Answer:
The ecosystem becomes more stable and diverse.- A.
The best answer is:A. The ecosystem becomes more stable and diverse.
As the process of succession occurs, the ecosystem becomes more stable and diverse. This is because different species colonize the area at different stages of succession, leading to an increase in the number and diversity of species present.
Thus, While succession can be seen as a disturbance in the short term, in the long term, it leads to greater stability and biodiversity in the ecosystem. Therefore, options B, C, and D are not correct.
Learn more about ecosystem succession at :
https://brainly.com/question/29766390
#SPJ7
How does protein electrophoresis differ from DNA electrophoresis?
Answer:
Electrophoresis is the process in which specific components are separated based on size.
Explanation:
As the name implies protein electrophoresis is used to determine proteins in a sample and DNA electrophoresis is used to determine DNA segments (and later sequences) in a given sample.
Protein electrophoresis differs from DNA electrophoresis mainly due to the structural differences between proteins and DNA. Proteins require denaturation and coating with SDS for separation by SDS-PAGE, while DNA can be separated in agarose gel directly. Two-dimensional electrophoresis adds further separation of proteins by isoelectric points before size.
Protein electrophoresis and DNA electrophoresis are techniques used to separate these macromolecules based on their size and charge. However, due to the structural differences between proteins and DNA, different methods are employed for each. Proteins are structurally diverse and vary in their amino acid compositions, which affects their shape and charge. Proteins are often globular and smaller than DNA, making the large pores of an agarose gel unsuitable for their separation. To overcome these challenges, proteins are commonly denatured with a detergent such as sodium dodecyl sulfate (SDS), which coats the proteins with negative charges and gives them a rod-like shape similar to DNA, allowing them to be separated by size through SDS-PAGE (Polyacrylamide Gel Electrophoresis). In contrast, DNA has a uniform shape and negative charge that allows it to be separated in an agarose gel without prior modification.
What is an example of dolphins overproducing?
The orca, or killer whale, for example, is actually the largest member of the dolphin family. Dolphins are by far more prevalent than porpoises. Most scientists agree that there are 32 dolphin species (plus five closely related species of river dolphin) and only six porpoise species.
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
An injury from an unforeseeable risk can not be compensated by the law of negligence because there is no cause in fact.
a. True
b. False
the answer is F. companies hire pros. 2 evaluate customer risk..example, risk associated with a revolving door...
A new species is discovered and scientists are trying to classify it. One of the key features found is that the species is entirely dependent on other organisms for its food necessary to sustain life. What type of species is this? A. Autotrophic B. Mixotrophic C. Producer D. Heterotrophic
Answer: Option D
Explanation: The organism that cannot synthesize their own food are kept in the category of heterotrophs. These organism derive their energy from the organism that make food.
These organisms lack the ability of making food by the help of the process photosynthesis. They lack the pigment required for this process.
These kinds of organisms are termed as Heterotrophic organism.
Answer:
D>)Heterotrophic
Explanation:
just took test
Human sperm cells and egg cells are
A haploid, each containing 23 chromosomes.
B haploid, each containing 46 chromosomes.
C diploid, each containing 23 chromosomes.
D diploid, each containing 46 chromosomes.
Answer:
A. haploid, each contain 23 chromosomes.
Explanation:
A egg and sperms are formed after reduction division or meiosis and hence carry just 23 chromosomes , a single copy after division. the number is restored back to 46 after the fusion of egg and sperm to form a zygote.
The genes carried by all members of a particular population make up the population’s
A. allele frequency.
B. phenotype.
C. genotype.
D. gene pool.
The answer is D) gene pool
How many chromosomes are in a haploid cell?
First you must know that a diploid cell has double the amount of chromosomes of a haploid cell. A diploid cell has 46 chromosomes. When we divide 46 by 2 you get 23. This means that there are 23 chromosomes in a haploid cell.
Hope this helped!
~Just a girl in love with Shawn Mendes
Answer:
Haploid describes a cell that contains a single set of chromosomes. The term haploid can also refer to the number of chromosomes in egg or sperm cells, which are also called gametes. In humans, gametes are haploid cells that contain 23 chromosomes, each of which a one of a chromosome pair that exists in diplod cells.
Explanation:
Why don't we use more renewable energy sources?
Because sometimes building these facilities is expensive and they usually have to be built in remote areas and burning fossil fuels has also been cheaper than using renewable energy in the past. Another issue is that the form of energy isn't available all the time.
moment magnitude estimates the amount of energy an earthquake releases and is derived from the amount of displacement along
Answer:
Moment magnitude estimates the amount of energy an earthquake releases and is derived from the amount of displacement along FAULT.
Answer:FAULT
Explanation:GRADPOINT
True or False? Agriculture refers only to the crops that farmers grow in order to sustain the human population. 1Points A True B False
Answer:
False
Explanation:
Agriculture can mean many other things...
It can mean fishing, etc.
The statement is false. Agriculture refers to a wide range of activities other than just the cultivation of crops, including livestock farming, aquaculture, forestry and even silk production.
Explanation:False. Agriculture is not solely confined to just growing crops for human consumption. The term agriculture actually encompasses a wide range of activities other than just crop cultivation, including the raising of livestock for meat, dairy, and uses such as work and transport, aquaculture, forestry, and beekeeping for honey production. In fact, some forms of agriculture don't involve plant cultivation at all, like sericulture (silk production) and the rearing of insects for other purposes. Therefore, Agriculture refers in broad terms to the cultivation or breeding of plants and animals to provide food, wool, medicinal plants, or other products that sustain and enhance human life.
Learn more about Agriculture here:https://brainly.com/question/36203754
#SPJ11
Which of the following led to the greatest decline of bedbug populations in the mid twentieth century?
Highly improved laundering soaps.
The use of pesticides, namely DDT.
The increased use of running water in homes.
The use of washing machines.
Answer:
The answer is the increase use of running water.
Explanation:
The increased amount of water in homes allowed for washing clothes and bedding.
Answer: Option B
Explanation:
There was rise in the population of bed bug during the mid twentieth century and there was no control on them.
The use of pesticide was the one and only solution on the pests. DDT was a very effective pesticide that killed bed bugs.
DDT was banned after sometime because it entered the food chain and its level was increasing significantly at each level.
But before that it was very effective in eradicating bed bugs.
In a molecule of double-stranded DNA, the amount of Adenine present is always equal to the amount of a. cytosine b. guanine c. thymine d. uracil
Answer: Thymine
Explanation: I took the test.
In a molecule of double-stranded DNA, the amount of Adenine present is always equal to the amount of thymine.
DNA:
The DNA molecule is a double-stranded molecule made up of nucleotide subunits. The nucleotide subunits found in DNA are Adenine (A), Cytosine (C), Guanine (G) and Thymine. According to the complementary base pairing rule by Chargaff, Adenine base is hydrogen bonded to Thymine while the Cytosine base is hydrogen bonded to Guanine. A-T, G-C etc. These pairing between two complementary bases makes DNA molecule double stranded. The amount of adenine bases in a DNA molecule is equal to that of thymine while the same applies to Guanine and Cytosine. Therefore, in a molecule of double-stranded DNA, the amount of Adenine present is always equal to the amount of thymine.Learn more at: https://brainly.com/question/12499113?referrer=searchResults
Which of the following is not a possible cause of mass extinction?
A. Meteorite impact
B. Failure to evolve
C. Geographic isolation
D. Temperature reduction
***GENERAL SCIENCE***
Answer:
It's C.
Explanation:
The correct answer is C
The sickle-cell allele is pleiotropic (that is, it affects more than one phenotypic trait). Specifically, this allele affects oxygen delivery to tissues and affects one's susceptibility to malaria. Heterozygous individuals who have one normal and one sickle-cell allele have a phenotype that has both costs and benefits. The cost: Under conditions of low atmospheric oxygen availability, individuals heterozygous for this allele can experience life-threatening sickle-cell "crises." The benefit: Such individuals are less susceptible to malaria. Thus, pleiotropic genes/alleles reveal that ________.
Answer:
adaptations are compromises
Explanation:
The pleiotropic gene involved in sickle-cell anemia is an example of heterozygous advantage. This means that the heterozygous genotype is favourale over other two genotypes (recessive homozygous and dominant homozygous). Eventhough it has harmful effect (sickle cell disease carrier) heterozygous genotype enables resistance to infection (malaria) and that is why this genotype is still favourable by natural selection. This phenomenon is evidence of compromise between harmful ad benefit.
The main way a recessive allele would be expressed even when only one copy is present would be ________.
sex linked inheritance
Which of the following is a reason why sticky end producing restriction enzymes are preferred compared to blunt end ones?
A) Because sticky ends created by any restriction enzymes can be ligated to sticky ends created by any other restriction enzyme.
B) Because sticky ends are more amenable to the mechanism of phosphodiester bond formation by DNA ligase.
C) Because blunt ends can be mistaken as double stranded breaks which are degraded by DNA repair pathways.
D) Because sticky ends can be temporarily held together by hydrogen bonding between the two strands.
E) Because blunt ends can be temporarily held together by hydrogen bonding between the two strands.
Answer:
D) Because sticky ends can be temporarily held together by hydrogen bonding between the two strands.
Explanation:
Restriction enzymes cut the DNA at specific restriction sites and by the mechanism of action they can form two types of ends:
sticky ends-single-stranded overhangs are formedblunt ends-without overhangs.The main advantage of sticky ends (their overhangs) is that they can complementary bind to another overhand formed by the same restriction enzyme. So, for example in cloning, if the DNA of interest and plasmid vector are cut with the same restriction enzyme, that forms sticky ends, fragment of DNA will fit into a bacterial plasmid in one direction.
On the other hand, blunt ends can be inserted into vector in both directions: head-to-tail or tail-to-head.
While listening to his heart with a stethoscope, you notice a high-pitched, blowing, systolic murmur, heard best directly under the left nipple. a review of roger's medical records shows no prior history of a heart murmur. what is causing this new murmur?
A high-pitched, blowing, systolic heart murmur under the left nipple likely indicates turbulent blood flow due to a heart valve condition. Further evaluation with tools like echocardiograms is necessary to diagnose the exact cause of the murmur, considering that heart murmurs are graded on their intensity and auscultation may be enhanced with deep breathing.
Explanation:The heart murmur described by the student is likely to be caused by turbulent blood flow due to a heart valve condition. This type of murmur, being high-pitched, blowing, and heard during the systolic phase of the heart cycle, could be indicative of a mitral valve prolapse, mitral regurgitation, or aortic stenosis. Without prior history of a murmur, a newly detected systolic murmur near the left nipple is of particular concern and warrants further investigation.
Heart murmurs are graded on their intensity from 1 to 6, and the location where the murmur is best heard can provide clues as to which valve may be affected. Moreover, when auscultating the heart, clinicians may request that the patient breathe deeply to enhance the sound of murmurs, which helps in their detection and characterization.
Diagnostic tools such as phonocardiograms, auscultograms, and ultrasounds, particularly echocardiograms, are useful in analyzing these abnormal heart sounds to determine their cause. Given this new finding of a heart murmur in a person with no known history of cardiac issues, a referral to a cardiologist for further evaluation would be prudent.
Mr. Q wants to know why he has developed a fatty liver. You would give him all of the following reasons except: a. When the enzymes oxidize alcohol, they remove hydrogens and high energy electrons and attach them to the niacin coenzyme. b. The accumulation of the niacin coenzymes with their hydrogens and electrons slows down the TCA cycle so that pyruvate and acetyl CoA levels build up. c. The excess acetyl CoA is used to make fatty acids, which accumulate as fat in the liver. d. The enzymes alcohol dehydrogenase and acetaldehyde dehydrogenase break down alcohol to acetyl CoA. e. The excess acetyl CoA is used to make ketogenic amino acids.
Mr. Q's fatty liver is due to enzymes converting alcohol to acetyl CoA, causing an accumulation of acetyl CoA and fatty acids in the liver. However, the excess acetyl CoA is not used to make ketogenic amino acids, making this choice incorrect.
Mr. Q has developed a fatty liver for several reasons, but one provided reason is not accurate. The correct reasons include:
When enzymes oxidize alcohol, they remove hydrogens and high energy electrons and attach them to the niacin coenzyme. This process leads to the production of NADH, which affects other metabolic pathways by altering the NADH/NAD+ ratio.The accumulation of the niacin coenzymes with hydrogens and electrons slows down the TCA (tricarboxylic acid) cycle so that pyruvate and acetyl CoA levels build up.The excess acetyl CoA is then used to make fatty acids, which accumulate as fat in the liver.Alcohol dehydrogenase and acetaldehyde dehydrogenase are enzymes involved in breaking down alcohol to acetyl CoA.The incorrect reason is:
The excess acetyl CoA is used to make ketogenic amino acids. This statement is inaccurate because acetyl CoA is not used to synthesize amino acids; rather, it is used in the production of ketone bodies during ketogenesis.Much of the energy that the brain expends is used for
Answer:
signaling processes
Explanation:
Neurons within the brain are constantly processing and transmitting information. Electrical impulses that pass from one neuron to another consume a lot of energy. So, sending, receiving and processing the signals are the main events of brain energy expenditure. Neurons also use the energy for the maintenance of themselves and the surrounding glial cells.
Glucose is the main energy source in the brain.
In the presence of lidocaine, the action potential was not affected at r1 because _______.
What are the two main subdivisions of the nervous system and what areas of the body make up these two subdivisions?
Answer:
The nervous system is comprised of two major subdivisions, the central nervous system (CNS) and the peripheral nervous system (PNS).
Explanation:
Name the cap of cartilage which prevents food from entering the trachea while swallowing
It’s the epiglottis
One idea of biogeography is that the longer an environment is geographically separated from others, the more distinct its species will be. Which area of the earth would you expect to have the most distinct species?
A. Central Asia
B. The midwestern United States
C. Western Europe
D. Australia
the answer would be D.Australia. It’s completely separated from other areas of land by oceans.
According to the idea of biogeography, Australia will have the most distinct species since it is widely separated from all the continents.
Why does Australia have so many distinct species?Because Australia was isolated from the rest of the globe for such a long time, it possesses a unique biodiversity. For millions of years, the Australian continent was surrounded by ocean, allowing the plants and animals on that massive life-raft to evolve in unique ways.learn more about biodiversity of Australia here:
https://brainly.com/question/24053414
#SPJ2
Amino acids are bound together by a chemical bond known as an amino acid bond to form proteins.A) TrueB) False
Answer:
False
Explanation:
Amino acids are held together by a bond called a peptide bond and not an amino acid bond. A peptide bond is a form of covalent bond that links two amino acids. This is also known as an amide bond. In the making of proteins, peptide bonds link the carboxyl group of one amino acid to the amino group of another.
The chemical reactions involved in respiration in prokaryotic and eukaryotic cells are virtually identical. In eukaryotic cells, ATP is synthesized primarily on the inner membrane of the mitochondria. In light of the endosymbiont theory for the evolutionary origin of mitochondria, where is most ATP synthesis likely to occur in prokaryotic cells? a. on the nucleoid membrane b. in the cytoplasm c. on the endoplasmic reticulum d. on the plasma membrane
Answer:
d. on the plasma membrane
Explanation:
According to the endosymbiotic theory the origin of mitochondrion is from the prokaryotic organism: primitive host cell (future eukaryotic cell) engulfed prokaryotic cell (endosymbiont) that provided the functions that evolved into mitochondria. Both of them had benefits: the endosymbiont gained protection and some essential nutrients from the host, while host had the energy and oxygen source from the endosymbiont.
So, the plasma membrane of the endosymbiotic prokaryotic cell became the membrane of the mitochondrion.
ATP synthesis in prokaryotic cells, which lack the organelles found in eukaryotic cells, most likely occurs on the plasma membrane, similar to how ATP synthesis occurs on the inner membrane of mitochondria in eukaryotic cells.
Explanation:The chemical reactions involved in respiration in both prokaryotic and eukaryotic cells do hold a significant similarity. In eukaryotic cells, ATP is primarily synthesized on the inner membrane of the mitochondria. On the other hand, prokaryotic cells do not have mitochondria, but they do perform ATP synthesis. Endosymbiont theory, which proposes that mitochondria were formerly independent prokaryotic cells that were engulfed by another cell, provides a plausible explanation for this. Given that prokaryotic cells do not have the organelles found in eukaryotic cells, ATP synthesis is most likely to occur on the plasma membrane in prokaryotic cells, which is d) in your options.
Learn more about ATP Synthesis here:https://brainly.com/question/31872948
#SPJ3
Blood returning to the mammalian heart in a pulmonary vein drains first into the
(A) right ventricle.
(B) right atrium.
(C) left ventricle.
(D) vena cava.
(E) left atrium.
Answer:
(E) left atrium.
Explanation:
Pulmonary veins are veins that carry oxygenated blood from the lungs to the heart (left atrium). These veins are part of the pulmonary circuit:
Venae cavae are a vessels (vena cava interior and superior) that carry deoxygenated blood from the body to the right atrium. From the right atrium through the tricuspid valve the blood goes into the right ventricle. Then, from the right ventricle through the pulmonary valve the blood goes into the main pulmonary artery which carries deoxygenated blood to the lungs (to recieve oxygen). Oxygenated blood from the lungs travels to the heart: two pulmonary veins from each lung to the left atrium.
Blood returning from the lungs via a pulmonary vein enters the heart through the left atrium.
Explanation:Blood returning to the mammalian heart in a pulmonary vein first drains into the left atrium (E). The right atrium receives blood from the systemic circuit that is low in oxygen, which then moves to the right ventricle and is pumped to the lungs via the pulmonary artery. The oxygenated blood from the lungs then returns through the pulmonary veins and enters the left atrium. The pulmonary circulation involves the movement of blood from the right atrium, to the right ventricle, to the lungs, and back to the heart's left atrium.
Why are root tip cells better cells to study than the middle of the roots? a. Cells stop growing at the root tips so you would see more cells dividing b. Root tips are more colorful so you would see more cells dividing c. Only the tips of the roots have a nucleus d. Onion roots grow from the tip so you would see more cells dividing
Final answer:
Root tip cells are better to study than the middle of the roots because they are actively dividing. The root tip contains the actively dividing cells of the root meristem.
Explanation:
The root tip cells are better cells to study than the middle of the roots because they are actively dividing at the apex of the stem. The root tip can be divided into three zones: a zone of cell division, a zone of elongation, and a zone of maturation and differentiation. The zone of cell division is closest to the root tip and contains the actively dividing cells of the root meristem. By studying root tip cells, scientists can observe and analyze cell division and growth processes in plants.
Which of the following most often controls the rate of nutrient cycling in ecosystems?A. rate of decomposition of detritusB. primary productivityC. secondary productivityD. both B and C
Answer:
The correct option is A.
Explanation:
Nutrient cycling refers to the process of movement and exchange of various organic and inorganic materials through the biotic and abiotic components of the biosphere. Nutrient cycling is a very important process that ensures that the ecosystem is balanced. The principal factor that controls the rate of nutrient cycling in ecosystem is detritus. Detritus refers to decomposed organic matters. Therefore, the rate of decomposition of organic and inorganic nutrients majorly determine the rate at which nutrient cycling occurs.
After duplication, at what point does a cell become two cells with identical DNA? starting in prophase end of anaphase end of cytokinesis
Answer:
end of cytokinesis
Explanation:
Telophase is the last stage of cell division. It ends with cytokinesis which is the splitting of the mother cells into two daughter cells. The cell pinches in the equator region with the help of a ring of contractile protein filaments. The formed cleavage furrow grows until the two cells pinch off completely.
Answer:
The correct answer is: end of cytokinesis
Which process helps increase genetic diversity and variation within species?
A.)meiosis
B.)mitosis
C.)photosynthesis
D.)bacterial fission
Meiosis is the type of process that helps increase genetic diversity and variation within a species.
Answer:
a.meiosis
Explanataon: