the formula P = IV.

Explanation:

(a) The frequency of the alternating current can be calculated using the angular frequency formula ω = 2πf. In this case, the angular frequency is 394 rad/s. So, we can rearrange the formula to find the frequency: f = ω/2π = 394/2π Hz.


(b) The resistance of the bulb's filament can be determined using Ohm's Law, which states that resistance (R) is equal to voltage (V) divided by current (I). In this case, the voltage is 120.0 V and the current is given by I = (0.644 A) sin [(394 rad/s)t].


(c) The average power delivered to the light bulb can be calculated using the formula P = IV, where I is the current and V is the voltage. In this case, the voltage is 120.0 V and the current is given by I = (0.644 A) sin [(394 rad/s)t].

Learn more about Frequency here:

https://brainly.com/question/36655605

#SPJ12

A heat engine operates at 30% of its maximum possible efficiency and needs to do 995 J of work. Its cold reservoir is at 22 ºC and its hot reservoir is at 610 ºC. (a) How much energy does it need to extract from the hot reservoir? (b) How much energy does it deposit in the cold reservoir?

Answers

Answer:

(a) The energy  extracted from the hot reservoir (Qh) is 3316.67J

(b) The energy deposited in the cold reservoir (Qc) is 2321.67J

Explanation:

Part (a) The energy  extracted from the hot reservoir (Qh)

e = W/Qh

where;

e is the maximum efficiency of the system = 30% = 0.3

W is the the work done on the system = 995 J

Qh is the heat absorbed from the hot reservoir

Qh = W/e

Qh = 995/0.3

Qh = 3316.67J

Part (b) The energy deposited in the cold reservoir (Qc)

e = W/Qh

W = Qh - Qc

where;

Qc is the heat deposited in the cold reservoir

e = (Qh - Qc)/Qh

Qh - Qc = e*Qh

Qc = Qh - e*Qh

Qc = 3316.67J - 0.3*3316.67J

Qc = 3316.67J - 995J

Qc = 2321.67J

A uniformly dense solid disk with a mass of 4 kg and a radius of 2 m is free to rotate around an axis that passes through the center of the disk and perpendicular to the plane of the disk. The rotational kinetic energy of the disk is increasing at 20 J/s. If the disk starts from rest through what angular displacement (in rad) will it have rotated after 5 s

Answers

Final answer:

The angular displacement of the solid disk after 5 seconds is 0 rad.

Explanation:

To determine the angular displacement of the solid disk after 5 seconds, we can use the formula:

Δθ = ΔErot / (I * ω)

where Δθ is the angular displacement, ΔErot is the change in rotational kinetic energy, I is the moment of inertia of the disk, and ω is the angular velocity of the disk.

The moment of inertia of a solid disk rotating around an axis through its center perpendicular to its plane is given by:

I = (1/2) * m * r2

where m is the mass of the disk and r is the radius.

Given that ΔErot = 20 J/s, m = 4 kg, r = 2 m, and the disk starts from rest, we can calculate the angular displacement:

Δθ = ΔErot / (I * ω) = 20 / [(1/2) * 4 * 22 * ω]

Since the disk starts from rest, the initial angular velocity ω is 0. Therefore, the angular displacement after 5 seconds is:

Δθ = 20 / [(1/2) * 4 * 22 * 0] = 0 rad

Learn more about Angular displacement here:

https://brainly.com/question/32223054

#SPJ3

A block of mass M M is placed on a semicircular track and released from rest at point P P , which is at vertical height H 1 H1 above the track’s lowest point. The surfaces of the track and block are considered to be rough such that a coefficient of friction exists between the track and the block. The block slides to a vertical height H 2 H2 on the other side of the track. How does H 2 H2 compare to H 1 H1 ?

Answers

Answer:

Explanation:

A block of mass  M is placed on a semicircular track and released from rest at point  P , which is at vertical height H₁ above the track’s lowest point.

Its initial potential energy = mgH₁

Kinetic energy = 0

Total energy = mgH₁

When  block slides to a vertical height  H₂ on the other side of the track

Its final potential energy = mgH₂

Kinetic energy = 0

Total  final energy = mgH₂

As negative work is done by frictional force while block moves ,

final energy < initial energy

mgH₂ < mgH₁

H₂ < H₁

H₂  will be less than H₁ .

A square steel bar has a length of 9.7 ft and a 2.9 in by 2.9 in cross section and is subjected to axial tension. The final length is 9.70710 ft . The final side length is 2.89933 in . What is Poisson's ratio for the material? Express your answer to three significant figures.

Answers

The Poisson's ratio definition is given as the change in lateral deformation over longitudinal deformation. Mathematically it could be expressed like this,

[tex]\upsilon = \frac{\text{Lateral Strain}}{\text{Longitudinal Strain}}[/tex]

[tex]\upsilon = \frac{(\delta a/a)}{(\delta l/l)}[/tex]

Replacing with our values we would have to,

[tex]\upsilon = \frac{(2.89933-2.9/2.9)}{(9.70710-9.7/97)}[/tex]

[tex]\upsilon = 0.1977[/tex]

Therefore Poisson's ratio is 0.1977.

A sled starts from rest at the top of a hill and slides down with a constant acceleration. At some later time it is 14.4 m from the top; 2.00 s after that it is 25.6 m from the top, 2.00 slater 40.0 m from the top, and 2.00 s later it is 57.6 m from the top.

(a) What is the magnitude of the average velocity of the sled during each of the 2.00-s intervals after passing the 14.4-m point?
(b) What is the acceleration of the sled?
(c) What is the speed of the sled when it passes the 14.4-m point?
(d) How much time did it take to go from the top to the 14.4-m point?
(e) How far did the sled go during the first second after passing the 14.4-m point?

Answers

Answer:

(a) 5.6 m/s, 7.2 m/s, and 8.8 m/s, respectively.

(b) 0.8 m/s^2

(c) 4.8 m/s

(d) 6 s

(e) 5.2 m

Explanation:

(a) The average velocity is equal to the total displacement divided by total time.

For the first 2s. interval:

[tex]V_{\rm avg} = \frac{\Delta x }{\Delta t} = \frac{25.6 - 14.4}{2} = 5.6~{\rm m/s}[/tex]

For the second 2s. interval:

[tex]V_{\rm avg} = \frac{40 - 25.6}{2} = 7.2~{\rm m/s}[/tex]

For the third 2s. interval:

[tex]V_{\rm avg} = \frac{57.6 - 40}{2} = 8.8~{\rm m/s}[/tex]

(b) Every 2 s. the velocity increases 1.6 m/s. Therefore, for each second the velocity increases 0.8 m/s. So, the acceleration is 0.8 m/s2.

(c) The sled starts from rest with an acceleration of 0.8 m/s2.

[tex]v^2 = v_0^2 + 2ax\\v^2 = 0 + 2(0.8)(14.4)\\v = 4.8~{\rm m/s}[/tex]

(d) The following kinematics equation will yield the time:

[tex]\Delta x = v_0 t + \frac{1}{2}at^2\\14.4 = 0 + \frac{1}{2}(0.8)t^2\\t = 6~{\rm s}[/tex]

(e) The same kinematics equation will yield the displacement:

[tex]\Delta x = v_0t + \frac{1}{2}at^2\\\Delta x = (4.8)(1) + \frac{1}{2}(0.8)1^2\\\Delta x = 5.2~{\rm m}[/tex]

How does a person become "charged" as he or she shuffles across a carpet with bare feet on a dry winter day?

Answers

This process occurs because there is a contact between the carpet and the person's feet. Basically that contact generates the transfer of some electrons to the carpet on dry winter days.

In this way a person is charged when dragging bare feet on the carpet on a dry winter day.

Therefore, the net positive charge occurs on the surface of the carpet.

A person becomes charged when shuffling across a carpet due to the transfer of electrons from the feet to the carpet, leaving a net positive charge. The lack of humidity on a dry winter day allows the static charge to build up, leading to noticeable static shocks when touching a metal object. Humidity helps in dissipating the charge, making shocks less common on humid days.

When a person shuffles across a carpet with bare feet, they can become "charged" through a process known as charging by friction. This occurs when electrons are transferred from one surface to another due to the contact and relative motion between them. In this case, electrons move from the person's feet to the carpet, leaving the feet with a net positive charge.

Materials have different affinities for electrons, and when they come into close contact, the one with the higher affinity will take on electrons from the other. Since a dry winter day has low humidity, there is less moisture in the air to carry away the excess electrons. Therefore, the static charge you accumulate is less likely to be neutralized by the surrounding air, making static shocks more frequent and noticeable when you touch a metal object like a doorknob.

The reason for the shock is the rapid movement of electrons as they try to redistribute themselves to reach a state of electrical neutrality. When you touch a metal object, the excess electrons on your body rapidly transfer to the metal, causing the shock. On a humid day, the air's moisture helps electrons move away from your body more easily, preventing the build-up of a significant static charge.

What is the sign and magnitude of a point charge that produces a potential of −2.2 V at a distance of 1 mm?

Answers

The sign of the point charge that produces a potential of -2.00 V at a distance of 1.00 mm is negative, and its magnitude is calculated to be approximately -2.22×10-13 C using Coulomb's law.

Explanation:

The question pertains to determining the sign and magnitude of a point charge based on the electric potential it produces at a specific distance. The electric potential (V) at a distance (r) from a point charge (q) is given by the equation V = k * q / r, where k is Coulomb's constant (k = 8.988×109 N·m2/C2). Since the potential is negative (-2.00 V), the point charge must have a negative sign. To find the magnitude, we rearrange the formula to solve for q: q = V * r / k.

Plugging in the values gives q = (-2.00 V * 1.00×10-3 m) / 8.988×109 N·m2/C2, which calculates to a charge magnitude of approximately -2.22×10-13 C.



The probable question is in the image attached.

9) A balloon is charged with 3.4 μC (microcoulombs) of charge. A second balloon 23 cm away is charged with -5.1 μC of charge. The force of attraction / repulsion between the two charges will be: ______________________ 10) If one of the balloons has a mass of 0.084 kg, with what acceleration does it move toward or away from the other balloon? (calculate both magnitude AND direction) ________________________________________

Answers

Answer:

9. The force is a force of attraction and it is 2.95N

10. The magnitude of acceleration 35.12m/s^2 and the direction of this acceleration is away from the other balloon.

Explanation:

Parameters given:

Q1 = 3.4 * 10^-6C

Q2 = - 5.1 * 10^-6C

Distance between the two balloons = 23cm = 0.23m

9. Force acting between the two balloons is a force of attraction because they are unlike charges. Hence, the force between them is:

F = kQ1Q2/r^2

F = (9 *10^9 * 3.4 * 10^-6 * -5.1 * 10^-6)/(2.3 * 10^-1)^2

F = (1.56 * 10^-1)/(5.29 * 10^-2)

F = - 2.95N

10. Assuming that Balloon A has a mass, m, of 0.084kg, then:

F = ma

Where a = acceleration

a = F/m

a = -2.95/0.084

a = - 35.12m/s^2

The acceleration has a magnitude of 35.12m/s^2 and its direction is away from balloon B.

The negative sign shows that the balloon A is slowing down as it moves towards balloon B. Hence, it's velocity is reducing slowly.

An object is released from rest near and above Earth’s surface from a distance of 10m. After applying the appropriate kinematic equation, a student predicts that it will take 1.43s for the object to reach the ground with a speed of 14.3m/s . After performing the experiment, it is found that the object reaches the ground after a time of 3.2s. How should the student determine the actual speed of the object when it reaches the ground? Assume that the acceleration of the object is constant as it falls.

Answers

The student determine the actual speed of the object when it reaches the ground as 12.52 m/s.

Given data:

The distance from the Earth's surface is, = 10 m.

Time taken to reach the ground is, t = 1.43 s.

The speed of object is, v = 14.3 m/s.

Experimental value of time interval is, t' = 3.2 s.

Use kinematic equation of motion to compute true value for acceleration of the ball as it reaches the ground:

[tex]h=ut+\dfrac{1}{2}a't'^{2} \\\\10=0 \times t+\dfrac{1}{2} \times a' \times 3.2^{2} \\\\a'=\dfrac{20}{3.2^{2}}\\\\a'= 1.95 \;\rm m/s^{2}[/tex]

Now, use the principle of conservation of total energy of system:

Potential energy - work done by air resistance = Kinetic energy

[tex]mgh-(ma) \times h=\dfrac{1}{2}mv^{2} \\\\gh-(a) \times h=\dfrac{1}{2}v^{2} \\\\v=\sqrt{2h(g-a)}[/tex]

Here, v is the actual speed of object while reaching the ground.

Solving as,

[tex]v=\sqrt{2 \times 10(9.8-1.95)}\\\\v=12.52 \;\rm m/s[/tex]

Thus, we can conclude that  the student determine the actual speed of the object when it reaches the ground as 12.52 m/s.

Learn more about the conservation of energy here:

https://brainly.com/question/2137260

The actual speed of the object when it reaches the ground is approximately [tex]31.392 \, m/s.[/tex]

The actual speed of the object when it reaches the ground can be determined using the kinematic equation that relates initial velocity, acceleration, and time to the final velocity. Since the object is released from rest, the initial velocity [tex]\( u \)[/tex] is 0 m/s, and the acceleration [tex]\( a \)[/tex] is due to gravity, which is approximately [tex]\( 9.81 \, m/s^2 \)[/tex] near the Earth's surface.

The kinematic equation that relates these quantities to the final velocity [tex]\( v \)[/tex] is:

[tex]\[ v = u + at \][/tex]

Given that [tex]\( u = 0 \, m/s \)[/tex] and [tex]\( a = 9.81 \, m/s^2 \)[/tex], and the time [tex]\( t \)[/tex] to reach the ground is [tex]\( 3.2 \, s \)[/tex], we can substitute these values into the equation to find the actual final velocity:

[tex]\[ v = 0 + (9.81 \, m/s^2)(3.2 \, s) \] \[ v = (9.81)(3.2) \, m/s \] \[ v = 31.392 \, m/s \][/tex]

Therefore, the actual speed of the object when it reaches the ground is approximately [tex]31.392 \, m/s.[/tex]

A space-based telescope can achieve a diffraction-limited angular resolution of 0.05″ for red light (wavelength 700 nm). What would the resolution of the instrument be (a) in the infrared, at 3.5 µm, and (b) in the ultraviolet, at 140 nm?

Answers

Answer:

a) [tex] \theta_2 = 0.05 * \frac{3.5}{0.7} = 0.25[/tex]

b) [tex] \theta_2 = 0.05 * \frac{140}{700} = 0.01[/tex]

Explanation:

We are comparing two wavelengths with the radius and diameter constant, and if we want to compare it, we need to use the following formula:

[tex]\frac{\theta_1}{\theta_2}= \frac{\lambda_1}{\lambda_2}[/tex]

Where [tex] \theta[/tex] represent the angular resolution and [tex]\lambda[/tex] the wavelength.

So if we have a fixed resolution and wavelength 1 and we want to find the resolution for a new condition we can solve for [tex] \theta_2[/tex] and we got

[tex] \theta_2 = \theta_1 \frac{\lambda_2}{\lambda_1}[/tex]

Part a

For this case the subindex 1 is for the color red and we know that:

[tex] \lambda_1 = 700 nm *\frac{1 \mu m}{1000 nm} = 0.7 \mu m[/tex]

And the angular resolution for the color red is specified as [tex] \theta_1 = 0.05[/tex]

And for the infrared case we know that [tex] \lambda_2 = 3.5 \mu m[/tex], so if we replace we got:

[tex] \theta_2 = 0.05 * \frac{3.5}{0.7} = 0.25[/tex]

Part b

For this case the subindex 1 is for the color red and we know that:

[tex] \lambda_1 = 700 nm[/tex]

And the angular resolution for the color red is specified as [tex] \theta_1 = 0.05[/tex]

And for the ultraviolet case we know that [tex] \lambda_2 = 140 nm[/tex], so if we replace we got:

[tex] \theta_2 = 0.05 * \frac{140}{700} = 0.01[/tex]

What is the strength of an electric field that will balance the weight of a 9.6 g plastic sphere that has been charged to -9.2 nC ? Express your answer to two significant figures and include the appropriate units.

Answers

The strength of an electric field that will balance the weight is 1.023 × 10⁷ N/C.

What is electric field?

An electric field is a physical field that surrounds electrically charged particles and acts as an attractor or repellent to all other charged particles in the vicinity. Additionally, it refers to a system of charged particles' physical field.

Electric charges and time-varying electric currents are the building blocks of electric fields.

The strength of an electric field that will balance the plastic sphere is = weight of the object/charge on the object

= (  9.6 ×10⁻³×9.8)/(9.2×10⁻⁹) N/C

= 1.023 × 10⁷ N/C

Learn more about electric field here:

https://brainly.com/question/16161133

#SPJ1

The plates of a parallel-plate capacitor are 3.50 mm apart, and each carries a charge of magnitude 75.0 nC. The plates are in vacuum. The electric field between the plates has a magnitude of 5.00×10^6 V/m.a. What is the potential difference between the plates?b. What is the area of each plate?c. What is the capacitance?

Answers

Answer:

Vab =17.5kV

A = 16.9 cm2

C   = 4.27pF

Explanation:

a) Find the voltage difference:

Vab = Ed

E Electric field

d distance between plates

Vab potential difference

d = 3.5mm

 = 3.5 * 10^(-3) m    

Q = 75.0nC

    = 75 * 10^(-9)  

E = 5.00 * 10^6 V/m

Vab = (5.00 * 10^6) * (3.5 * 10^(-3))

        = 17.5 * 10^3 V

        =17.5kV

b. What is the area of the plate?

 The relation between the electric field and area is given as:

E = Q/(ϵ0 * A)

A = Q/(ϵ0 *E)

Where ϵ0 is the electric constant and equals 8.854 × 10^ (-12) C2/N•m2    

A = 75 * 10^ (-9) / (8.854 × 10^ (-12) (5.00 * 10^6)

 = 1.69 X 10^ (-3) m2

  = 16.9 cm2

c. Find the capacitance

   The equation relating capacitance, area of plate and plate distance is given by:

C = ϵ0 A/d

plug in the values of d, ϵ0 and A above to get the capacitance:

C = (8.854 × 10^ (-12) * 1.69 X 10^ (-3) / 3.5 * 10^ (-3)  

 = 4.27 * 10^ (-12) F

 = 4.27pF

What is the relationship between wavelength, wave frequency, and wave velocity?

Answers

Relation Between Velocity And Wavelength

Wavelength is the measure of the length of a complete wave cycle. The velocity of a wave is the distance travelled by a point on the wave. In general, for any wave the relation between Velocity and Wavelength is proportionate. It is expressed through the wave velocity formula.

Velocity And Wavelength

For any given wave, the product of wavelength and frequency gives the velocity. It is mathematically given by wave velocity formula written as-

V=f×λ

Where,

V is the velocity of the wave measure using m/s.

f is the frequency of the wave measured using Hz.

λ is the wavelength of the wave measured using m.

Velocity and Wavelength Relationtion

Amplitude, Frequency, wavelength, and velocity are the characteristic of a wave. For a constant frequency, the wavelength is directly proportional to velocity.

Given by:

V∝λ

Example:

For a constant frequency, If the wavelength is doubled. The velocity of the wave will also double.

For a constant frequency, If the wavelength is made four times. The velocity of the wave will also be increased by four times.

Hope you understood the relation between wavelength and velocity of a wave. You may also want to check out these topics given below!

Relation between phase difference and path difference

Relation Between Frequency And Velocity

Relation Between Escape Velocity And Orbital Velocity

Relation Between Group Velocity And Phase Velocity

Final answer:

The relationship between wavelength, wave frequency, and wave velocity is described by the equation v = fλ. Wavelength and frequency are inversely proportional given a constant wave velocity – high frequency correlates with short wavelength and vice versa.

Explanation:

In Physics, there's a mathematical relationship between wavelength, wave frequency, and wave velocity for any type of wave motion. This relationship is often stated as v = fλ, where v is wave velocity, f is the frequency of the wave, and λ is the wavelength. The wavelength is the distance between identical parts of the wave, while the velocity is the speed at which the disturbance moves, and the frequency is the rate of oscillation of the wave.

When you look at this formula, it becomes clear that if the wave velocity (v) is constant, a wave with a longer wavelength (λ) will have lower frequency (f). On the other side, higher frequency means shorter wavelength. This is because frequency and wavelength are inversely proportional in the given formula.

Example

For instance, the speed of light in vacuum is a constant value (approximately 3.00×108 m/s). So, if a certain light wave has a larger wavelength, its frequency will be lower to ensure this speed remains consistent.

Learn more about Wave properties here:

https://brainly.com/question/32761564

#SPJ12

"An elevator is moving upward with a speed of 11 m/s. Three seconds later, the elevator is still moving upward, but its speed has been reduced to 5.0 m/s. What is the average acceleration of the elevator during the 3.0 s interval?

Answers

Answer:

Average acceleration = - 2 m/s^2

Explanation:

Given data:

Initial velocity = 11 m/s

Final velocity = 5.0 m/s

duration of change in velocity = 3 sec

Average acceleration [tex]= \frac{v - u}{\Delta t}[/tex]

Average acceleration [tex]= \frac{5 - 11}{3} = -2 m/s^2[/tex]

Average acceleration = - 2 m/s^2

here negative sign indicate that acceleration is proceed in downward direction.

Two children of mass 20 kg and 30 kg sit balanced on a seesaw with the pivot point located at the center of the seesaw. If the children are separated by a distance of 3 m, at what distance from the pivot point is the small child sitting in order to maintain the balance?

Answers

Answer:

Explanation:

Given

mass of first child [tex]m_1=20\ kg[/tex]

mass of second child [tex]m_2=30\ kg[/tex]

Distance between two children is [tex]d=3\ m[/tex]

Suppose light weight child is placed at a distance of x m from Pivot point

therefore

Torque due to heavy child [tex]T_1=m_2g\times (3-x)[/tex]

Torque due to small child [tex]T_2=m_1g\times x[/tex]

Net Torque about Pivot must be zero

Therefore [tex]T_1=T_2[/tex]

[tex]30\times g\times (3-x)=20\times g\times x[/tex]

[tex]9-3x=2x[/tex]

[tex]9=5x[/tex]

[tex]x=\frac{9}{5}[/tex]

[tex]x=1.8\ m[/tex]

A rescue airplane is diving at an angle of 37º below the horizontal with a speed of 250 m/s. It releases a survival package when it is at an altitude of 600 m. If air resistance is ignored, the horizontal distance of the point of impact from the plane at the moment of the package's release is what? 1. 720 m.
2. 420 m.3. 2800 m.
4. 6800 m
5. 5500 m

Answers

Answer:

The correct option is 1.  720 m

Explanation:

Projectile Motion

When an object is launched in free air (no friction) with an initial speed vo at an angle [tex]\theta[/tex], it describes a curve which has two components: one in the horizontal direction and the other in the vertical direction. The data provided gives us the initial conditions of the survival package's launch.

[tex]\displaystyle V_o=250\ m/s[/tex]

[tex]\displaystyle \theta =-37^o[/tex]

The initial velocity has these components in the x and y coordinates respectively:

[tex]\displaystyle V_{ox}=250\ cos(-37^o)=199.7\ m/s[/tex]

[tex]\displaystyle V_{oy}=250\ sin(-37^o)=-150.5\ m/s[/tex]

And we know the plane has an altitude of 600 m, so the package will reach ground level when:

[tex]\displaystyle y=-600\ m[/tex]

The vertical distance traveled is given by:

[tex]\displaystyle y=V_{oy}\ t-\frac{g\ t^2}{2}=-600[/tex]

We'll set up an equation to find the time when the package lands

[tex]\displaystyle -150.5t-4.9\ t^2=-600[/tex]

[tex]\displaystyle -4.9\ t^2-150.5\ t+600=0[/tex]

Solving for t, we find only one positive solution:

[tex]\displaystyle t=3.6\ sec[/tex]

The horizontal distance is:

[tex]\displaystyle x=V_{ox}.t=199.7\times3.6=720\ m[/tex]

The correct option is 1.  720 m

Final answer:

The horizontal distance of the point of impact from the plane at the moment of the package's release is approximately 1760 m.

Explanation:

The time taken for the package to reach the ground can be found using the equation y = v0y * t + (1/2) * g * t2, where y is the initial altitude, v0y is the vertical component of the initial velocity, t is the time taken, and g is the acceleration due to gravity. Solving for t gives us a value of approximately 5 seconds. The horizontal distance traveled by the package can be found using the equation x = v0x * t, where x is the horizontal distance, v0x is the horizontal component of the initial velocity, and t is the time taken. Plugging in the values gives us x = 250 m/s * cos(37º) * 5 s, which simplifies to approximately 1760 m. So the horizontal distance of the point of impact is approximately 1760 m.

Learn more about Horizontal distance of a projectile here:

https://brainly.com/question/24999542

#SPJ3

How much work does it take to slide a box 37 meters along the ground by pulling it with a 217 N force at an angle of 19° from the horizontal?

Answers

Answer:

W = 7591.56 J

Explanation:

given,

distance of the box, d = 37 m

Force for pulling the box, F = 217 N

angle of inclination with horizontal,θ = 19°

We know,

Work done is equal to product of force and the displacement.

W = F.d cos θ

W = 217 x 37 x cos 19°

W = 7591.56 J

Hence, the work done to pull the box is equal to W = 7591.56 J

Final answer:

The work done to slide the box is 7586.09 Joules.

Explanation:

To calculate the work done to slide a box along the ground, we can use the formula:

Work = Force x Distance x cos(theta)

Where:

Force = 217 N (the force applied to pull the box)

Distance = 37 meters (the distance the box is being slid)

theta = 19° (the angle between the applied force and the horizontal)

Plugging in these values into the formula, we get:

Work = 217 N x 37 m x cos(19°)

Calculating this using a calculator, we find that the work done to slide the box is approximately 7586.09 Joules.

"Two point masses m and M are separated by a distance d. If the separation d remains fixed and the masses are increased to the values 3 m and 3 M respectively,
how does the gravitational force between them change?

Answers

Answer:

The force of gravitational attraction increases by 9 as the two point masses increase by 3.

Explanation:

Gravitational force of attraction, F is the force that pulls two point masses, m and M which are separated by a distance, d.

Mathematically,

Fg = GMm/r^2

Initially,

M1 = M1

M2 = M2

The remaining parameters are unchanged.

Fg1 = G * M1 * m1/(d/2)^2

Then,

M1 = 3M1

M2 = 3M2

Fg2 = G * 3M1 * 3M2/(d/2)^2

Making the constants G/(d/2)^2 the subject of formula and then comparing both equations,

= Fg1 = (M1 * M2); Fg2 = (9 * M1 * M2)

= Fg2 = 9 * Fg1

The force of gravitational attraction increases by 9 as the two point masses increase by 3.

A swimming pool has the shape of a box with a base that measures 30 m by 12 m and a uniform depth of 2.2 m. How much work is required to pump the water out of the pool when it is​ full? Use 1000 kg divided by m cubed for the density of water and 9.8 m divided by s squared for the acceleration due to gravity.

Answers

Final answer:

The problem requires calculating the work done to pump water out of a full swimming pool using given dimensions, the density of water, and gravity.

Explanation:

The question involves finding the amount of work required to pump the water out of a swimming pool when it is full. The dimensions of the pool are given, along with the density of water and the acceleration due to gravity. Using the density of water (1000 kg/m3), the volume of the pool can be calculated to determine the total mass of the water. The work done in pumping the water is found by multiplying the mass by the gravitational constant (9.8 m/s2) and the vertical distance the water needs to be moved (2.2 m, which is the uniform depth of the pool). This distance can be different depending on the location of the pump, but for this problem, we assume the water is being pumped from the very bottom.

You run due east at a constant speed of 3.00 m/s for a distance of 120.0 m and then continue running east at a constant speed of 5.00 m/s for another 120.0 m. For the total 240.0-m run, is your average velocity 4.00 m/s, greater than 4.00 m/s, or less than 4.00 m/s? Explain.

Answers

Answer:

Explanation:

Given

Speed while running towards east is [tex]v_1=3\ m/s[/tex]

Distance traveled in east direction [tex]x_1=120\ m[/tex]

For Another interval you  run with velocity

[tex]v_2=5\ m/s[/tex]

[tex]x_2=240\ m[/tex]

Total displacement[tex]=x_1+x_2[/tex]

[tex]=120+120=240\ m[/tex]

Time for first interval

[tex]t_1=\frac{x_1}{v_1}=\frac{120}{3}[/tex]

[tex]t_1=\frac{120}{3}=40\ s[/tex]

Time for second interval

[tex]t_2=\frac{x_2}{v_2}=\frac{120}{5}=24\ s[/tex]

total time [tex]t=t_1+t_2[/tex]

[tex]t=40+24=64\ s[/tex]

average velocity [tex]v_{avg}=\frac{x_1+x_2}{t}[/tex]

[tex]v_{avg}=\frac{240}{64}=3.75\ m/s[/tex]

Therefore average velocity is less than [tex]4 m/s[/tex]  

Consider a portion of a cell membrane that has a thickness of 7.50nm and 1.3 micrometers x 1.3 micrometers in area. A measurement of the potential difference across the inner and outer surfaces of the membrane gives a reading of 92.2mV. The resistivity of the membrane material is 1.30 x 10^7 ohms*m



PLEASE SHOW WORK!

a) Determine the amount of current that flows through this portion of the membrane

Answer: _____A



b) By what factor does the current change if the side dimensions of the membrane portion is halved? The other values do no change

increase by factor of 2

decrease by factor of 8

decrease by factor of 2

decrease by a factor of 4

increase by factor of 4

Answers

Final answer:

The amount of current that flows through this given portion of a cell membrane, calculated using Ohm's law and the properties of the membrane, is 1.60 µA. If the side dimensions of the membrane are halved, the current will decrease by a factor of 4.

Explanation:

The relevant concept needed to answer these questions is Ohm's Law, defined as Voltage = Current x Resistance. In this context, Resistance = Resistivity x (Thickness/Area) and the area is a square.

a) Determine the amount of current that flows through this portion of the membrane:

First, calculate the resistance: R = ρ x (Thickness/ Area)
Remove the micrometers units of the area and convert it into meters to match the ρ units. So, you get an area of 1.3 x 10^-6 m x 1.3 x 10^-6 m = 1.69 x 10^-12 m^2. Then, R = 1.30 x 10^7 Ω*m x (7.50 x 10^-9 m / 1.69 x 10^-12 m^2) = 57.404 Ω.

By plugging the calculated resistance and given voltage into Ohm's Law, we can find the current: I = V/R = 92.2 x 10^-3 V / 57.4 Ω = 1.60 μA

b) By what factor does the current change if the side dimensions of the membrane portion is halved:

If the side dimensions are halved, the area of the membrane becomes one-fourth of the original, thus the resistance increases by a factor of 4. According to Ohm's Law, as resistance increases, the current decreases, meaning that if the resistance is multiplied by 4, the current will decrease by a factor of 4.

Learn more about Ohm's Law here:

https://brainly.com/question/36009177

#SPJ12

a) Therefore, the amount of current that flows through this portion of the membrane is approximately [tex]\({1.60 \times 10^{-6} \, \text{A}} \)[/tex]. b) The correct answer is decrease by a factor of 5208. The current decreases by a factor of approximately 5208.

Part (a): Determine the amount of current that flows through this portion of the membrane

To find the current ( I ) flowing through the membrane portion, we use Ohm's law and the given potential difference ( V ) across the membrane.

1. Calculate the resistance ( R ) of the membrane:

The resistivity [tex](\( \rho \))[/tex] is given as [tex]\( 1.30 \times 10^7 \) ohms\·m.[/tex]

First, calculate the cross-sectional area ( A ) of the membrane portion:

[tex]\[ A = 1.3 \, \mu \text{m} \times 1.3 \, \mu \text{m} = (1.3 \times 10^{-6} \, \text{m})^2 = 1.69 \times 10^{-12} \, \text{m}^2 \][/tex]

Then, calculate the resistance ( R ):

[tex]\[ R = \frac{\rho \cdot L}{A} \][/tex]

[tex]\[ R = \frac{1.30 \times 10^7 \, \text{ohm} \cdot \text{m} \cdot 7.50 \times 10^{-9} \, \text{m}}{1.69 \times 10^{-12} \, \text{m}^2} \][/tex]

[tex]\[ R = \frac{9.75 \times 10^{-2}}{1.69 \times 10^{-12}} \approx 5.77 \times 10^7 \, \text{ohms} \][/tex]

2. Calculate the current ( I ):

Ohm's law states [tex]\( I = \frac{V}{R} \).[/tex]

Given potential difference [tex]\( V = 92.2 \, \text{mV} = 92.2 \times 10^{-3} \, \text{V} \):[/tex]

[tex]\[ I = \frac{92.2 \times 10^{-3} \, \text{V}}{5.77 \times 10^7 \, \text{ohms}} \approx 1.60 \times 10^{-6} \, \text{A} \][/tex]

Part (b): By what factor does the current change if the side dimensions of the membrane portion is halved?

If the side dimensions of the membrane portion are halved, the cross-sectional area ( A ) of the membrane will decrease by a factor of ( 4 ) (since both length and width are halved).

1. New cross-sectional area ( A' ):

[tex]\[ A' = \left( \frac{1.3 \, \mu \text{m}}{2} \right) \times \left( \frac{1.3 \, \mu \text{m}}{2} \right) = \left( \frac{1.3}{2} \times 10^{-6} \, \text{m} \right)^2 = 0.325 \times 10^{-12} \, \text{m}^2 \][/tex]

2. New resistance ( R' ):

Using the same resistivity [tex]\( \rho \)[/tex] and thickness ( L ):

[tex]\[ R' = \frac{\rho \cdot L}{A'} = \frac{1.30 \times 10^7 \cdot 7.50 \times 10^{-9}}{0.325 \times 10^{-12}} \approx 3.00 \times 10^8 \, \text{ohms} \][/tex]

3. New current ( I' ):

[tex]\[ I' = \frac{V}{R'} = \frac{92.2 \times 10^{-3}}{3.00 \times 10^8} \approx 3.07 \times 10^{-10} \, \text{A} \][/tex]

4. Calculate the factor by which the current changes:

[tex]\[ \frac{I'}{I} = \frac{3.07 \times 10^{-10}}{1.60 \times 10^{-6}} \approx 1.92 \times 10^{-4} \][/tex]

Since the current decreases, we consider the reciprocal:

[tex]\[ \frac{I}{I'} \approx \frac{1}{1.92 \times 10^{-4}} \approx 5208 \][/tex]

P3.43 Water at 20 C flows through a 5-cm-diameter pipe that has a 180 vertical bend, as in Fig. P3.43. The total length of pipe between flanges 1 and 2 is 75 cm. When the weight flow rate is 230 N/s, p1

Answers

Answer:

F_x = 750.7 N

Explanation:

Given:

- Length of the pipe between flanges L = 75 cm

- Weight Flow rate is flow(W) = 230 N/c

- P_1 = 165 KPa

- P_2 = 134 KPa

- P_atm = 101 KPa

- Diameter of pipe D = 0.05 m

Find:

The total force that the flanges must withstand F_x.

Solution:

- Use equation of conservation of momentum.

            (P_1 - P_a)*A + (P_2 - P_a)*A - F_x = flow(m)*( V_2 - V_1)

- From conservation of mass:

                                       A*V_1 = A*V_2

                       V_1 = V_2 ( but opposite in directions)

- Hence,

             (P_1 - P_a)*A + (P_2 - P_a)*A - F_x = - 2*flow(m)*V_1

                                     flow(m) = flow(W) / g

                                     p*A*V_1 = flow(W) / g

                                    V_1 =  flow(W) / g*p*A    

Hence,      

             (P_1 - P_a)*A + (P_2 - P_a)*A - F_x = - 2*flow(W)^2 / g^2*p*A

Hence, compute:

   64*10^3 *pi*0.05^2 /4 + 33*10^3 *pi*0.05^2 /4 - F_x = - 2*(230/9.81)^2 / 997*pi*0.05^2 /4

                            125.6 + 64.7625 - F_x = -560.33

                                        F_x = 750.7 N

Other Questions
Which legal right is not given to people under age 18?A) right to an attorneyB) right to be tried as a juvenile regardless of the crimeC) right to cross examine witnessesD) right to remain silent During the 1990s worker productivity growth spiked as computers and the internet were introduced to many businesses for the first time. How did this affect the natural unemployment rate? Consider the following statement: "I examined the statistics for our basketball teams wins last year and found that, when the third team played more, the winning margin increased. If the coach played the third team more, we would win by a bigger margin." Evaluate this statement. which lands did the french imperialists claim in 1884 Which link is missing from this food chain?O decomposerO herbivoreo producerO consumer Mauricio, a project manager at a reputed firm, has been assigned to handle a new project that the firm has received. This project involves a lot of scheduling that has to be handled by Mauricio. Mauricio estimates that the first module of the project could be completed in as few as 15 days or could take as many as 25 days, but most likely will require 20 days. Determine the expected task duration. which of the following phrases would represent this expression x/3 3)A triangle has all integer side lengths and two of those sides have lengths 9 and 16. Consider the altitudes to the three sides. What is the largest possible value of the ratio of any two of those altitudes Express your answer as a balanced chemical equation. Identify all of the phases in your answer.1. Li(s)+N2(g)Li3N(s)2. TiCl4(l)+H2O(l)TiO2(s)+HCl(aq)3. NH4NO3(s)N2(g)+O2(g)+H2O(g)4. Ca3P2(s)+H2O(l)Ca(OH)2(aq)+PH3(g)5. Al(OH)3(s)+H2SO4(aq)Al2(SO4)3(aq)+H2O(l)6.AgNO3(aq)+Na2SO4(aq)Ag2SO4(s)+NaNO3(aq)7. C2H5NH2(g)+O2(g)CO2(g)+H2O(g)+N2(g) A single penny is 1.52 mm thick. The distance to the next nearest star other than our own (Alpha Centauri) is 4.22 light-years. If it were possible to stack one mole of pennies, how many times would the stack go between the earth and Alpha Centauri? Use the unit factoring method to determine the answer and show your work. You will need to find or look up the appropriate conversion factors to solve the problem. Your answer should be in scientific notation and have the correct number of significant figures in order to get full credit. (Please note that the text editing functions/buttons below for this essay question allows you to show exponents by using the button show as "x2"in the controls. To use it type the number followed by the exponent such as 104, highlight the 4 and hit the x2 button and you will end up with 104 as the result) Janelle ate 82% of the pie. What fraction of the pie remained On a public ballot, a state legislature places a question relating to legalization of marijuana for medicinal use. In addition, the legislature passes a law that bans corporations from advertising in favor of or opposing the ballot question. The basis for this ban is to ensure that corporations do not have too much influence on the voters. Is the ordinance constitutional?a.Yes, because commercial speech has only partial First Amendment protection.b.No, because it concerns a question on a public ballot.c.Yes, because the government is advancing a substantial government interest.d.No, because the ban includes advertising that may not be protected by the First Amendment.e.No, because the government has banned politically oriented commercial speech. Which of the following is true of both starch and cellulose? a. They are both polymers of glucose. b. They are geometric isomers of each other. c. They can both be digested by humans. d. They are both used for energy storage in plants. e. They are both structural components of the plant cell wall. Jennifer has been diagnosed with spinocerebellar degeneration. The first stage of the disease involves tremors and unsteady gate. In the later stages, she will be unable to stand, walk, and will be uncoordinated in her movements. This disease probably affects the __________ part of the brain.a) hippocampusb) amygdalac) cerebellumd) cerebral cortex How do the underlined words in the passage create meaning? A. They describe how Pau Amma plays. B. They describe how the animals play. C. They describe Pau Ammas impact on the sea and the animals. D. They describe the tasks the Eldest Magician gives to the animals. A paper company needs to ship paper to a large printing business. The paper will be shipped in small boxes and large boxes. Each small box of paper weighs 45 pounds and each large box of paper weighs 80 pounds. There were twice as many large boxes shipped as small boxes shipped and the total weight of all boxes was 1435 pounds. Determine the number of small boxes shipped and the number of large boxes shipped. Based on your understanding of Nectar in a Sieve, what fact would you not select as being accurate? 3x squared minus 7x minus 34 is less than or equal to -10x + 2 Ray Bond sells handcrafted yard decorations at county fairs. The variable cost to make these is $20 each, and he sells them for $50. The cost to rent a booth at the fair is $150. How many of these must Ray sell to break even Which of the following statements is true? Gross private domestic investment less depreciation is net private domestic investment. Gross private domestic investment divided by depreciation is net private domestic investment. Gross private domestic investment plus depreciation is net private domestic investment. Net private domestic investment less depreciation is gross private domestic investment.\ Steam Workshop Downloader