An electric furnace is to melt 40 kg of aluminium/hour. The initial temperature of aluminium is 32°C. Given that aluminium has specific heat capacity 950 J/kg K melting point 680*C, latent heat of fusion 450 kJ/kg, the efficiency of furnace is 85% and cost of energy is 20 cents/kWhr Calculate: (a) Power required (b) The cost of operating the furnace for 30 hours

Answers

Answer 1

Answer:

Part a)

P = 13.93 kW

Part b)

R = 8357.6 Cents

Explanation:

Part A)

heat required to melt the aluminium is given by

[tex]Q = ms\Delta T + mL[/tex]

here we have

[tex]Q = 40(950)(680 - 32) + 40(450 \times 10^3)[/tex]

[tex]Q = 24624 kJ + 18000 kJ[/tex]

[tex]Q = 42624 kJ[/tex]

Since this is the amount of aluminium per hour

so power required to melt is given by

[tex]P = \frac{Q}{t}[/tex]

[tex]P = \frac{42624}{3600} kW[/tex]

[tex]P = 11.84 kW[/tex]

Since the efficiency is 85% so actual power required will be

[tex]P = \frac{11.84}{0.85} = 13.93 kW[/tex]

Part B)

Total energy consumed by the furnace for 30 hours

[tex]Energy = power \times time[/tex]

[tex]Energy = 13.93 kW\times 30 h[/tex]

[tex]Energy = 417.9 kWh[/tex]

now the total cost of energy consumption is given as

[tex]R = P \times 20 \frac{Cents}{kWh}[/tex]

[tex]R = 417.9 kWh\times  20 \frac{cents}{kWh}[/tex]

[tex]R = 8357.6 Cents[/tex]


Related Questions

A stone is dropped from the upper observation deck of a tower, 250 m above the ground. (Assume g = 9.8 m/s2.) (a) Find the distance (in meters) of the stone above ground level at time t. h(t) = (b) How long does it take the stone to reach the ground? (Round your answer to two decimal places.) s (c) With what velocity does it strike the ground? (Round your answer to one decimal place.) m/s (d) If the stone is thrown downward with a speed of 2 m/s, how long does it take to reach the ground? (Round your answer to two decimal places.) s

Answers

(a) [tex]y(t)=250 - 4.9 t^2[/tex]

For an object in free-fall, the vertical position at time t is given by:

[tex]y(t) = h + ut - \frac{1}{2}gt^2[/tex]

where

h is the initial vertical position

u is the initial vertical velocity

g = 9.8 m/s^2 is the acceleration of gravity

t is the time

In this problem,

h = 250 m

u = 0 (the stone starts from rest)

So, the vertical position of the stone is given by

[tex]y(t) = 250 - \frac{1}{2}(9.8) t^2 = 250 - 4.9 t^2[/tex]

(b) 7.14 s

The time it takes for the stone to reach the ground is the time t at which the vertical position of the stone becomes zero:

y(t) = 0

Which means

[tex]y(t) = h - \frac{1}{2}gt^2=0[/tex]

So for the stone in the problem, we have

[tex]250 - 4.9 t^2 = 0[/tex]

Solving for t, we find:

[tex]t=\sqrt{\frac{250}{4.9}}=7.14 s[/tex]

(c) -70.0 m/s (downward)

The velocity of an object in free fall is given by the equation

[tex]v(t) = u - gt[/tex]

where

u is the initial velocity

g = 9.8 m/s^2 is the acceleration of gravity

t is the time

Here we have

u = 0

So if we substitute t = 7.14 s, we find the velocity of the stone at the time it reaches the ground:

[tex]v=0-(9.8 m/s^2)(7.14 s)=-70.0 m/s[/tex]

The negative sign means the direction of the velocity is downward.

(d) 6.94 s

In this situation, the stone is thrown downward with an initial speed of 2 m/s, so its initial velocity is

u = -2 m/s

So the equation of the vertical position of the stone in this case is

[tex]y(t) = h + ut - \frac{1}{2}gt^2=250 - 2t - 4.9 t^2[/tex]

By solving the equation, we find the time t at which the stone reaches the ground.

We find two solutions:

t = -7.35 s

t = 6.94 s

The first solution is negative, so it has no physical meaning, therefore we discard it. So, the time it takes for the stone to reach the ground is:

t = 6.94 s

Final answer:

An object in free fall, like a stone dropped from a tower, has its motion governed by the acceleration due to gravity. Using the physics of motion, we can find the height of the stone at any given time, the time it takes to reach the ground, the velocity it strikes the ground, and the time taken if it is initially thrown downward.

Explanation:

To solve these types of questions, we need to use the physics of motion. In the case of an object in free fall like a stone dropped from a tower, the only force acting on it is gravity, which pulls it downwards.

(a) The formula h(t) = 250 - 1/2gt^2 represents the height of the stone above ground level at any time t. Here, g is the acceleration due to gravity (9.8 m/s^2).

(b) The stone will reach the ground when h(t) = 0. Solving the equation 250 - 1/2*9.8*t^2 = 0 gives t ≈ 7.18 seconds (rounded to two decimal places).

(c) The velocity v with which the stone strikes the ground can be found using v = gt. Substituting g = 9.8 m/s^2 and t = 7.18 s gives v ≈ 70.4 m/s (rounded to one decimal place).

(d) If the stone is thrown downward with initial velocity of 2 m/s, the equation for time becomes 250 -2t- 1/2*9.8*t^2 = 0. Solving this gives t ≈ 7.04 seconds (rounded to two decimal places).

Learn more about Physics of Motion here:

https://brainly.com/question/13966796

#SPJ3

A straight wire that is 0.60 m long is carrying a current of 2.0 A. It is placed in a uniform magnetic field of strength 0.30 T. If the wire experiences a force of 0.18 N, what angle does the wire make with respect to the magnetic field?

Answers

Answer:

Angle the wire make with respect to the magnetic field is 30°.

Explanation:

It is given that,

Length of wire, L = 0.6 m

Current flowing in the wire, I = 2 A

Magnetic field strength, B = 0.3 T

It is placed in the magnetic field. It will experience a force of, F = 0.18 N. We need to find the angle the wire make with respect to the magnetic field. The force acting on the wire is given by :

[tex]F=I(L\times B)[/tex]

[tex]F=ILB\ sin\theta[/tex]

[tex]\theta=sin^{-1}(\dfrac{F}{ILB})[/tex]

[tex]\theta=sin^{-1}(\dfrac{0.18\ N}{2\ A\times 0.6\ m\times 0.3\ T})[/tex]

[tex]\theta=30^{\circ}[/tex]

So, the angle the wire make with respect to the magnetic field is 30°. Hence, this is the required solution.

By substituting the given values and solving for sin(θ), we determined that the wire makes a 30° angle with the magnetic field. Therefore, the wire experiences the magnetic force at this angle.

To determine the angle between a wire carrying a current and a uniform magnetic field, we can use the formula for the magnetic force on a current-carrying wire:

F = I * L * B * sin(θ)

Where:
F is the magnetic force (0.18 N)
I is the current (2.0 A)
L is the length of the wire (0.60 m)
B is the magnetic field strength (0.30 T)
θ is the angle between the wire and the magnetic field

Rearrange the formula to solve for sin(θ):

sin(θ) = F / (I * L * B)

Substitute the given values:

sin(θ) = 0.18 N / (2.0 A * 0.60 m * 0.30 T)

Simplify the expression:

sin(θ) = 0.18 / 0.36 = 0.50

Take the sin (inverse sine) to find θ:

θ = sin⁻¹(0.50) = 30°

Therefore, the wire makes an angle of 30° with respect to the magnetic field.

A sample of a material has 200 radioactive particles in it today. Your grandfather measured 400 radioactive particles in it 60 years ago. How many radioactive particles will the sample have 60 years from today?

Answers

Answer:

Amount of radioactive particles left after 60 years = 100 particles.

Explanation:

Amount of radioactive particles before 60 years = 400

Amount of radioactive particles present today = 200

That is radio active particles reduced to half. That is 60 years is half life of this radio active material.

After 60 years this 200 radio active particles will reduce to half.

Amount of radioactive particles left after 60 years = 0.5 x 200 = 100 particles.

Final answer:

The sample will have 100 radioactive particles remaining 60 years from today, based on the half-life of the material being 60 years.

Explanation:

The question concerns the concept of radioactive decay and specifically the half-life of a radioactive sample. In this case, the sample's quantity of radioactive particles was observed to decrease from 400 to 200 over a span of 60 years. Thus, the half-life of the material is 60 years, which is the time it takes for half of the radioactive atoms (parent nuclei) to decay into their decay products (daughter elements).

Given that the sample has 200 particles today, we can predict that in another 60 years, the number of radioactive particles will again be halved. Therefore, after 60 years from today, we expect there to be 100 radioactive particles remaining in the sample.

A person standing 1.20 m from a portable speaker hears its sound at an intensity of 5.50 ✕ 10−3 W/m2. HINT (a) Find the corresponding decibel level. dB (b) Find the sound intensity (in W/m2) at a distance of 36.0 m, assuming the sound propagates as a spherical wave. W/m2 (c) Find the decibel level at a distance of 36.0 m. dB

Answers

Final answer:

The decibel level at 1.20 m is approximately 93 dB. The sound intensity at 36.0 m is approximately 1.58 × 10^-13 W/m². The decibel level at 36.0 m is approximately 83 dB.

Explanation:

(a) To find the decibel level, we can use the formula B(dB) = 10 log10(I/Io), where I is the sound intensity and Io is the reference intensity. Plugging in the given values, we get B = 10 log10(5.50 ✕ 10^-3/10^-12). After evaluating this expression, we find that the decibel level is approximately 93 dB.

(b) To find the sound intensity at a distance of 36.0 m, we can use the inverse square law for sound, which states that the intensity is inversely proportional to the square of the distance. Using the formula I2 = I1(d1^2/d2^2), where I1 is the initial intensity, I2 is the final intensity, d1 is the initial distance, and d2 is the final distance, we find that the sound intensity at 36.0 m is approximately 1.58 × 10^-13 W/m².

(c) To find the decibel level at a distance of 36.0 m, we can use the same formula as in part (a), but with the intensity at 36.0 m as the new value for I. Plugging in the values, we get B = 10 log10(1.58 × 10^-13/10^-12). After evaluating this expression, we find that the decibel level at a distance of 36.0 m is approximately 83 dB.

Learn more about Sound intensity and decibel level here:

https://brainly.com/question/31822564

#SPJ12

We calculated the decibel level at [tex]1.20 m[/tex] to be approximately [tex]97.4 dB[/tex] . The sound intensity at [tex]36.0 m[/tex]   is about [tex]6.11 \times 10^{-6} W/m^2[/tex] , and its corresponding decibel level is approximately [tex]67.9 dB[/tex].

(a) Finding the decibel level

The decibel (dB) level can be found using the formula:

[tex]\[\beta = 10 \log_{10} \left( \frac{I}{I_0} \right)\][/tex]

where [tex]I[/tex]  is the sound intensity, and I0 is the reference intensity ([tex]10^{-12} W/m^2[/tex]). Given, I[tex]= 5.50 \times 10^{-3} W/m^2[/tex],

[tex]\[\beta = 10 \log_{10} \left( \frac{5.50 \times 10^{-3}}{10^{-12}} \right)\]\beta = 10 \log_{10} \left( 5.50 \times 10^{9} \right)\]\beta \approx 10 \times 9.74 = 97.4 \, \text{dB}\][/tex]

So, the corresponding decibel level is approximately [tex]97.4 dB[/tex].

(b) Finding the sound intensity at a distance of [tex]36.0 m[/tex]

Sound intensity decreases with the square of the distance from the source. We can use the inverse square law:

[tex]\[I_2 = I_1 \left( \frac{r_1^2}{r_2^2} \right)\][/tex]

Given, [tex]\[I_1 = 5.50 \times 10^{-3} \, \text{W/m}^2, \quad r_1 = 1.20 \, \text{m}, \quad r_2 = 36.0 \, \text{m}\][/tex],

[tex]\[I_2 = 5.50 \times 10^{-3} \left( \frac{1.20^2}{36.0^2} \right)\]I_2 = 5.50 \times 10^{-3} \left( \frac{1.44}{1296} \right)\]I_2 \approx 6.11 \times 10^{-6} \, \text{W/m}^2\][/tex]

The sound intensity at 36.0 m is approximately [tex]6.11 \times 10^{-6} W/m^2[/tex].

(c) Finding the decibel level at a distance of [tex]36.0 m[/tex]

Using the decibel formula again:

[tex]\[\beta = 10 \log_{10} \left( \frac{I}{I_0} \right)\][/tex]

where

[tex]I = 6.11 \times 10^{-6} \, \text{W/m}^2\]\beta = 10 \log_{10} \left( \frac{6.11 \times 10^{-6}}{10^{-12}} \right)\]\beta = 10 \log_{10} \left( 6.11 \times 10^{6} \right)\]\beta \approx 10 \times 6.79 = 67.9 \, \text{dB}\][/tex]

The corresponding decibel level at [tex]36.0 m[/tex] is approximately [tex]67.9 dB[/tex].

A baseball hit just above the ground leaves the bat 27 m/s at 45° above the horizontal. A) How far away does the ball strike the ground? B) What is the maximum height of the ball?

Answers

Answer:

A) The ball hits the ground 74.45 m far from the hitting position.

B) Maximum height of the ball = 18.57 m

Explanation:

There are two types of motion in this horizontal and vertical motion.

We have velocity = 27 m/s at 45° above the horizontal

Horizontal velocity = 27cos45 = 19.09 m/s

Vertical velocity = 27sin45 = 19.09 m/s

Time to reach maximum height,

           v = u + at

           0 = 19.09 - 9.81 t

            t = 1.95 s

So total time of flight = 2 x 1.95 = 3.90 s

A) So the ball travels at 19.09 m/s for 3.90 seconds.

     Horizontal distance traveled = 19.09 x 3.90 = 74.45 m

     So the ball hits the ground 74.45 m far from the hitting position.

B) We have vertical displacement

              S = ut + 0.5 at²

              H = 19.09 x 1.95 - 0.5 x 9.81 x 1.95² = 18.57 m

    Maximum height of the ball = 18.57 m

If the heat necessary to warm 565.0 g of water from a temperature of T1 = 22.0 °C to T2 = 80.0 °C were somehow converted to translational kinetic energy of this amount of water, what would be the speed of this water?

Answers

Answer:

696.83 m/s

Explanation:

m = mass of water = 565 g = 0.565 kg

c = specific heat of water = 4186 J/(kg⁰C)

ΔT = Change in temperature = T₂ - T₁ = 80 - 22 = 58 ⁰C

v = speed gained by water

Using conservation of energy

Kinetic energy gained by water = heat required to warm water

(0.5) m v² = m c ΔT

(0.5) v² = c ΔT

(0.5) v² = (4186) (58)

v = 696.83 m/s

Suppose that the Mars orbiter was to have established orbit at 155 km and that one group of engineers specified this distance as 1.55 × 105 m. Suppose further that a second group of engineers programmed the orbiter to go to 1.55 × 105 ft. What was the difference in kilometers between the two altitudes? How low did the probe go?

Answers

Answer:

108 km

Explanation:

The conversion factor between meters and feet is

1 m = 3.28 ft

So the second altitude, written in feet, can be rewritten in meters as

[tex]h_2 = 1.55 \cdot 10^5 ft \cdot \frac{1}{3.28 ft/m}=4.7\cdot 10^4 m[/tex]

or in kilometers,

[tex]h_2 = 47 km[/tex]

the first altitude in kilometers is

[tex]h_1 = 155 km[/tex]

so the difference between the two altitudes is

[tex]\Delta h = 155 km - 47 km = 108 km[/tex]

What does the area under a curve of a graph of velocity versus time yield? A. Average acceleration O B. Average velocity OC.Total distance 0 D. Displacement

Answers

Answer:

option (D)

Explanation:

If we plot a graph between the velocity of the object and the time taken, the slope of graph gives the value of acceleration of the object and the area under the graph gives the product of velocity and time taken that means it is displacement

Answer:

D

Explanation:

Calculate v = (v + u) / 2. ...

Average velocity (v) of an object is equal to its final velocity (v) plus initial velocity (u), divided by two.

The average velocity calculator solves for the average velocity using the same method as finding the average of any two numbers. ...

Given v and u, calculate v. ...

Given v and v calculate u.

Answer is D

1. What do you need to change the momentum of a system?

2. What are the features of a typical modern running shoe? How does this change the ground reaction force during a heel strike when running with shoes compared to a heel strike when running without shoes?

3. When running with shoes how does the ground reaction force change from a heel strike run to a forefoot strike run?

Answers

1. Momentum (P) is a equal to mass (M) times velocity (V). But there are other ways to think about momentum! Force (F) is equal to the change in momentum (triangleP) over the change in Time (triangleT). And the change in momentum (triangleP) is also equal to the impulse (J)

A 12.5 kg box sliding on a frictionless flat surface tuns into a fixed spring which compresses at a distance x= 14.1 cm. the spring constant is 94.5 kN/m Find the initial speed of the box

Answers

Answer:

12.3 m/s

Explanation:

m = mass of the box sliding on frictionless flat surface = 12.5 kg

x = compression of the spring = 14.1 cm = 0.141 m

k = spring constant = 94.5 kN/m = 94500 N/m

v = initial speed of the box

Using conservation of energy

Kinetic energy of the box = Spring potential energy

(0.5) m v² = (0.5) k x²

m v² = k x²

Inserting the values

(12.5) v² = (94500) (0.141)²

v = 12.3 m/s

g a stone with mass m=1.60 kg IS thrown vertically upward into the air with an initial kinetic energy of 470 J. the drag force acting on the stone throughout its flight is constant, independent of the velocity of the stone, and has a magnitude of 0.900 N. what is the maximum height reached by the stone?

Answers

Answer:

Height reached will be 28.35 m

Explanation:

Here we can use the work energy theorem to find the maximum height

As we know by work energy theorem

Work done by gravity + work done by friction = change in kinetic energy

[tex]-mgh - F_f h = 0 - \frac{1}{2}mv_i^2[/tex]

now we will have

[tex]-1.60(9.8)(h) - 0.900(h) = - 470[/tex]

[tex]-16.58 h = -470[/tex]

[tex]h = 28.35 m[/tex]

so here the height raised by the stone will be 28.35 m from the ground after projection in upward direction

An electron moves in a straight path with a velocity of +500,000 m/s. It undergoes constant acceleration of +500,000,000,000 meters per second per second. How far will the electron have traveled when it reaches a velocity of +675,000 m/s? A. +0.000000175 m B. +0.00000035 m C. +0.21 m D. +0.41 m

Answers

Answer:

Distance travelled, d = 0.21 m

Explanation:

It is given that,

Initial velocity of electron, u = 500,000 m/s

Acceleration of the electron, a = 500,000,000,000 m/s²

Final velocity of the electron, v = 675,000 m/s

We need to find the distance travelled by the electron. Let distance travelled is s. Using third equation of motion as :

[tex]v^2-u^2=2as[/tex]

[tex]s=\dfrac{v^2-u^2}{2a}[/tex]

[tex]s=\dfrac{(675000\ m/s)^2-(500000\ m/s^2)^2}{2\times 500000000000\ m\s^2}[/tex]

s = 0.205 m

or

s = 0.21 m

So, the electron will travel a distance of 0.21 meters. Hence, this is the required solution.

A 35-N bucket of water is lifted vertically 3.0m and then returned to its original position. How much work did gravity do on the bucket during this process? (a)180J (b) 90J (c) 45J (d) 0J (e) 900J

Answers

Answer:

Work done, W = 0 J

Explanation:

It is given that,

Weight of the bucket, W = F = 35 N

It is lifted vertically 3 m and then returned to its original position. We need to find the work gravity do on the bucket during this process.

Work done when the bucket is lifted vertically, W₁ = -mgh

Work done when the bucket returned to its original position, W₂ = +mgh

Net work done, W = W₁ + W₂

W = 0 J

So, the work done on the bucket is zero. Hence, this is the required solution.

Final answer:

The total work done by gravity on a bucket of water that is lifted and then returned to its original position is zero joules (0 J), because gravity does equal amounts of positive and negative work on the bucket during the lifting and lowering phases, respectively.

Explanation:

The question examines the concept of work done by a force, which in physics is defined as the product of the force applied to an object and the distance over which that force is applied, provided the force is applied in the direction of motion. When a bucket of water is lifted vertically and then returned to its original position, gravity does work on the bucket on the way down, but because the bucket returns to its starting position, the total work done by gravity over the entire journey is zero joules (d). This is because gravity does positive work as the bucket is lowered and an equal amount of negative work as the bucket is lifted, resulting in a net work of zero.

Concretely, when the bucket is lifted, work is done against gravity and when it is lowered, gravity does work on the bucket. However, since the starting and ending points are the same, the net work done by gravity over the entire process is zero. It's important to notice that this is true regardless of the path taken; as long as the initial and final positions are the same, the work done by a conservative force such as gravity will be zero.

If a ball is thrown vertically upward with a velocity of 144 ft/s, then its height after t seconds is s = 144t − 16t2. (a) What is the maximum height reached by the ball? ft (b) What is the velocity of the ball when it is 320 ft above the ground on its way up? (Consider up to be the positive direction.) ft/s What is the velocity of the ball when it is 320 ft above the ground on its way down? ft/s

Answers

(a) 168.2 ft/s

The vertical position of the ball is given by

[tex]s = 144t - 16t^2[/tex]

where t is the time.

By differentiating this expression, we find the velocity:

[tex]v = 144-32 t[/tex]

The maximum height is reached when the velocity is zero, so:

[tex]0 = 144 - 32 t[/tex]

From which we find

[tex]t = \frac{144}{32}=4.5 s[/tex]

And substituting this value into the equation for s, we find the maximum height:

[tex]s = 144(4.5 s)-16(4.5 s)^2=324 ft[/tex]

(b) 16 ft/s

We want to find the velocity of the ball when the position of the ball is

s = +320 ft

Substituting into the equation for the position,

[tex]320 = 144t-16t^2[/tex]

[tex]16t^2 -144t +320 = 0[/tex]

Solving for t, we find two solutions:

t = 4 s

t = 5 s

The first one corresponds to the instant in which the ball is still on its way up: Substituting into the equation for the velocity, we find the velocity of the ball at that time

[tex]v = 144 - 32 t=144- 32(4 s)=16 ft/s[/tex]

(c) -16 ft/s

Now we want to find the velocity of the ball when the position of the ball is

s = +320 ft

but on its way down. In the previous part, we found

t = 4 s

t = 5 s

So the second time corresponds to the instant in which the ball is at s = 320 ft but on the way down.

Substituting t = 5 s into the equation for the velocity, we find:

[tex]v = 144 - 32 t=144- 32(5 s)=-16 ft/s[/tex]

And the negative sign means the direction is downward.

The answers for the ball thrown vertically upward with a velocity of 144 ft/s and with a height after t seconds of s = 144t - 16t² are:

a) The maximum height reached by the ball is 324 ft.

b) The velocity of the ball when it is 320 ft above the ground on its way up is 16 ft/s.

c) The velocity of the ball when it is 320 ft above the ground on its way down is -16 ft/s.

a) The maximum height reached by the ball can be calculated with the given equation:

[tex] s = 144t - 16t^{2} [/tex]   (1)

Where:

s: is the height

t: is the time

We can find the time with the following equation:

[tex] v_{f} = v_{i} - gt [/tex]   (2)

Where:

[tex] v_{f} [/tex]: is the final velocity = 0 (at the maximum height)

[tex] v_{i} [/tex]: is the initial velocity = 144 ft/s

g: is the acceleration due to gravity = 32 ft/s²    

Solving equation (2) for t and entering into equation (1), we can find the maximum height:

[tex]s = 144t - 16t^{2} = 144(\frac{v_{i}}{g}) - 16(\frac{v_{i}}{g})^{2} = 144(\frac{144 ft/s}{32 ft/s^{2}}) - 16(\frac{144 ft/s}{32 ft/s{2}})^{2} = 324 ft[/tex]  

Hence, the maximum height is 324 ft.

                       

b) To find the velocity of the ball when it is 320 ft above, we can use the following equation:                       

[tex] v_{f}^{2} = v_{i}^{2} - 2gs [/tex]

[tex]v_{f}^{2} = (144 ft/s)^{2} - 2*32 ft/s^{2}*320 ft[/tex]    

The above equation has two solutions:

[tex]v_{f_{1}} = 16 ft/s[/tex]

[tex]v_{f_{2}} = -16 ft/s[/tex]

Since the question is for the velocity of the ball on its way up and considering the way up as the positive direction, the answer is the positive value [tex]v_{f_{1}} = 16 ft/s[/tex].                      

c) The velocity of the ball when it is 320 ft above the ground on its way down is -16 ft/s (we take the negative value calculated above, [tex] v_{f_{2}}[/tex]). We consider the way down as the negative direction.

Find more about vertical motion here https://brainly.com/question/13665920?referrer=searchResults

I hope it helps you!    

If the speed of light in a vaccum is c, the speed of light in a medium like glass with an index of refraction of 1.5 is : (a) 3c/2 (b) 3c (c) 2c/3 (d) 9c/4 (e) 4c/9 Please explain in detail why it is the answer you have chosen

Answers

Answer:

The speed of light in the medium is [tex]\dfrac{2c}{3}[/tex]

(c) correct option.

Explanation:

Given that,

Speed of light in vacuum = c

Refraction index = 1.5

We need to calculate the value of speed of light in the medium

The refractive index is equal to the speed of light in vacuum divide by the speed of light in medium.

Using formula of refractive index

[tex]\mu = \dfrac{c}{v}[/tex]

[tex]v=\dfrac{c}{\mu}[/tex]

Where, c = speed of light in vacuum

v = speed of light in medium

Put the value into the formula

[tex]v=\dfrac{c}{1.5}[/tex]

[tex]v=\dfrac{2c}{3}[/tex]

Hence, The speed of light in the medium is [tex]\dfrac{2c}{3}[/tex]

Explain how adding more copper windings to an electromagnet can increase the magnetic field.

Answers

Answer:

This is because copper is a conductor, and adding more copper spreads electricity more, and thus the magnetic field.

Please mark for Brainliest!!  Thanks! :D

For more information or if you have any questions, please comment below and I'll respond ASAP!! :D

A spherical snowball is melting in such a way that its radius is decreasing at a rate of 0.1 cm/min. At what rate is the volume of the snowball decreasing when the radius is 8 cm. (Note the answer is a positive number).

Answers

Answer: 80.384 cubic cm /min

Explanation:

Let V denote the volume and r denotes the radius of the spherical snowball .

Given : [tex]\dfrac{dr}{dt}=-0.1\text{cm/min}[/tex]

We know that the volume of a sphere is given by :-

[tex]V=\dfrac{4}{3}\pi r^3[/tex]

Differentiating on the both sides w.r.t. t (time) ,w e get

[tex]\dfrac{dV}{dt}=\dfrac{4}{3}\pi(3r^2)\dfrac{dr}{dt}\\\\\Rightarrow\ \dfrac{dV}{dt}=4\pi r^2 (-0.1)=-0.4\pi r^2[/tex]

When r= 8 cm

[tex]\dfrac{dV}{dt}=-0.4(3.14)(8)^2=-80.384[/tex]

Hence, the volume of the snowball decreasing at the rate of 80.384 cubic cm /min.

Final answer:

The volume of the snowball is decreasing at a rate of 8.03 cubic cm per minute when the radius of the snowball is 8 cm.

Explanation:

The rate at which the volume of the spherical snowball is decreasing significantly depends on the rate of decrease in the sphere's radius. The volume formula of a sphere is V = 4/3πR³. With differentiation, volume change in the sphere over time, or dV/dt, can be represented as dV/dt = 4πR² * dR/dt. Plugging in the given values, dR/dt = -0.1 cm/min and R = 8cm, we find that dV/dt = -8.03 cm³/min. This indicates that the volume of the snowball is decreasing at a rate of 8.03 cm³/min. Remember, the answer is given as a positive number, i.e., without the negative sign, which represents a decrease.

Learn more about Rate of change here:

https://brainly.com/question/29181502

#SPJ3

A particle with mass 1.81×10−3 kg and a charge of 1.22×10−8 C has, at a given instant, a velocity v⃗ =(3.00×104m/s)j^. What are the magnitude and direction of the particle’s acceleration produced by a uniform magnetic field B⃗ =(1.63T)i^+(0.980T)j^?

Answers

Answer:

The magnitude and direction of the acceleration of the particle is [tex]a= 0.3296\ \hat{k}\ m/s^2[/tex]

Explanation:

Given that,

Mass [tex]m = 1.81\times10^{-3}\ kg[/tex]

Velocity [tex]v = (3.00\times10^{4}\ m/s)j[/tex]

Charge [tex]q = 1.22\times10^{-8}\ C[/tex]

Magnetic field [tex] B= (1.63\hat{i}+0.980\hat{j})\ T[/tex]

We need to calculate the acceleration of the particle

Formula of the acceleration is defined as

[tex]F = ma=q(v\times B)[/tex]

[tex]a =\dfrac{q(v\times B)}{m}[/tex]

We need to calculate the value of [tex]v\times B[/tex]

[tex]v\times B=(3.00\times10^{4}\ m/s)j\times(1.63\hat{i}+0.980\hat{j})[/tex]

[tex]v\times B=4.89\times10^{4}[/tex]

Now, put the all values into the acceleration 's formula

[tex]a =\dfrac{1.22\times10^{-8}\times(-4.89\times10^{4}\hat{k})}{1.81\times10^{-3}}[/tex]

[tex]a= -0.3296\ \hat{k}\ m/s^2[/tex]

Negative sign shows the opposite direction.

Hence, The magnitude and direction of the acceleration of the particle is [tex]a= 0.3296\ \hat{k}\ m/s^2[/tex]

The magnitude and direction of the particle’s acceleration produced by a uniform magnetic field  [tex]B =(1.63T)i[/tex]^[tex]+(0.980T)j[/tex]^ is [tex]\bold{{a}}= -(0.330 m/s^2) \bold{\hat{{k}}}[/tex]

Explanation:

A particle with mass 1.81×10−3 kg and a charge of 1.22×10−8 C has, at a given instant, a velocity v⃗ =(3.00×104m/s)j^. What are the magnitude and direction of the particle’s acceleration produced by a uniform magnetic field [tex]B =(1.63T)i[/tex]^[tex]+(0.980T)j[/tex]^?

A charged particle is a particle with an electric charge. Whereas electric charge is the matter physical property that causes to experience a force when placed in an electromagnetic field. Uniform magnetic field is the condition when magnetic field lines are parallel then magnetic force experienced by an object is same at all points in that field

From Newton's second law, the force is given by:

[tex]F=ma[/tex]

Magnetic force is

[tex]F= qv \times B[/tex]

[tex]ma = qv \times B[/tex]

[tex]a = \frac{qv \times B}{m}[/tex]

Subsituting with the givens above we get

[tex]a = \frac{(1.22 \times 10^{-8} C) (3 \times 10^{4} m/s) (1.63 T ) (\hat{j} \times \hat{i})}{1.81 \times 10^{-3} kg} = -(0.330 m/s^2) \bold{\hat{{k}}}[/tex]

Therefore the magnitude and direction of the particle’s acceleration produced by a uniform magnetic field  [tex]B =(1.63T)i[/tex]^[tex]+(0.980T)j[/tex]^ is [tex]\bold{{a}}= -(0.330 m/s^2) \bold{\hat{{k}}}[/tex]

Learn more about the particle’s acceleration https://brainly.com/question/3376016

#LearnWithBrainly

Rubbing a balloon on your hair results in the balloon having a -1.93C charge. If you move the balloon 25 cm away from your hair, what is the electric field acting between the balloon and your hair? O 6.17 x 10 N/C O 2.78 x 10 N/C O 4.01 x 10s N/C O 4.67 x 10 N/C

Answers

Explanation:

It is given that,

Charge acquired on rubbing a balloon on your hair, q = -1.93 C

If you move the balloon 25 cm away from your hair, r = 25 cm = 0.25 m

Electric field acting between the balloon and your hair is given by :

[tex]E=\dfrac{kq}{r^2}[/tex]

k = electrostatic constant

[tex]E=\dfrac{9\times 10^9\ Nm^2/C^2\times 1.93\ C}{(0.25\ m)^2}[/tex]

[tex]E=2.779\times 10^{11}\ N/C[/tex]

or

[tex]E=2.78\times 10^{11}\ N/C[/tex]

Hence, this is the required solution.

A 10 Ω resistor is connected to a 120-V ac power supply. What is the peak current through the resistor?

Answers

Answer:

Peak current = 16.9 A

Explanation:

Given that

RMS voltage = 120 Volts

[tex]V_{rms} = 120 V[/tex]

AC is connected across resistance

[tex]R = 10 ohm[/tex]

now by ohm's law

[tex]V = i R[/tex]

[tex]120 = i (10)[/tex]

[tex]i_{rms} = \frac{120}{10} = 12 A[/tex]

now peak value of current will be given as

[tex]i_{peak} = \sqrt{2} i_{rms}[/tex]

[tex]i_{peak} = \sqrt2 (12) = 16.9 A[/tex]

A rod 10.0 cm long is uniformly charged and has a total charge of -21.0 µC. Determine the magnitude and direction of the electric field along the axis of the rod at a point 34.0 cm from its center.

Answers

Final answer:

The magnitude of the electric field is -1.39 x 10^6 N/C and it is directed inward.

Explanation:

To determine the magnitude and direction of the electric field along the axis of the rod at a point 34.0 cm from its center, we can use the formula for the electric field due to a uniformly charged rod. The formula is given by:

E = (k * Q * L) / (x^2 * sqrt(L^2 + x^2))

where E is the electric field, k is the Coulomb's constant, Q is the total charge on the rod, L is the length of the rod, and x is the distance from the center of the rod to the point where we want to find the electric field.

Substituting the given values:

E = (9.0 x 10^9 Nm^2/C^2 * (-21.0 x 10^-6 C) * 0.10 m) / (0.34 m)^2 * sqrt((0.10 m)^2 + (0.34 m)^2) = -1.39 x 10^6 N/C

The negative sign indicates that the electric field is directed inward.

An object with mass M is attached to the end of a string and is raised vertically at a constant acceleration of g 10 . If it has been raised a distance ℓ from rest, how much work has been done by the tension in the string?

Answers

The work by tension is ¹¹/₁₀ Mg

[tex]\texttt{ }[/tex]

Further explanation

Complete Question:

An object with mass M is attached to the end of a string and is raised vertically at a constant acceleration of g/10 . If it has been raised a distance ℓ from rest, how much work has been done by the tension in the string?

[tex]\texttt{ }[/tex]

Given:

Mass of the object = M

Acceleration of the object = g/10

Distance =

Asked:

Work by Tension = W = ?

Solution:

Let's find the magnitude of tension as follows:

[tex]\Sigma F = ma[/tex]

[tex]T - Mg = Ma[/tex]

[tex]T = Mg + Ma[/tex]

[tex]T = M(g + a)[/tex]

[tex]T = M(g + \frac{1}{10}g)[/tex]

[tex]T = M(\frac{11}{10}g)[/tex]

[tex]T = \frac{11}{10}Mg[/tex]

[tex]\texttt{ }[/tex]

[tex]W = T \times L[/tex]

[tex]W = \frac{11}{10}Mg \times L[/tex]

[tex]W = \frac{11}{10}MgL[/tex]

[tex]\texttt{ }[/tex]

The work by tension is ¹¹/₁₀ Mg

[tex]\texttt{ }[/tex]

Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441Newton's Law of Motion: https://brainly.com/question/10431582Example of Newton's Law: https://brainly.com/question/498822

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Dynamics

[tex]\texttt{ }[/tex]

Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant

Answer:

The work done by tension in string is [tex]\dfrac{11}{10}MgL}[/tex].

Explanation:

Given data:

Mass of object is, M.

Acceleration of object is, a = g/10.

Distance covered vertically is, L.

The work done by tension in the string is given as,

[tex]W = T \times L[/tex]  .......................................................... (1)

Here, T is the tension force on string.

Apply the equilibrium of forces on string as,

[tex]T- Mg=Ma[/tex]

Here, g is gravitational acceleration.

[tex]T- Mg=M(\dfrac{g}{10} )\\T=M(\dfrac{g}{10} )+Mg\\T=\dfrac{11}{10}Mg[/tex]

Substituting value in equation (1) as,

[tex]W = \dfrac{11}{10}Mg \times L\\W = \dfrac{11}{10}MgL}[/tex]

Thus, the work done by tension in string is [tex]\dfrac{11}{10}MgL}[/tex].

For more details, refer to the link:

https://brainly.com/question/14871010?referrer=searchResults

A 60.0-kg crate rests on a level floor at a shipping dock. The coefficients of static and kinetic friction are 0.760 and 0.410, respectively. What horizontal pushing force is required to (a) just start the crate moving and (b) slide the crate across the dock at constant speed? Important: Assume that the pushing force is to the right

Answers

Answer:

(a) 446.88 N

(b) 241.08 N

Explanation:

m = 60 kg, μs = 0.760, μk = 0.410

(a) To just start the crate moving: the coefficient of friction is static.

F = μs m g

F = 0.760 x 60 x 9.8

F = 446.88 N

(b) To slide the crate with constant speed: the coefficient of friction is kinetic.

F = μk m g

F = 0.410 x 60 x 9.8

F = 241.08 N

Static friction is the friction that occurs in the body when the body is just about to move. The static friction force will be 446.88 N.While the kinetic friction force will be 241.08 N.

What is the friction force?

It is a type of opposition force acting on the surface of the body that tries to oppose the motion of the body. its unit is Newton (N).

Mathematically it is defined as the product of the coefficient of friction and normal reaction.

m is the mass of crate  = 60 kg

μs is the coefficient of static friction = 0.760

μk  is the coefficient of kinetic friction= 0.410

(a) Static friction is the friction that occurs in the body when the body is just about to move.

[tex]\rm F_s = \mu_s m g\\\\\rm F_s = 0.760\times60\times9.8\\\\\rm F_s = 446.88 N[/tex]

Hence static friction force will be 446.8 N.

(b) When the body is moving in a straight and inclined plane the value of friction force acting on the body is known as kinetic friction.

[tex]\rm F_k = \mu_km g\\\\\rm F_k = 0.410\times60\times9.8\\\\\rm F_k= 241.08\; N[/tex]

Hence kinetic friction force will be 241.08 N.

To learn more about friction force refer to the link;

https://brainly.com/question/1714663

What is the magnitude of the acceleration vector which causes a particle to move from velocity −5i−2j m/s to −6i+ 7j m/s in 8 seconds. Answer in m/s.

Answers

Answer:

Acceleration, [tex]a=\dfrac{1}{8}(-i+9j)\ m/s^2[/tex]

Explanation:

Initial velocity of a particle in vector form, u = (-5i - 2j) m/s

Final velocity of particle in vector form, v = (-6i + 7j) m/s

Time taken, t = 8 seconds

We need to find the magnitude of acceleration vector. The changing of velocity w.r.t time is called acceleration of a particle. It is given by :

[tex]a=\dfrac{v-u}{t}[/tex]

[tex]a=\dfrac{(-6i+7j)\ m/s-(-5i-2j)\ m/s}{8\ s}[/tex]    

[tex]a=\dfrac{(-i+9j)}{8\ s}\ m/s^2[/tex]    

or

[tex]a=\dfrac{1}{8}(-i+9j)\ m/s^2[/tex]

Hence, the value of acceleration vector is solved.

A traveler pulls on a suitcase strap at an angle 36 above the horizontal with a force of friction of 8 N with the floor. If 752 J of work are done by the strap while moving the suitcase a horizontal distance of 15 m, what is the tension in the strap?

Answers

Answer:

71.8 N

Explanation:

T = Tension force in the strap

W = net work done = 752 J

f = force of friction = 8 N

d = displacement = 15 m

θ = angle between tension force and horizontal displacement = 36 deg

work done by frictional force is given as

W' = - f d

Work done by the tension force is given as

W'' = T d Cos36

Net work done is given as

W = W' + W''

W = T d Cos36 - f d

752 = T (15) Cos36 - (8) (15)

T = 71.8 N

Which of the following quantities are units of momentum? (There could be more than one correct choice.) A)N m B) kg s/m C) kg m/'s D)N-s 12 Points] E) kg m2/s2

Answers

Answer : Units of momentum are :

1. Kg m/s

2. N-s

Explanation:

The momentum of an object is given by the product of its mass and velocity with which it is moving. Mathematically, it is given by :

P = mv

Where

m is in kilogram

v is in m/s

Option (1) : N-m = It is not a unit of momentum. It includes the product of force and distance.

Option (2) : Kg s/m = It is again not a unit of momentum.

Option (3) : Kg m/s =

Since, p = mv

p = Kg × m/s

It can be the unit of momentum.

(4) Option (4) : N-s = The change in momentum is equal to the impulse applied on an object. It is given by the product of force and short duration of time. It can be the unit of momentum.

(5) Option (5) : Kg/m²/s² = It is not the unit of momentum.

Hence, the correct options are (c) and (d).

Final answer:

The quantities that are units of momentum among the options provided are C) kg m/s and D) N-s. The other options correspond to different physical quantities.

Explanation:

The concept in question pertains to the momentum of an object, which, in physics, is a vector quantity defined as the product of an object's mass and its velocity. The standard international (SI) unit of momentum is kilogram meter per second (kg m/s).

Examining each giver option: A) Newton meter (N m) is a unit of work, not momentum. B) Kilogram second/meter (kg s/m) does not align with the definition of momentum. C) Kilogram meter/second (kg m/s), this is the correct SI unit for momentum. D) Newton-second (N-s) is also a correct unit for momentum as Newton is equivalent to kg m/s2. E) Kilogram meter2/second2 (kg m2/s2) is the unit for kinetic energy, not momentum.

So, C) kg m/s and D) N-s are the units of momentum among the given choices.

Learn more about Momentum here:

https://brainly.com/question/33450468

#SPJ3

A monoatomic ideal gas undergoes an isothermal expansion at 300 K, as the volume increased from 0.010 m^3 to 0.040 m^3. The final pressure is 130 kPa. What is the change in the internal (thermal) energy of the gas during this process? (R=8.31 J/mol . K) a. 0.0 kJ b. 3.6 kJ c. 7.2 kJ d.-3.6 kJ e.-7.2 kJ

Answers

Answer:

A) 0.0 kJ

Explanation:

Change in the internal energy of the gas is a state function

which means it will not depends on the process but it will depends on the initial and final state

Also we know that internal energy is a function of temperature only

so here the process is given as isothermal process in which temperature will remain constant always

here we know that

[tex]\Delta U = \frac{3}{2}nR\Delta T[/tex]

now for isothermal process since temperature change is zero

so change in internal energy must be ZERO

A car that is traveling in a straight line at 40 km/h can brake to a stop within 20 m. If the same car is traveling at 120 km/h what would be its stopping distance in this case? Assume the braking force is the same in both cases and ignore air resistance.

Answers

Answer:

180 m

Explanation:

Case 1.

U = 40 km/h = 11.1 m/s, V = 0, s = 20 m

Let a be the acceleration.

Use third equation of motion

V^2 = u^2 + 2 as

0 = 11.1 × 11.1 - 2 × a × 20

a = 3.08 m/s^2

Case 2.

U = 220 km/h = 33.3 m/s, V = 0

a = 3.08 m/s^2

Let the stopping distance be x.

Again use third equation of motion

0 = 33.3 × 33.3 - 2 × 3.08 × x

X = 180 m

On an airplane's takeoff, the combined action of the air around the engines and wings of an airplane exerts a 8420-N force on the plane, directed upward at an angle of 69.0° above the horizontal. The plane rises with constant velocity in the vertical direction while continuing to accelerate in the horizontal direction. (a) What is the weight of the plane? N (b) What is its horizontal acceleration?

Answers

(a) 7861 N

Along the vertical direction, the plane is moving at constant velocity: this means that the net vertical acceleration is zero, so the vertical component of the 8420 N upward force is balanced by the weight (pointing downward).

The vertical component of the upward force is given by:

[tex]F_y = F sin \theta[/tex]

where

F = 8420 N is the magnitude of the force

[tex]\theta=69.0^{\circ}[/tex] is the angle above the horizontal

Substituting,

[tex]F_y = (8420 N)(sin 69.0^{\circ}) =7861 N[/tex]

This means that the weight of the plane is also 7861 N.

(b) 3.87 m/s^2

From the weight of the plane, we can calculate its mass:

[tex]m=\frac{W}{g}=\frac{7861 N}{9.8 m/s^2}=802 kg[/tex]

Where g = 9.8 m/s^2 is the acceleration due to gravity.

Along the horizontal direction, the 8420 N is not balanced by any other backward force: so, there is a net acceleration along this direction.

The horizontal component of the force is given by

[tex]F_x = F cos \theta = (8420 N)(cos 69.0^{\circ})=3107 N[/tex]

According to Newton's second law, the net force along the horizontal direction is equal to the product between the plane's mass and the horizontal acceleration:

[tex]F_x = m a_x[/tex]

so if we solve for a_x, we find:

[tex]a_x = \frac{F_x}{m}=\frac{3107 N}{802 kg}=3.87 m/s^2[/tex]

Diagnostic ultrasound of frequency 3.82 MHz is used to examine tumors in soft tissue. (a) What is the wavelength in air of such a sound wave? (b) If the speed of sound in tissue is 1650 m/s, what is the wavelength of this wave in tissue? (Take the speed of sound in air to be 343 m/s.)

Answers

Explanation:

It is given that,

Frequency of diagnostic ultrasound, f = 3.82 MHz = 3820 Hz

The speed of the sound in air, v = 343 m/s

(a) We need to find the wavelength in air of such a sound wave. Let it is given by λ₁

i.e. [tex]\lambda=\dfrac{v}{\nu}[/tex]

[tex]\lambda_1=\dfrac{343\ m/s}{3820\ Hz}[/tex]

[tex]\lambda_1=0.089\ m[/tex]

(b) If the speed of sound in tissue is 1650 m/s .

[tex]\lambda_2=\dfrac{v}{\nu}[/tex]

[tex]\lambda_2=\dfrac{1650\ m/s}{3820\ Hz}[/tex]

[tex]\lambda_2=0.43\ m[/tex]

Hence, this is the required solution.

Other Questions
Maggie needs to spend at least six hours each week practicing the piano. She has already practiced 3hours this week. She wants to split the remainingpractice time evenly between the last two days of the week. Write an inequality to determine the minimum number of hours she needs to practice on each ofthe two days El tomate se introdujo a Europa como planta ornamental. cierto falso 2. Los incas slo consiguieron almacenar las papas por poco tiempo. cierto falso 3. Los aztecas y los mayas usaron las papas como moneda. cierto falso 4. El maz era una comida poco popular en Latinoamrica. cierto falso 5. El aguacate era el alimento bsico de los incas. cierto falso 6. En Mxico se hace una salsa con chocolate. cierto falso 7. El aguacate, la guayaba, la papaya, la pia y el maracuy son originarios de Amrica. cierto falso 8. Las arepas se hacen con cacao. cierto falso 9. El aguacate es un ingrediente del cctel de camarones. cierto falso 10. En Espaa hacen una tortilla con papas. cierto falso Which would be the best place to find accurate information while researching on the internet for a biography?A.a prestigous encyclopedia that isn't edited by usersB.in a chat roomC.blogs about the person Which best describes the chemical reaction taking place? Which of the following soil types is most vulnerable to wind erosion?Clay soilsLoamy soilsCoarse sandRocky soil(Im between B and C...) in addition to academic and extracurricular achievements in school, I am an involved member of my community. I volunteer at the local animal shelter every Saturday morning, and I help build houses for a nonprofit organization a few times a year with my family. Which of these rhetorical devices is most clearly used here? A. Inductive logic B. Ethos C. parallelism D. Text structure What kinds of cells can develop from unipotent stem cells Down syndrome, the most common genetic condition in the United States, is also called trisomy 21. What does this mean?A. A person with Down syndrome has two copies of chromosome 21 but they're fused together. During early embryo development, these chromosomes didn't segregate properly. B. A person with Down syndrome has only one copy of chromosome 21 instead of two copies. Either the sperm cell or the egg cell was lacking this chromosome. C. A person with Down syndrome has three copies of chromosome 21 instead of two copies. An extra chromosome 21 was present in either the sperm or the egg cell. D. A person with Down syndrome has three copies of chromosome 21 instead of two copies. Two sperm cells simultaneously fertilized the egg cell. Write an expression for the missing value inthe table. Toms Age Kims Age 10 13 11 14 12 15 a ?A a + 1 C a + 3B a + 15 D a + 10 Match the following terms,1. heat engine2. heat pump3. Boiler4. Thermostata machine that converts the internal energy of a fuel into mechanical energy.an appliance that extracts heat energy from one source and deposits itelsewhere.an appliance that controls the maintenance temperature of a heatingsystem.a heating appliance that uses heat energy released from fossil fuels to warm water for use in radiant orconvection heating systems. At the end of the year, a library reported 32 books lost or stolen and 24 books were sent out for repair. If the library originally had 1,219 books, how many were left on the shelves or in circulation? A. 1,219 B. 1,187 C. 1,163 D. 1,275 For f(x)=x-14 and g(x)=x^2+14 find (fog)(x). A. x^2+x B. x^2-28x+210 C. x^2 D. x^3-14x^2+14x Help !!! Thank you guys ! How long has the Israel Palestine conflict been going on Debates are an important part of the election process, because they focus on specific issues. are used to propose new laws. help voters choose the best party. show the public how candidates deal with pressure. A surveyor, Toby, measures the distance between two landmarks and the point where he stands. He also measured the angles between the landmarks in degrees. the triangle hastwo sides(65,55)angles (40,30)What is the distance, x, between the two landmarks? Round the answer to the nearest tenth.32.5 m42.1 m85.1 m98.5 m how do you say i was born in germany and i like roman noodles and anime in german what is the passive voice of 'who presided over the function ' Which answer shares a word part with the following word?Word Parts:prefix, suffix, rootIntimation(an indication or hint)A.elatedB.frustratedC.imagination Quienes fueron los primeros en bailar el tango? Steam Workshop Downloader