Aluminum sulfide reacts with water to form aluminum hydroxide and hydrogen sulfide. identify all of the phases in your answer

Answers

Answer 1
This type of reaction is a metathesis. It involves double replacement of two reactants to yield two products, one of which is an insoluble product called precipitate. In this case, the complete balanced reaction would be

Al2S3(s) + 6 H2O(l) ⇒ 2 Al(OH)3 (aq) + 3 H2S(s)

Aluminum Sulfide (Al2S3) in room conditions is a solid. When it is dissolved in water, it creates an aqueous solution of Aluminum Hydroxide (Al(OH)3). The insoluble precipitate produced is a solid form of Hydrogen Sulfide (H2S). To know the phase of the reactants, you can refer to the Material Safety Datasheets to know the property characteristics of various elements and compounds.

Related Questions

What is the mass loss of the nucleus, in u, upon emission of this gamma ray? -g?

Answers

Suppose that the energy of the emitted gamma ray photon is given the symbol "e" in units of Kev
Now, we use Einstein's equation (E = mc² ) where c is the speed of light (3 x 10^8 m/sec)

substituting in this equation, we find that:
e = mass x c² 
mass = e / c² 
Now to get the corresponding value in atomic mass unit:
1 eV/c² = 1/(931.46 * 10^6) amu 
Therefore,
The mass in amu = e x  1/(931.46 * 10^6) atomic mass unit


 

What would indicate that a physical change takes place when copper is drawn into wire

Answers

The shape of the copper would change. 

Explanation:

A physical change is defined as a change that does not bring any difference in chemical composition of a substance.

For example, shape, size, mass, volume, density, etc of a substance are all physical properties.

So, when copper is drawn into wire then there will occur change in its shape but there will not be any change in its chemical composition.

Whereas when a change in chemical composition of a substance occurs then it is known as a chemical change.

Hence, we can conclude that change in the shape of copper when it is drawn into wire indicates a physical change.

Compare bond lengths in butane and t butylcyclohexane

Answers

The bond angles of butane and tert butylcyclohexane are different. First, butane is an alkane that has four carbon atoms and its molecular geometry is that of a straight line. While tert butylcyclohexane is a cycloalkane that forms a ring like structure with one carbon atom attached with a tert butyl branch. Second, the tert butylcyclohexane is shorter in bond length and is strained due to the branched alkyl attached to the cycloalkyl compared to the butane that has no steric hindrance.

Answer:

The lengths of the C-C bonds increases with the decrease in the resistance of said bond, for example, a triple bond has a shorter length than in the case of a single bond. Butane has the single bonds and the CC bond is hybridized with sp3 hybridization, however in the butylcyclohexane structure the CC bond is also sp3 and the angle is 120°, however the angle shown is equal to 109.5°, so there is a certain angular tension and it is very unstable with respect to butane

Explanation:

Find the missing part of this equation

Answers

Missing part will be 100cm/m, and 6500 respectively

Use the specific heat of water to determine how much heat is required to raise the temperature of 50.0g of water from 35oc to 55oc.

Answers

the specific capacity of water is 4186
so use this formula that is Q=mcΔt
                                             = (0.05)(4186)(55-35)
                                             =4186J

Answer:

There is 4184 Joule of energy required

Explanation:

Step 1: Data given

Mass of water = 50.0 grams

Initial temperature of water = 35.0 °C

Final temperature = 55.0 °C

Specific heat of water = 4.184 J/g°C

Step 2: Calculate the heat

Q = m*c*ΔT

⇒ Q = the heat transfer (in Joules)

⇒ m = the mass of water = 50.0 grams

⇒ c = the specific heat of water = 4.184 J/g°C

⇒ ΔT = The change of temperature of the water = T2 - T1 = 55.0°C - 35.0 °C = 20.0 °C

Q = 50.0g * 4.184 J/g°C * 20.0 °C

Q = 4184 J

There is 4184 Joule of energy required

Determine the number of 3s electrons in na.

Answers

Use the atomic number (Z) of the element and determine the electron configuration.

Z for Na is 11 => 11 electrons.

=> electron configuration = 1s2 2s2 2p6 3s

So, there you can count 5 s electrons: 2 in 1s, 2 in 2s and 1 in 3s).

The questions asks only for the 3s electrons, so the answer is one 3s electron.

Calculate the mass of water produced when 1.92 g of butane reacts with excess oxygen.

Answers

c4h10+6.5o2=4co2+5h2o
moles of butane=1.92/58=0.0331 moles
moles of water=0.1655 moles\
as the butane and water has 1 is to 5 molar ratio
0.1655=mass/18
mass=2.98 g
mass of water produced = 2.98 g

Pressure and volume are inversely related. When the pressure on a gas is doubled, what happens to the volume

Answers

When the pressure is doubled the volume will be half as the pressure increase due to the frequent collision of molecules so with the decrease in volume the pressure will increase as Boyles law

Answer: Volume decreases to half of original volume

Explanation:

Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.

[tex]P\propto \frac{1}{V}[/tex]     (At constant temperature and number of moles)

[tex]{P_1V_1}={P_2V_2}[/tex]

where,

[tex]P_1[/tex] = initial pressure of gas = p

[tex]P_2[/tex] = final pressure of gas = 2p

[tex]V_1[/tex] = initial volume of gas = v

[tex]V_2[/tex] = final volume of gas = ?

Now put all the given values in the above equation, we get the final pressure of gas.

[tex]{p\times v}=2p\times V_2[/tex]

[tex]V_2=\frac{v}{2}[/tex]

Therefore, the final volume of the gas will become half of initial volume.

acetylene (C2H2) burns in pure oxygen with a very hot flame. The products of this reaction are carbon dioxide and water. How much oxygen is required to react with 52.0 g of acetylene?

Answers

Answer:

160.0 g

Explanation:

Since O2 has an amu of  32 and it has a coefficent of five in the balanced equation you would do 32 x 5 = 160.0g

Final answer:

Approximately 4.995 moles of oxygen (O2) are required to react with 52.0 g of acetylene (C2H2).

Explanation:

To determine how much oxygen is required to react with 52.0 g of acetylene (C2H2), we need to consider the balanced chemical equation and use stoichiometry.

The balanced equation for the reaction between acetylene and oxygen is 2 C2H2 + 5 O2 → 4 CO2 + 2 H2O.

From the balanced equation, we can see that 2 moles of acetylene react with 5 moles of oxygen to produce 4 moles of carbon dioxide and 2 moles of water.

First, we need to convert the given mass of acetylene (52.0 g) to moles. Using the molar mass of acetylene (26.02 g/mol), we find that 52.0 g of acetylene is equal to 1.998 moles.

Next, we use the mole ratio from the balanced equation to determine the moles of oxygen required. The ratio of acetylene to oxygen is 2:5, so for every 2 moles of acetylene, we need 5 moles of oxygen.

Using the mole ratio:

(1.998 moles C2H2) x (5 moles O2 / 2 moles C2H2) = 4.995 moles O2

Therefore, approximately 4.995 moles of oxygen (O2) are required to react with 52.0 g of acetylene (C2H2).

55 kg of liquefied natural gas (lng) are stored in a rigid, sealed 0.17 m3 vessel. in this problem, model lng as 100% methane. due to a failure in the cooling/insulation system, the temperature increases to 200 k, which is above the critical temperature; thus, the natural gas will no longer be in the liquid phase.

Answers

The pressure in the vessel after the temperature increase is approximately 33.65 MPa.

We are given a scenario where liquefied natural gas (LNG) stored in a rigid, sealed vessel experiences a temperature increase beyond its critical point, causing it to transition from a liquid to a gas phase. We need to find the final pressure in the vessel using the ideal gas law.

2. Modeling the system:

We treat the LNG as pure methane ([tex]CH_4[/tex]) for simplification.

We assume the system behaves like an ideal gas, meaning it follows the ideal gas law.

3. Setting up the equation:

The ideal gas law relates pressure (P), volume (V), number of moles (n), gas constant (R), and temperature (T) through the equation:

PV = nRT

4. Identifying known and unknown values:

V: 0.17 m³ (volume of the vessel)

R: 8.314 J/(mol·K) (universal gas constant)

T: 200 K (final temperature)

P: Unknown (pressure we need to solve for)

5. Converting mass of LNG to moles:

Molar mass of methane ([tex]CH_4[/tex]): 16.04 g/mol

Mass of LNG (m): 55 kg = 55,000 g

Number of moles (n):

n = m / molar mass

n = 55,000 g / 16.04 g/mol

n ≈ 3433 mol

6. Solving for pressure:

Plug the known values into the ideal gas law and solve for P:

P = (n * R * T) / V

P = (3433 mol * 8.314 J/(mol·K) * 200 K) / 0.17 m³

P ≈ 33,647,247 Pa

7. Converting units and expressing final answer:

Convert pressure from Pascal (Pa) to Megapascal (MPa):

P = 33,647,247 Pa * (1 MPa / 1,000,000 Pa)

P ≈ 33.65 MPa

The question probable may be:

55 kg of liquefied natural gas (lng) are stored in a rigid, sealed 0.17 m3 vessel. in this problem, model lng as 100% methane. due to a failure in the cooling/insulation system, the temperature increases to 200 k, which is above the critical temperature; thus, the natural gas will no longer be in the liquid phase. What would be  pressure in the vessel after the temperature increase

Phosphorus has three unpaired electrons and hydrogen has one unpaired electron this means that_____ equivalents of hydrogen can react with ______ equivalents of phosphorus.

Answers

Three equivalents of hydrogen
One equivalent of phosphorus

Three equivalents of hydrogen can react with one equivalent of phosphorus to form compounds like phosphine, where each hydrogen atom forms a bond with one of the unpaired electrons of phosphorus.

Phosphorus typically has three unpaired electrons and hydrogen has one unpaired electron, which means that three equivalents of hydrogen can react with one equivalent of phosphorus. For instance, in the formation of phosphine, PH₃, three hydrogen atoms will combine with one phosphorus atom, each hydrogen providing one electron to form a single bond with phosphorus. Since phosphorus has three unpaired electrons available, it is able to form three single bonds with three hydrogen atoms, resulting in the phosphine compound.

Calculate the pH if the pOH is 2.8

Answers

14 - 2.8 = 11.2

because the pH and pOH added together equal 14

If the pOH of a solution is 2.8, you subtract it from 14 to find the pH, resulting in a pH of 11.2.

To calculate the pH from a given pOH, we can use the relationship that the sum of the pH and pOH is equal to 14 at 25 °C (298 K). If the pOH is 2.8, then we can find the pH by subtracting the pOH from 14:

pH = 14 - pOH

pH = 14 - 2.8

pH = 11.2

Therefore, if the pOH of a solution is 2.8, the pH is 11.2.

In the reaction Na2CO3 + 2HCl → 2NaCl + CO2 + H2O, how many grams of CO2 are produced when 7.5 moles of HCl is fully reacted?

Answers

The answer should be 165.03g of CO2

165.04 grams of CO2 will be produced when 7.5 moles of HCl is fully reacted with Na2CO3 according to the balanced chemical equation provided, using stoichiometry and the molar mass of CO2.

Calculating the Mass of CO2

To find out how many grams of CO2 are produced when 7.5 moles of HCl is fully reacted, we will use the given balanced chemical equation and stoichiometry. The balanced equation is Na2CO3 + 2HCl
ightarrow 2NaCl + CO2 + H2O. According to the stoichiometry of the equation, 2 moles of HCl will produce 1 mole of CO2. Since we have 7.5 moles of HCl, this would react to produce 7.5 / 2 = 3.75 moles of CO2.

The molar mass of CO2 is 44.01 g/mol. So to convert moles of CO2 to grams, we multiply the number of moles by the molar mass: 3.75 moles  imes 44.01 g/mol = 165.0375 grams of CO2. Therefore, 165.04 grams of CO2 (rounded to two decimal places) will be produced when 7.5 moles of HCl is fully reacted.

The generic metal a forms an insoluble salt ab(s) and a complex ac5(aq). the equilibrium concentrations in a solution of ac5 were found to be [a] = 0.100 m, [c] = 0.0110 m, and [ac5] = 0.100 m. determine the formation constant, kf, of ac5.

Answers

Assuming that the reaction from A and C to AC5 is only one-step (or an elementary reaction) with a balanced chemical reaction of:

A + 5 C  --->  AC5

Therefore the formation constant can be easily calculated using the following formula for formation constant:

Kf = product of products concentrations / product of reactants concentration

Kf = [AC5] / [A] [C]^5                    

---> Any coefficient from the balanced chemical reaction becomes a power in the formula

Substituting the given values into the equation:

Kf = 0.100 M / (0.100 M) (0.0110 M)^5

Kf = 6,209,213,231

or in simpler terms

Kf = 6.21 * 10^9                  (ANSWER)

What gas was produced by the decomposition of hydrogen peroxide? what happened when the smoldering toothpick came into contact with the gas? b boldi italicsu underline bulleted list numbered list superscript subscript?

Answers

The gas that is produced from the decomposition of hydrogen peroxide would be oxygen. Hydrogen peroxide (H2O2) would decompose into water (H2O) and oxygen (O2) where water is in a liquid state and oxygen is in the gas state at STP. When the smoldering toothpick would come in contact with the oxygen that is produced, it would start burning again or a combustion reaction would happen.

If the solubility of AgNO3 is 63.7g/100 mL water and you have 5.77 g dissolved in 10 mL of water is your solution unsaturated, saturated, or super saturated? Explain and describe how this solution would look.

Answers

1) Concentration of AgNO3 in solution:

5.77 g / 10 ml = 0.577 g / ml

Multiply by 100 both numerator and denominator to obtain: 57.7 g / 100 ml.

2) Comparisson with the solubility

57.7 g / 100 ml < 63.7 g / 100 ml => the solution contains less AgNO3 than what it can dissolve according to its solubility.

Therefore, the solution is unsaturated.

Why is butane in the lighter a liquid yet the butane in the buret is a gas?

Answers

This because when it is in the lighter its is not in contact with the outside environment so the  pressure does not act on it or act in very small amount while in buret it is open from the head and thus pressure acts on it and which cause its vapor pressure to increase more than atmospharic pressure and cause it to change state 
This is because if the vapor pressure rise above atmospharic pressure then it reaches to its boiling point and change state to gas thats why in buret due to pressure difference its is in gas state

A sample of hydrated sodium thiosulfate has a mass of 6.584 g. After it is heated, it has a mass of 4.194 g. What is the percentage by mass of water in the hydrate?

Answers

Na₂S₂O₃·xH₂O → Na₂S₂O₃ + xH₂O

w(H₂O)=100m(H₂O)/m₀

m(H₂O)=m₀-m₁

w(H₂O)=100(m₀-m₁)/m₀

w(H₂O)=100(6.584-4.194)/6.584=36.30%




36.30%

[only 20 chars]

What is the molality of a 13.82% by mass glucose solution? the molar mass of c6h12o6 is 180.16 g/mol?

Answers

13.82 g / 180.16 g/mol = .07671 moles
.07671 moles / (86.18 g / 1000 g/kg) = .8901 molal

Let me know if you have any further questions!

Answer:

The molality is [tex]0.8901m[/tex]

Explanation:

Let's start defining the molality.

[tex]Molality=\frac{MolSolute}{KgOfSolvent}[/tex]

We also know that in terms of masses :

[tex]SoluteMass+SolventMass=SolutionMass[/tex] (I)

Finally, we define the mass percent as :

[tex]MassPercent=\frac{MassOfSolute}{MassOfSolution}.(100)[/tex]

Using the data of the mass percent we find that :

[tex]13.82=\frac{MassOfSolute}{MassOfSolution}.(100)[/tex]

[tex]\frac{MassOfSolute}{MassOfSolution}=0.1382[/tex] ⇒ [tex]MassOfSolution=\frac{MassOfSolute}{0.1382}[/tex]    (II)

We know that the molar mass of glucose is [tex]180.16\frac{g}{mol}[/tex]

Therefore, if we use the mass of 1 mole of glucose ([tex]180.16g[/tex]) in (II) ⇒

[tex]MassOfSolution=\frac{180.16g}{0.1382}[/tex]

[tex]MassOfSolution=1303.618g[/tex]

Now, if we use the equation (I) :

[tex]180.16g+SolventMass=1303.618g[/tex]

[tex]SolventMass=1123.458g[/tex]

[tex]1Kg=1000g[/tex] ⇒ [tex]SolventMass=1.1234Kg[/tex]

We find that 1 mole of glucose ([tex]180.16g[/tex] of glucose) are combined with [tex]1.1234Kg[/tex] of solvent to obtain [tex]1303.618g[/tex] of solution which is a 13.82% by mass glucose solution.

If we want to find the molality, we can replaced all the data in the equation of molality :

[tex]Molality=\frac{(1Mol)OfGlucose}{(1.1234Kg)OfSolvent}[/tex]

[tex]Molality=0.8901m[/tex]

We use 1 mol of glucose in the equation (which corresponds to 180.16 g of glucose)

The letter ''m'' is the unit of molality.

Which statement best describes the properties of metals?
A) they are shiny and bend without breaking
B) they are dull and are good electrical insulators
C) they conduct electricity well and are brittle
D) they can be flattened and do not conduct heat well

Answers

The correct option is A.

Metals have certain characteristics properties, they include the following: they are ductile, malleable, shiny, hard, lustrous, flexible and they are good conductor of heat and electricity. The malleability of metals refers to their ability to withstand bending and hammering without breaking. Metals are not dull, neither are they brittle, those are the properties of non metals.

Answer : The correct statement is, (A) they are shiny and bend without breaking

Explanation :

Metals : Metals are the elements that easily loose electrons and forms cations.

The properties of the metals :

Generally all the metals are hard except sodium and potassium are soft.They are malleable that means it can be molded into different shapes.They are ductile that means it can be molded into thin wire.They are good conductor of heat and electricity.

Non-metals : Non-metals are the elements that easily gain electrons to form an anion.

The properties of the non-metals :

They are non-malleable that means it can not be molded into different shapes.They are non-ductile that means it can not be molded into thin wire.They are poor conductor of heat and electricity.They are brittle in nature.

Hence, the best statement is, (A) they are shiny and bend without breaking

Why is it reasonable to assume the specific heats of naoh and hcl solutions are the same as water?

Answers

It would be reasonable to assume that the specific heats of NaOH and HCl solutions are the same as water given that the concentration of these solutions are low about 1 M or less.  Having low concentrations would mean that there is only small amount of particles of HCl or NaOH in the solution so most of the properties of the solution is the same as that of a pure water since less particles can interfere with any process. Specific heat is the amount of heat energy needed per mass in order to be able to raise the temperature by a degree. So, when these particles are present in small amount, it is only the water that would determine the amount of heat needed.
Final answer:

It's reasonable to assume the specific heats of NaOH and HCL solutions are the same as water because these solutions are largely water, and the solutes blend into the solution without significantly altering its inherent properties. This assumption is commonly made in calorimetry experiments. However, this is an approximation, and exact values may deviate for solutions with high concentrations.

Explanation:

It's reasonable to assume the specific heats of NaOH and HCL solutions are similar to that of water because they are largely composed of water. When HCL and NaOH (both of which are solutes) are added to water, they dissociate and blend into the solution without significantly altering the water's inherent properties, like specific heat.

We rely on this assumption when conducting calorimetry experiments. Here, we trap heat in a calorimeter to eliminate any heat transfer between the reaction solution (rxn soln) and the external environment. We then use the specific heat of water to help calculate the heat either absorbed or released during the reaction.

Examples for this assumption include calculations where the enthalpy change of reactions involving HCL and NaOH are measured, or where their mass or heat capacity are considered and observed to result similarly as with water. However, it's also important to note that this is an approximation, and exact values may deviate for solutions with higher concentrations.

Learn more about Specific Heat here:

https://brainly.com/question/28852989

#SPJ3

If there are 25 marbles in a box and 9 of them are blue, what percent of the marbles are a color than blue?

Answers

First, you have to find what percent of 25 is 9. The answer for that would be 36%. Then, you must subtract 36% (the blue marbles) from 100% (all of the marbles). That leaves you with 64% as your final answer.

There are 25 marbles in a box and 9 of the marbles are blue. What percent of the marbles are a color other than blue.

First, we need to understand what the problem is asking us to do. If we know that there are 9 marbles in the box that are blue and there are 25 marbles that are in the box altogether, we can subtract 9 from 25 and we get a difference of 16. Now we know that we need to find the percent of the marbles that are not blue.

16 ÷ 25 = 0.64

0.64 × 100 = 64%

Therefore, 64% of the marbles are a different color than blue and 36% of the marbles are blue.

Determine the expression for the equilibrium constant, kc, for the reaction by identifying which terms will be in the numerator and denominator: kc=numeratordenominator=?? place the terms into the appropriate bin.

Answers

The kc is a representation of how fast the reaction proceeds to their products when it has achieved equilibrium. The activation energy for the forward and the one for the reverse reaction are similar because they attained chemical equilibrium. A chemical equilibrium happens when both of the reactant and products achieve the same concentration. An example is the process of melting and freezing. Melting and freezing for a given substance occurs at the same temperature. Because the temperature at which the solid starts to melt is also the temperature at which the liquid starts to freeze. They are at chemical equilibrium.

calculate the density of a rectangular solid, which has a mass of 25.71g. It is 2.30cm long, 4.01cm wide, and 1.82cm high

Answers

Volume of a rectangular block= 2.30x4.01x1.82=16.78cm3
Mass of the rectangular block= 25.71 g 
Density of the block will be = 25.71/16.78=1.53 g/cm3
So the 
ANSWER IS 1.53 g/cm3 density

Calculate the vapor pressure of a solution containing 27.2 g of glycerin (c3h8o3) in 132 ml of water at 30.0 ?c. the vapor pressure of pure water at this temperature is 31.8 torr. assume that glycerin is not volatile and dissolves molecularly (i.e., it is not ionic) and use a density of 1.00 g/ml for the water.

Answers

This problem is to apply Roult's Law.

Roult's Law states that the vapor pressure, p, of a solution of a non-volatile solute is equal to the vapor pressure of the pure solvent, Po solv, times the mole fraction of the solvent, Xsolv

p = Xsolv * Po sol

X solv = number of moles of solvent / number of moles of solution

The solvent is water and the solute (not volatile) is glycerin.

Number of moles = mass in grams / molar mass

mass of water = 132 ml * 1 g/ml = 132 g

molar mass of water = 18 g/mol

=> number of moles of water = 132 g / 18 g/mol = 7.33333 mol

mass of glycerin = 27.2 g

molar mass of glycerin:, C3H8O3: 3 * 12 g/mol + 8 * 1 g/mol + 3*16 g/mol = 92 g/mol

number of moles of glycerin = 27.2g / 92 g/mol = 0.29565

total number of moles = 7.33333 moles + 0.29565 moles = 7.62898 moles

=> X solv = 7.33333 / 7.62898 = 0.96125

=> p = 0.96125 * 31.8 torr ≈ 30.57 torr ≈ 30.6 torr.

Answer: 30.6 torr

Final answer:

To find the vapor pressure of the glycerin solution, calculate the moles of glycerin and water, determine the mole fraction of water, and apply Raoult's law using the vapor pressure of pure water at the specified temperature.

Explanation:

To calculate the vapor pressure of the solution containing glycerin in water, we will use Raoult's law, which states that the vapor pressure of a solution is directly proportional to the mole fraction of the solvent. The first step is to calculate the number of moles of glycerin (C3H8O3) by using its molar mass (92.09 g/mol), and then calculate the number of moles of water using its given density (1.00 g/mL) to convert the volume to mass and then to moles with its molar mass (18.015 g/mol).

Once we have both amounts in moles, we can calculate the mole fraction of water and apply Raoult's law to find the new vapor pressure of the solution, knowing the vapor pressure of pure water at the given temperature (30.0 °C) is 30.6 Torr.

The addition of 435.2 j of heat is required to raise the temperature of 3.4 g of olive oil from 21?c to 85?c. what is the specific heat of the olive oil?

Answers

use this formula Q=mcΔT
                          435.2   =(3.4)(c)(85-21)
                          435.2   =217.6c

                                  c  =2 J/kg.c°

The specific heat of olive oil is 2 J/g °C'

From the question,

We are to determine the specific heat of olive oil

From the formula

Q = mcΔT

Where Q is the quantity of heat

m is the mass of substance

c is the specific heat of substance

ΔT is the change in temperature

From the given information

Q = 435.2 J

m = 3.4 g

ΔT = 85 °C - 21 °C = 64 °C

Putting the above parameters into the formula, we get

435.2 = 3.4 × c × 64

435.2 = 217.6c

∴  c = 435.2 ÷ 217.6

c = 2 J/g °C

Hence, the specific heat of olive oil is 2 J/g °C

Learn more here: https://brainly.com/question/13439286

A fixed amount of gas occupies a volume of 7.25 l at a pressure of 4.52 atm. what will be the volume occupied if the pressure is decreased to 1.21 atm at constant temperature?

Answers

P1V1=P2V2
SO
7.25X4.52=1.21XV2
V2=27.1 l

The volume occupied if the pressure is decreased to 1.21 atm at constant temperature is 27.08 L

Data obtained from the questionInitial volume (V₁) = 7.25 LInitial pressure (P₁) = 4.52 atmTemperature = ConstantNew pressure (P₂) = 1.21 atmNew Volume (V₂) =?

How to determine the new volume

The new volume of the gas can be obtained by using the Boyle's law equation as illustrated below:

P₁V₁ = P₂V₂

4.52 × 7.25 = 1.21 × V₂

Divide both sides by 1.21

V₂ = (4.52 × 7.25) / 1.21

V₂ = 27.08 L

Learn more about gas laws:

https://brainly.com/question/6844441

#SPJ6

When a colorless aqueous solution of lead nitrate is combined with a colorless aqueous solution of sodium iodide a bright yellow precipitate is formed. what is the chemical formula for the precipitate?

Answers

Pb(NO₃)₂(aq) + 2NaI(aq) → 2NaNO₃(aq) + PbI₂(s)

PbI₂ (the precipitate)

The chemical formula of the bright yellow precipitate is PbI₂ (lead iodide).

What is the balanced chemical equation?

A chemical equation is the representation of a chemical reaction which consists of reactants participating, formed products, and an arrow indicating the direction of the chemical reaction.

The equation that has the number of atoms of substances equal on either side of the chemical equation is known as a balanced chemical equation.

The law of conservation of mass has to be followed by a balanced chemical equation, according to which, the total mass of the elements on the reactant side must be equal to the total mass of elements on the product side.

The chemical equation of the reaction of lead nitrate and an aqueous solution of sodium iodide:

[tex]Pb(NO_3)_2(aq) + 2NaI \longrightarrow 2NaNO_3(aq) + PbI_2 (s)[/tex]

The bright yellow precipitate formed in the above chemical reaction has the chemical formula PbI₂.

Learn more about the balanced chemical equation, here:

brainly.com/question/15052184

#SPJ5

How many moles of oxygen are needed to completely react with 9.5 grams of sodium

Answers

4 Na + O₂ = 2 Na₂O

4* 23 g Na --------> 16 g O₂
9.5 g Na ------------> ?

Mass of O₂ = 9.5 * 16 / 4 * 23

Mass = 152 / 92

Mass = 1.6521 g of O₂

Molar mass O₂ = 16.0 g/mol

1 mole O₂ ------------ 16.0 g 
? mole O₂ ------------ 1.6521 g

mole O₂ = 1.6521 * 1 / 16.0

≈ 0.10325 moles of O₂

hope that helped!

Answer: 0.103 moles of oxygen

Explanation:

According to avogadro's law, 1 mole of every substance occupies 22.4 Liters at STP and contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.

To calculate the moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given volume}}{\text {Molar volume}}[/tex]

[tex]\text{Number of moles of sodium}=\frac{9.5g}{23g/mol}=0.413moles[/tex]

[tex]4Na+O_2\rightarrow 2Na_2O[/tex]

According to stoichiometry:

4 moles of [tex]Na[/tex] combine completely with 1 mole of [tex]O_2[/tex] to give 2 moles of [tex]Na_2O[/tex]

Thus 0.413 moles of [tex]Na[/tex] will combine completely with=[tex]\frac{1}{4}\times 0.413=0.103[/tex] moles of [tex]O_2[/tex]

Thus 0.103 moles of oxygen are needed to completely react with 9.5 grams of sodium

A gas cylinder contains exactly 15 moles of oxygen gas (O2). How many molecules of oxygen are in the cylinder? 4.01 × 1022 molecules 6.02 × 1023 molecules 9.03 × 1024 molecules 2.89 × 1026 molecules

Answers

Moles are used conveniently in chemistry especially in stoichiometric calculations involving reactions. The unit of mole is a collective term that holds 6.022×10^23 particles. These particles is a general term for any small units of matter including molecules, atoms and sub-particles. This ratio of 6.022×10^23 particles to 1 mole is known to be the Avogadro's number. Its exact number is actually 6.0221409×10^23. We use this constant in our stoichiometric calculation as follows:

15 moles oxygen * (6.022×10^23 molecules/ 1 mole oxygen) = 9.033×10^24 molecules of oxygen

Answer:

answer in picture    It's B

Explanation:

Other Questions
Which innovation made the building and use of skyscrapers feasible? How many hours are in 2 weeks? what did Annie mean when she said that the Kellers pity for Helen was like lying to her. A certain medicine is given in an amount proportional to a patient's body weight. Suppose a patient weighing 200 pounds requires 250 milligrams of medicine. What is the weight of a patient who requires 220 milligrams of medicine? How could sleep deprivation cause a serious health problem if it is not addressed A domino consists of two congruent squares placed side by side. the perimeter of the domino is 60 units. what is the area of the domino, in square units? When the mass of an object decreases, the force of gravity A, remains unchanged. B. decreases C. increases. D. becomes irregular. The sum of two numbers is 44 . Their difference is 22 . HELP PLEASE ASAP!!1. Can you explain how a table can be used to find the rate of change?2. How do you find the rate of change using a graph? In which osi model layer does tcp operate? According to cognitive psychologists, the most common form of thinking involves: When I lost my possessions, I found my creativity. I felt I was being born for the first time. So for me the world became beautiful.With the Crash, I realized that the greatest fantasy of all was business. The only realistic way of making a living was versifying. Living off your imagination.Based on the excerpt, which best describes Harburgs view of the Great Depression? On Saturday a local shop shop sold a combine TOTAL of 345 hamburgers and cheeseburgers. The number of cheeseburgers sold was 2 times the number of hamburgers. How many hamburgers were sold on Saturday? For singular words that end in s, ss, sh, ch, x, or z, what letters are added to make them plural? How is the gerund used in the sentence below? susan has learned gardening from her aunt? Evaluate | 4t+n | if t=-2 and n=5 Darcy kicks a ball that is represented by the function h\left( t \right) = - 16{t^2} + 50t h ( t ) = 16 t 2 + 50 t where t stands for time and h(t) stands for the height of the ball in feet. How long will it take for the ball to hit the ground? The chief executive officers of the roman republic who were responsible for leading the roman army into battle and administering the government were the after texas successfully gained independence from mexico in 1836, which of these delayed admission into statehood in the united states until 1845? Both the social facilitation and social loafing are examples of the influence that the presence of others have on our behaviors. these phenomenon differ, however, in the presence of others __________ in social facilitation situations and _______ in social loafing situations. Steam Workshop Downloader