According to one theory of learning, the number of items, w(t), that a person can learn after t hours of instruction is given by: w(t) = 15 3 t2, 0 ≤ t ≤ 64 Find the rate of learning at the end of eight hours of instruction.

Answers

Answer 1

Answer:

The rate of study is 5 items per hour.

Step-by-step explanation:

Number of items a person can learn after t hours of instruction, w(t) is given by:

[tex]w(t)=15\sqrt[3]{t^{2}}[/tex]

We want to determine the rate of learning at any time t. The rate is the derivative of w(t) with respect to time.

[tex]\frac{dw(t)}{dt} =\frac{d}{dt} 15\sqrt[3]{t^{2}}[/tex]

[tex]\frac{dw(t)}{dt} =15\frac{d}{dt} {t^{2/3}}[/tex]

[tex]\frac{dw(t)}{dt} =15X\frac{2}{3} {t^{2/3-1}}[/tex]

[tex]\frac{dw(t)}{dt} =10 {t^{-\frac{1}{3} }}=\frac{10}{t^\frac{1}{3}}[/tex]

Therefore, the rate of learning at any time t

[tex]\frac{dw(t)}{dt} =\frac{10}{t^\frac{1}{3}}[/tex]

At the end of 8 hours, t=8

[tex]\frac{dw(t)}{dt} =\frac{10}{8^\frac{1}{3}}[/tex]

[tex]\frac{dw(t)}{dt} =\frac{10}{2}[/tex]=5

The rate of study is 5 items per hour.


Related Questions

1. Write an equivalent expression for 27x+18

2. Write the inequality this number line represents

3.erin is going to paint a wall in her house she needs to find the area of the wall so she knows how much paint to purchase what is the area of her wall

4.walt received a package that is 12 1/3 inches long 6 3/4 inches high and 8 1/2 inches wide what is the surface area of the package

Answers

Answer:

1. 27x+18  =  x+x+x+x+x......+x  + 18

You sum "x" 27 times.

2. [tex](36,\infty)[/tex]

3. [tex]285/2 = 142.4[/tex]

4. 2*(12  1/3 )*(8  1/2)  + 2*(12  1/3 )*(6  3/4)+2*(6  3/4 )*(8  1/2)

Step-by-step explanation:

1. Remember that multiplication is a simplification of the sum, so, when you say for example, 4*3, that actually means 3+3+3+3, similarly, when you say, 27x, that means x+x+x...+x  27 times.

2. From the image you can see that  

The 36 is NOT taken, and then you go all the way to infinity, therefore we say [tex](36,\infty)[/tex].  Suppose that 36 was taken, then we would say [tex][36,\infty)[/tex].

3. From the attached photo

you can see that we can compute first the area of the rectangle with length = 15 and height = 7, and also note that at the top a triangle with base 15 and height 5 is formed, so the area of the whole figure would be the area of the rectangle at the bottom plus the area of the triangle on top. That would be 7*15+(15*5)/2 = 285/2

4. Remember that in general the formula for surface area would be

                                              [tex]2lw +2lh+2wh[/tex]

Where   l = length   ,  w = wide,   h = height.  In this case  l = 12  1/3   , w = 8  1/2   and h =  6  3/4


Simplify.

25

40
A) 3
10
B) 10
10
C) 5 − 2
10
D) 2
10
− 5

Answers

Answer:

5 -2√10 = C

Step-by-step explanation:

√25 -√40

√25 = √5 x5 = √5² = 5

√40 = √5 x 8 = √5x 2x4 = √10x4 = √10x 2² = 2√10 (when the 2 comes back into the square root it become 2²)

√25 -√40 = 5 -2√10

The guidance system of a ship is controlled by a computer that has 3 major modules. In order for the computer to function properly, all 3 modules must function. Two of the modules have reliabilities of 0.97 and the other has a reliability of 0.99.

a) What is the reliability of the computer?

b) A backup computer identical to the one being used will be installed to improve overall reliability. Assuming the new computer automatically functions if the main one falls, determine the resulting reliability.

c) If the backup computer must be activated by a switch in the event that the first computer fails, and the switch has a reliability of 0.98, what is the overall reliability of the system? (Both the switch and the backup computer must function in order for the backup to take over.)

Answers

Answer:

a) 0.931491

b) 0.995307

c) 0.994030

Step-by-step explanation:

a) Since all components must be working, the reliability of the computer is the product of the reliability of the three components:

[tex]R_1 = 0.97*0.97*0.99\\R_1=0.931491[/tex]

b) The resulting reliability is now the reliability of the first computer, added to the possibility of failure of the first computer multiplied by the reliability of the second computer:

[tex]R= R_1 +(1-R_1)*R_2\\R= 0.931491+(1-0.931491)*0.97*0.97*0.99\\R=0.995307[/tex]

c) If a switch with reliability of 0.98 must be activated to turn on the second computer, the switch's reliability must be taken into account as follows:

[tex]R= R_1 +(1-R_1)*R_2*R_S\\R= 0.931491+(1-0.931491)*0.97*0.97*0.99*0.98\\R=0.994030[/tex]

The reliability of the system is simply its probability of not failing

(a) The reliability of the computer

This is the product of the reliabilities of the three modules.

So, we have:

[tex]R = 0.97 \times 0.97 \times 0.99[/tex]

[tex]R = 0.931491[/tex]

Approximate

[tex]R = 0.9315[/tex]

Hence, the reliability of the computer is 0.9315

(b) The reliability when a backup is used

In (a), the reliability of the computer is 0.9315

When the computer fails, the reliabilities of the other two are 1 - 0.9315 and 1 - 0.9315.

So, the reliability when a backup is used is calculated using the following complement rule

[tex]R = 1 - [(1 - 0.9315) \times (1 - 0.9315)][/tex]

[tex]R = 0.99530775[/tex]

Approximate

[tex]R = 0.9953[/tex]

Hence, the reliability of the computer when a backup is 0.9953

(c) The overall reliability of the system

In (a), the reliability of the computer is 0.9315.

Also, the reliability of the switch is 0.98

So, the reliability of the backup is:

[tex]R = 0.9315 \times 0.98[/tex]

[tex]R = 0.9129[/tex]

So, the overall system has:

Main computer with reliability of 0.9315 Back up of the computer system with reliability of 0.9129

The reliability of the overall system is then calculated using the following complement rule

[tex]R = 1 - [(1 - 0.9315) \times (1 - 0.9129)][/tex]

[tex]R = 0.9940[/tex]

Hence, the reliability of the overall system is 0.9940

Read more about reliabilities and probabilities at:

https://brainly.com/question/8652467

Determine the original set of data. 1 0 1 5 2 1 4 4 7 9 3 3 5 5 5 7 9 4 0 1 ​Legend: 1|0 represents 10The originat set of the data is?

Answers

The data set is S = {10, 11, 15, 21, 24, 24, 27, 29, 33, 35, 35, 37, 39, 40, 40}

A stem-and-leaf plot is a method to represent the data in tabular form.

The stem consist of the first digits of the data values arranged in ascending order.

The leaf consist of the remaining digits.

The data provided is:

Stem | Leaf

    1  | 0 1  5

    2 | 1  4 4 7 9

    3 | 3 5 5 7 9

    4 | 0 1  

The original data is:

10, 11, 15, 21, 24, 24, 27, 29, 33, 35, 35, 37, 39, 40, 40

Learn  ore about stem Leaf graph here:

https://brainly.com/question/31998860

#SPJ6

The original set of data consists of number sequences as follows: 10 12 4 7 11 4 3 10 0, 10 4 14 11 13 2 4 6, 12 6 9 10, 5 13 4, 10 14 12 11, and 6 10 11 0 11 13 2.

The original set of data is:

10 12 4 7 11 4 3 10 010 4 14 11 13 2 4 612 6 9 105 13 410 14 12 116 10 11 0 11 13 2

Computer chips often contain surface imperfections. For a certain type of computer chip, 9% contain no imperfections, 22% contain 1 imperfection, 26% contain 2 imperfections, 20% contain 3 imperfections, 12% contain 4 imperfections, and the remaining 11% contain 5 imperfections. Let X represent the number of imperfections in a randomly chosen chip. Is X discrete or continuous

Answers

X is a discrete random variable.

A discrete random variable can only take on specific, distinct values with gaps in between.

In this case, X represents the number of imperfections in a computer chip, and it can only take on integer values: 0, 1, 2, 3, 4, or 5.

These values are countable and separate, indicating that X is a discrete random variable.

In contrast, a continuous random variable would have an infinite number of possible values within a range, and you would typically use intervals or real numbers to describe it.

For example, if we were measuring the weight of computer chips, it could be a continuous random variable because it could take on any value within a range, including fractions or decimals.

However, in this scenario, we are dealing with a countable and finite set of values for the number of imperfections, making X a discrete random variable.

for such more questions on variable

https://brainly.com/question/25223322

#SPJ3

1) A home improvement store sold wind chimes for w dollars each. A customer signed up for a free membership card and received a 5% discount off the price. Sales tax of 6% was applied after the discount. Write an algebraic expression to represent the final price of the wind chime.

Answers

Answer:

Step-by-step explanation:

The original price of the wind chimes at the home improvement store is $w.

A customer signed up for a free membership card and received a 5% discount off the price. The value of the discount is

5/100 × w = 0.05w

The discounted price would be

w - 0.05w = 0.95w

Sales tax of 6% was applied after the discount. The amount of sales tax applied would be

6/100 × 0.95w = 0.057w

The algebraic expression to represent the final price of the wind chime is

0.95w + 0.057w

= 1.007w

A study of Machiavellian traits in lawyers was performed. Machiavellian describes negative character traits such as​ manipulation, cunning,​ duplicity, deception, and bad faith. A Mach rating score was determined for each in a sample of lawyers. The lawyers were then classified as having high comma moderate comma or low Mach rating scores. The researcher investigated the impact of both Mach score classification and gender on the average income of a lawyer. For this​ experiment, identify Bold a. the experimental​ unit, Bold b. the response​ variable, Bold c. the ​factors, Bold d. the levels of each​ factor, and Bold e. the treatments.

Answers

a. The experimental​ unit:

The experimental units would be the lawyers that participate in this experiment. The experimental units are the subjects upon which the experiment is performed.

b. The response​ variable:

The response variable would be income. This is the variable that measures the response or outcome of the study.

c. The ​factors:

The factors are the variables whose levels are manipulated by the researcher. In this case, these would be the Mach score, classification and gender.

d. The levels of each​ factor:

The levels would include the levels of the Mach score (high, moderate, low) and the levels of gender (male, female).

e. The treatments:

The treatments are all the possible combinations of one level of each factor. Therefore, these are: High and male, high and female, moderate and men, moderate and female, low and male, low and female.

16. A car depreciates in value at a rate of 10%. The car currently has a value of $12,000.
What will be its value in 10 years?

Answers

Answer: $4,184.14

Step-by-step explanation:

If a car depreciates, it mean the the car is losing it's marketable worth and sometimes at a constant rate. The worth of the car after some years does not remain the same.

The formula for this depreciation when at a constant rate is denoted as:

D = P × [1 - r/100]^n

Where:

D=the Depreciated value of the car after n period which is what is being determined.

P = initial value of the car before depreciation is considered and in this case, P = $12,000

r = constant Rate Of depreciation and in this case = 10%

n = period being considered, which in this case, n = 10years.

Hence,

D = 12,000 × [1 - 10/100]^10

D = $4,184.14

A poll showed that 57.4% of Americans say they believe that statistics teachers know the true meaning of life. What is the probability of randomly selecting someone who does not believe that statistics teachers know the true meaning of life. Report your answer as a decimal accurate to 3 decimal places.

Answers

Answer:

The probability of randomly selecting someone who does not believe that statistics teachers know the true meaning of life is 0.426.

Step-by-step explanation:

Let X = number of Americans who believe that statistics teachers know the true meaning of life.

The probability of the random variable X is,

P (X) = 0.574

The event of a person not believing that statistics teachers know the true meaning of life is the complement of the event X.

The probability of the complement of an event, E is the probability of that event not happening.

[tex]P(E^{c})=1-P(E)[/tex]

Compute the value of [tex]P(X^{c})[/tex] as follows:

[tex]P(X^{c})=1-P(X)\\=1-0.574\\=0.426[/tex]

Thus, the probability of randomly selecting someone who does not believe that statistics teachers know the true meaning of life is 0.426.

Answer:

Probability of randomly selecting someone who does not believe that statistics teachers know the true meaning of life = 0.426 .

Step-by-step explanation:

We are given that a poll showed that 57.4% of Americans say they believe that statistics teachers know the true meaning of life.

Let the above probability that % of Americans who believe that statistics teachers know the true meaning of life = P(A) = 0.574

Now, probability of randomly selecting someone who does not believe that statistics teachers know the true meaning of life is given by = 1 - Probability of randomly selecting someone who believe that statistics teachers know the true meaning of life = 1 - P(A)

So, required probability = 1 - 0.574 = 0.426 .

In San Francisco, 30% of workers take public transportation daily. In a sample of 10 workers, what is the probability that exactly three workers take public transportation daily?

Answers

Answer:

0.267

Step-by-step explanation:

p = 0.3 q = 0.7

10C3 × p³ × q⁷

0.266827932

Answer:

26.68% probability that exactly three workers take public transportation daily

Step-by-step explanation:

For each worker, there are only two possible outcomes. Either they take public transportation daily, or they do not. The probability of a worker taking public transportation daily is independent from other workers. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

30% of workers take public transportation daily.

This means that [tex]p = 0.3[/tex]

In a sample of 10 workers, what is the probability that exactly three workers take public transportation daily?

This is [tex]P(X = 3)[/tex] when [tex]n = 10[/tex]. So

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 3) = C_{10,3}.(0.3)^{3}.(0.7)^{7} = 0.2668[/tex]

26.68% probability that exactly three workers take public transportation daily

Professor Jennings claims that only 35% of the students at Flora College work while attending school. Dean Renata thinks that the professor has underestimated the number of students with part-time or full-time jobs. A random sample of 83 students shows that 38 have jobs.
Do the data indicate that more than 35% of the students have jobs? Use a 5% level of significance.
What is the value of the sample test statistic? (Round your answer to two decimal places.)

Answers

Answer:

[tex]z=\frac{0.458 -0.35}{\sqrt{\frac{0.35(1-0.35)}{83}}}=2.06[/tex]  

[tex]p_v =P(z>2.063)=0.020[/tex]  

So the p value obtained was a low value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the proportion of students with jobs is significantly higher than 0.35.

Step-by-step explanation:

Data given and notation

n=83 represent the random sample taken

X=38 represent the students with jobs

[tex]\hat p=\frac{38}{83}=0.458[/tex] estimated proportion of students with jobs

[tex]p_o=0.35[/tex] is the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level

Confidence=95% or 0.95

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the true proportion is higher than 0.35:  

Null hypothesis:[tex]p \leq 0.35[/tex]  

Alternative hypothesis:[tex]p > 0.35[/tex]  

When we conduct a proportion test we need to use the z statistic, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.458 -0.35}{\sqrt{\frac{0.35(1-0.35)}{83}}}=2.06[/tex]  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level provided [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.  

Since is a right tailed test the p value would be:  

[tex]p_v =P(z>2.06)=0.020[/tex]  

So the p value obtained was a low value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the proportion of students with jobs is significantly higher than 0.35.

Researchers wanted to compare the effectiveness of a water softener used with a filtering process with a water softener used without filtering, Ninety locations were randomly divided into two groups of equal size. Group A locations used a water softener and the filtering process, while group B used only the water softener. At the end of three months, a water sample was tested at each location for its level of softness. (Water softness was measured on a scale of 1 to 5, with 5 being the softest water.) The results were as follows. x1-2.1 s1-0.7 x2-1.7 82 0.4 State the null and alternate hypothesis. Graph and shade the critical region. Find the critical value, the point estimate for the difference in population means given by these samples, and it's test statistic. Label these values and areas on your graph above. Find and explain the meaning of the P-value. Shade a graph showing the area equal to the p-value. Clearly state your initial and final conclusion

Answers

Answer:

Step-by-step explanation:

Hello!

The researcher's objective is to compare the effectiveness of a water softener when used with a filtering process against its effectiveness when used without filtering.

To do so 90 locations were randomly divided into two equal groups.

Group A locations used the water softener with filtering.

Group B locations used the water softener without filtering.

At the end of three months, a water sample was taken of each location and its level of softness was registered (Scale 1 to 5, 5 represents the softest water)

X₁: Softness of water of a location from group A

n₁= 45 locations

X[bar]₁= 2.1

S₁= 0.7

X₂: Softness of water of a location from group B

n₂= 45 locations

X[bar]₂= 1.7

S₂= 0.4

To compare the effectiveness of the softener with and without a filtering process the parameter of interest is the difference between both population means:

Parameter: μ₁ - μ₂

The point estimation of the difference between the population means is the difference of the sample means: X[bar]₁ - X[bar]₂= 2.1-1.7= 0.4

Since the objective is to test if there is any difference with or without the filtering process, the hypothesis test to make is two-tailed:

H₀: μ₁ - μ₂ = 0

H₁: μ₁ - μ₂ ≠ 0

α: 0.05

Since there is no information about the distribution of both variables, you have to apply the central limit theorem and approximate the distribution of X[bar]₁ and X[bar]₂ to normal. Once both samples mean distribution is approximate to normal you can use the statistic:

[tex]Z= \frac{(X[bar]₁ - X[bar]₂)-(Mu_1-Mu_2)}{\sqrt{\frac{S_1^2}{n_1} +\frac{S_2^2}{n_2} } }[/tex]

[tex]Z_{H_0}= \frac{(2.1-1.7)-0}{\sqrt{\frac{0.49}{45} +\frac{0.16}{45} } } = 3.3282[/tex]

As said before, this test is two-tailed, so you will have two critical values:

Critical value 1: [tex]Z_{\alpha /2}= Z_{0.025}= -1.95[/tex]

Critical value 2: [tex]Z_{1-\alpha /2}= Z_{0.975}= 1.965[/tex]

The p-value of this test is also two tailed, you can calculate it as:

P(Z≥3.33) + P(Z≤3.33)= (1 - P(Z≤3.33))+P(Z≤-3.33)= (1-0.999566)+0.000434= 0.000868

p-value: 0.000868

This value means that 0.0868% of the sample size 45 taken from this population will provide natural evidence that there is no difference between the population means of the effectiveness of the water softener used with and without a filtering process.

A little reminder, the p-value is defined as the probability corresponding to the calculated statistic if possible under the null hypothesis (i.e. the probability of obtaining a value as extreme as the value of the statistic under the null hypothesis).

Both using the critical value method and the p-value method the decision is to reject the null hypothesis. This means that with a 5% level of significance there is a difference between the true average of the effectiveness of the water softener used with a filtering process and the true average effectiveness of the water softener used without a filtering process.

I hope it helps!

Please help!! It’s due @ midnight

How much should Marc deposit weekly into an account at 8% compounded weekly in order to have
$4500 available for a round trip plane ticket, hotel, and spending money for a trip to Sweden in 2 years?

Please give step by step!

Answers

Answer:

ooh i just learned this,  not 100% sure but the amount he should have to deposit is $3835.12

if the weekly one means depositing money every week then  it would be $36.88 I think.

Step-by-step explanation:

p=?

r=.08

n=52

t=2

4500 = P(1+.08/52)^(52 x 2)

divide both sides by (1+.08/52)^(52 x 2)

and you are left with $3835.12

if i take into account that Marc is depositing the money every week the i would divide it by 104  (that is 52 x 2 because 52 weeks in a year and it says 2 years) you would be left with $36.88.

Hope I was any help.

Answer: Marc should deposit $39.87 weekly.

Step-by-step explanation:

We would apply the formula for determining future value involving deposits at constant intervals. It is expressed as

S = R[{(1 + r)^n - 1)}/r][1 + r]

Where

S represents the future value of the investment.

R represents the regular payments made(could be weekly, monthly)

r = represents interest rate/number of interval payments.

n represents the total number of payments made.

From the information given,

S = $4500

Assuming there are 52 weeks in a year, then

r = 0.08/52 = 0.0015

n = 52 × 2 = 104

Therefore,

4500 = R[{(1 + 0.0015)^104 - 1)}/0.0015][1 + 0.0015]

4500 = R[{(1.0015)^104 - 1)}/0.0015][1.0015]

4500 = R[{(1.169 - 1)}/0.0015][1.0015]

4500 = R[{(0.169)}/0.0015][1.0015]

4500 = R[112.67][1.0015]

4500 = 112.839R

R = 4500/112.839

R = 39.87

If one of the 1008 subjects is randomly selected, find the probability that the person chosen is a woman given that the person is a light smoker. Round to the nearest thousandth.

Answers

Answer:

The probability is 0.4841.

Step-by-step explanation:

The provided table is:

From above table, it is known that

Number of subjects are 1008.

The probability that the person chosen is a woman given that the person is a light smoker can be calculated as:

[tex]P(Woman| Light smoker)=\frac{P(Woman and light smoker)}{P(Light smoker)} \\P(Woman| Light smoker)= \frac{\frac{76}{1008} }{\frac{157}{1008} } = 0.4841[/tex]

Thus, required probability is 0.4841.

The probability that a randomly selected person is a woman given that the person is a light smoker is [tex]\[ 0.400} \][/tex]

To find the probability that a randomly selected person is a woman given that the person is a light smoker, we need to use conditional probability. The formula for conditional probability [tex]\( P(A|B) \)[/tex] is:

[tex]\[P(A|B) = \frac{P(A \cap B)}{P(B)}\][/tex]

Where:

[tex]\( P(A|B) \)[/tex] is the probability of event [tex]\( A \)[/tex] occurring given that [tex]\( B \)[/tex] has occurred.

[tex]\( P(A \cap B) \)[/tex] is the probability of both events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] occurring.

[tex]\( P(B) \)[/tex] is the probability of an event [tex]\( B \)[/tex] occurring.

Let's define the events:

[tex]\( A \)[/tex] : The person chosen is a woman.

[tex]\( B \)[/tex] : The person chosen is a light smoker.

We need the number of light smokers and the number of women who are light smokers. Suppose we have the following data:

Total number of subjects: 1008

Number of light smokers: [tex]\( n_{\text{light smokers}} \)[/tex]

A number of women who are light smokers: [tex]\( n_{\text{women and light smokers}} \)[/tex]

Given that the number of women who are light smokers is [tex]\( n_{\text{women and light smokers}} \)[/tex] and the total number of light smokers is [tex]\( n_{\text{light smokers}} \)[/tex], the probability can be calculated as follows:

[tex]\[P(\text{woman | light smoker}) = \frac{n_{\text{women and light smokers}}}{n_{\text{light smokers}}}\][/tex]

If we don't have the exact numbers, we'll need those to calculate the probability. However, let's assume the following values (hypothetically for the purpose of illustration):

Total number of light smokers: 150

Number of women who are light smokers: 60

The probability that a randomly selected person is a woman given that the person is a light smoker is:

[tex]\[P(\text{woman | light smoker}) = \frac{60}{150} = 0.4\][/tex]

Rounding to the nearest thousandth:

[tex]\[0.4 = 0.400\][/tex]

In human resource management, performance of employees is measured as a numerical score which is assumed to be normally distributed. The mean score is 150 and the standard deviation 13. What is the probability that a randomly selected employee will have a score less than 120?

Answers

Answer:

[tex]P(X<120)=P(\frac{X-\mu}{\sigma}<\frac{120-\mu}{\sigma})=P(Z<\frac{120-150}{13})=P(z<-2.308)[/tex]

And we can find this probability using the normal standard table or excel and we got:

[tex]P(z<-2.308)=0.0105[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the scores of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(150,13)[/tex]  

Where [tex]\mu=150[/tex] and [tex]\sigma=13[/tex]

We are interested on this probability

[tex]P(X<120)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X<120)=P(\frac{X-\mu}{\sigma}<\frac{120-\mu}{\sigma})=P(Z<\frac{120-150}{13})=P(z<-2.308)[/tex]

And we can find this probability using the normal standard table or excel and we got:

[tex]P(z<-2.308)=0.0105[/tex]

Two hikers come to a ravine and want to know how wide it is. They set up two similar triangles as shown in the diagram. How far is it across the ravine?

Answers

Answer:

d = 80 ft

Step-by-step explanation:

Start with angle BCA, tan(BCA) = 30/15 so BCA = 63.43 degrees.

BCA = ECD since they are opposite angles.

tan ECD = d/40

40 tan(63.4degrees) = d

d = 80 ft

Alternatively, you can use similar triangles since the angles are the same, BCA = ECD, CED = CAB, and CBA = EDC. In that case use proportions to get 30/15 = d/40 so 2 = d/40 and d = 80.

(a) Estimate a second point on the tangent line. (t, p) = Correct: Your answer is correct. (b) Calculate the rate of change of the function at the labeled point. (Round your answer to one decimal place.) 12.5 Incorrect: Your answer is incorrect. thousand employees per year (c) Calculate the percentage rate of change of the function at the labeled point. (Round your answer to three decimal places.) 0.833 Incorrect: Your answer is incorrect. % per year

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

The Estimated  second point is (t,p) =(5,9320)

b

The rate is 180 thousand employer per year

c

The percentage rate of change of the function is 1.939%

Step-by-step explanation:

Looking at the graph

  First is to obtain the scale of the graph what i mean is what the distance between each line segment

    Considering the y-axis  each line segment is

                              [tex]\frac{9300-9200}{5} = \frac{100}{5} =20[/tex]

So this means that after 9300 the next line segment is 9320

Considering the x-axis each line segment is

                            [tex]\frac{4-2}{4} = \frac{2}{4} = 0.5[/tex]

What this means is that 2 line segment after 4 is 4 +2 ×(0.5) =5

So looking this two points (new_t,new_p) = (5 , 9320) = we see that they form a coordinate

       B) The labeled point that we are to consider are

   [tex](t_1,p_2) = (4.8, 9284) \ (t_2,p_2) = (5, 9320)[/tex]

The rate change

                 [tex]= \frac{p_2-p_1}{t_2-t_1}=\frac{9320-9284}{5-4.8} = \frac{36}{0.2} = 180[/tex]

So the rate is 180 thousand employer per year

C)

 So to obtain the percentage rate of change of the function

   Now

       [tex]f(4.8) = 9284 \ Thousand[/tex]

      [tex]f'(4.8) = 180 \ Thousand[/tex]    

Note: This is so because differentiation is the same as  slope of the graph

    Hence the percentage  rate of change

                          [tex]\frac{f'(4.8)}{f(4.8)} *\frac{100}{1} = \frac{180 \ 000}{9284 \ 000} * \frac{100}{1}[/tex]

                           = 1.939%

Final answer:

The question seems to be related to calculus, discussing concepts of tangents and rates of change for a function. To find another point on a tangent line or calculate the rate of change, we need the function and additional details. The respective formulas for these calculations are mentioned, but we can't provide a factual answer without more information.

Explanation:

Given the question, it seems this is related to the field of calculus, specifically addressing concepts of tangents and rates of change of a function. However, to find another point on the tangent line or calculate the rate of change at a specific point, we need more context or the actual function.

Usually, for the first question, you can use the formula slope = (y2-y1) / (x2-x1), assuming (t, p) is a point on the tangent and you know the slope of the tangent. For the second question, the rate of change at a point is the derivative of the function at that point. For the third question, the percentage rate of change at a point is the derivative at that point divided by the function value at that point, multiplied by 100 to get percentage.

Without the function and some additional information, we cannot arrive at a factual answer. You might want to check the question again and include the necessary details.

Learn more about Calculus and Tangents here:

https://brainly.com/question/35874507

#SPJ3

Absorption rates are important considerations in the creation of a generic version of a brand-name drug. A pharmaceutical company wants to test if the absorption rate of a new generic drug (G) is the same as its brand-name counterpart (B).They run a small experiment to test H subscript 0 : space mu subscript G minus mu subscript B equals 0 against the alternative H subscript A : space mu subscript G minus mu subscript B not equal to 0 . Which of the following is a Type I error?a. Deciding that the absorption rates are different, when in fact they are not.b. The researcher cannot make a Type I error, since he has run an experiment.c. Deciding that the absorption rates are different, when in fact they are.d. Deciding that the absorption rates are the same, when in fact they are.e. Deciding that the absorption rates are the same, when in fact they are not.

Answers

Answer:

The type 1 error here is a. Deciding that the absorption rates are different, when in fact they are not.

Step-by-step explanation:

A type I error is the rejection of a true null hypothesis (also known as a "false positive" finding or conclusion).

More generally, a Type I error occurs when a significance test results in the rejection of a true null hypothesis. By one common convention, if the probability value is below 0.05, then the null hypothesis is rejected.

In inferential statistics, the null hypothesis is a general statement or default position that there is nothing significantly different happening, like there is no association among groups or variables, or that there is no relationship between two measured phenomena.

Convert the measurement as indicated.
73 inches = ? ft  ?in

Answers

Answer:

6.08333

Step-by-step explanation:

6ft 0.8inches

Answer:

6 ft 1 in

Step-by-step explanation:

A study on educational aspirations of high school students (Crysdale, Int. J. Comp. Sociol., 16, 19-36, 1975) measured aspirations using the sale (some high school, high school graduate, some college, college graduate). For students whose family income was low, the counts in these categories were (9, 44, 13, 10); when the family income was middle, the counts were (11, 52, 23, 22); when the family income was high, the counts were (9, 41, 12, 27). a. Use SAS/R to test whether the aspirations and family income are independent, reporting both the X2 and G2 statistics. b. No matter your answer in part a, do the standardized residuals suggest any interesting patterns? c. Using SAS/R, conduct a more powerful test than those in part a

Answers

Answer:

I code an example question with answer.

Step-by-step explanation:

A study on educational aspirations of High School Students ( S. Crysdale, International Journal of Comparative Sociology, Vol 16, 1975, pp 19-36) measured aspirations using the scale (some high school, high school graduate, some college, college graduate). For students whose family income was low, the counts in these categories were (9, 44, 13, 10); when family income was middle, the counts were (11, 52, 23, 22); when family income was high, the counts were (9, 41, 12, 27)

A. Construct a suitable contingency table for the above data.

B. Find the conditional distribution on aspirations for those whose family income was high.

C. Conduct a Chi-square test of Independence between educational aspirations and income levels.

D. Explain what further analyses you could do that would be more informative than a chi-squared test.

View comments (1)

Expert Answer

pegguu's Avatar

pegguu answered thisWas this answer helpful?

0

0

202 answers

Chi-Squared Test for Homogeneity of Several Categorical Populations

Null Hypothesis: populations of people are homogeneous with respect to the four levels of education (low, med, high income groups educated same)

Alternative Hypothesis: populations not homogeneous.

Chi-Square Test: Some High School, Grad High School, Some College, Grad College

Expected counts are printed below observed counts

Chi-Square contributions are printed below expected counts

Chi-Square Test: Some High School, Grad High School, Some College, Grad College

Expected counts are printed below observed counts

Chi-Square contributions are printed below expected counts

Some Grad

High High Some Grad

School School College College Total

Low Income

9 44 13 10 76 [observed counts]

8.07 38.14 13.36 16.42 [expected counts]

0.106 0.901 0.010 2.513 [Chi-Square contr]

Medium Income

11 52 23 22 108

11.47 54.20 18.99 23.34

0.019 0.089 0.847 0.077

High Income

9 41 12 27 89

9.45 44.66 15.65 19.23

0.022 0.300 0.851 3.135

Total 29 137 48 59 273

Chi-Sq = 8.871, DF = 6, P-Value = 0.181

"P-Value" = 0.181 > 0.10 [90% confidence interval]; thus Null Hypothesis of homogeneity should be rejected (low, med, high income groups educated same). Alternative Hypothesis should be accepted (education dependent upon income level)

Final answer:

The task is a statistical analysis using SAS/R to test the independence of two variables, economic status and educational aspirations. This involves chi-square and likelihood ratio tests, investigating standardized residuals, and performing more powerful tests for comprehensive results.

Explanation:

The question involves a statistical analysis task using SAS/R to determine the independence between two variables: economic status and educational aspirations. The Chi-square (X2) and likelihood ratio (G2) tests can be utilized to analyze the independence. Standardized residuals can help diagnose potential patterns and significance of divisions, while more powerful tests such as Fisher's exact test or Monte Carlo simulation could provide further insights.

Learn more about Statistical Analysis here:

https://brainly.com/question/33812621

#SPJ3

An investment earns 13% the first year, earns 20% the second year, and loses 15% the third year. The total compound return over the 3 years was ______.

Answers

Answer:

The total compound return over the 3 years is 15.26%

Step-by-step explanation:

Let the initial investment sum be assumed to be X

The total return after each year can be calculated as follows:

After First year: X + (13% of X) = 1.13X

After Second year: 1.13X + (20% of 1.13X) = 1.13X + 0.226X = 1.356X

After Third year: 1.356X - (15% of 1.356X) = 1.356X - 0.2034X = 1.1526X

It is apparent from here that after the third year, the investment has increased the initial X, by 0.1526X, which is 15.26%.

The total compound return over the 3 years is 15.26%

The probability that a person in the United States has type B​+ blood is 13​%.
Four unrelated people in the United States are selected at random.
Complete parts​ (a) through​(d).

(a) Find the probability that all four have type B​+ blood.The probability that all four have type B​+ blood is?
​(Round to six decimal places as​ needed.)
​(b) Find the probability that none of the four have type B​+ blood.The probability that none of the four have type B​+ blood is?
​(Round to three decimal places as​ needed.)
​(c) Find the probability that at least one of the four has type B​+ blood.The probability that at least one of the four has type B​+ blood is?
​(Round to three decimal places as​ needed.)
​(d) Which of the events can be considered​ unusual? Explain. Select all that apply.
A.None of these events are unusualNone of these events are unusual.
B.The event in part​ (a) is unusual because its probability is less than or equal to 0.05.
C.The event in part​ (b) is unusual because its probability is less than or equal to 0.05.
D.The event in part​ (c) is unusual because its probability is less than or equal to 0.05.

Answers

a) Probability that all four have type B+ blood = 0.00031213

b) Probability that none of the four have type B+ blood = 0.57289761

c) Probability that at least one of the four has type B+ blood = 0.42710239

d) B. The event in part (a) is unusual because its probability is less than or equal to 0.05.

To solve these probability problems, we'll use the binomial probability formula:

[tex]P(X=k) = (n, k) \times p^k \times (1-p)^{(n-k)[/tex]

Where:

P(X=k) is the probability of having exactly k successes in n trials.

(n choose k) is the number of ways to choose k successes from n trials (n! / (k! (n-k)!), where n! is the factorial of n).

p is the probability of success (having type B+ blood in this case).

q = 1 - p is the probability of failure (not having type B+ blood).

n is the number of trials.

Given:

p = 0.13 (probability of having type B+ blood)

q = 1 - p = 0.87 (probability of not having type B+ blood)

n = 4 (number of trials)

Let's solve each part step by step:

(a) Probability that all four have type B+ blood:

[tex]P(X=4) = (4, 4) \times 0.13^4 \times 0.87^{(4-4)[/tex]

[tex]P(X=4) = 1 \times 0.00031213 \times 1 \\\\= 0.00031213[/tex]

(b) Probability that none of the four have type B+ blood:

[tex]P(X=0) = (4, 0) \times 0.13^0 \times 0.87^4 \\\\P(X=0) = 1 \times 1 \times 0.57289761 \\\\= 0.57289761[/tex]

(c) Probability that at least one of the four has type B+ blood:

P(at least one) = 1 - P(none)

P(at least one) = 1 - 0.57289761

= 0.42710239

Now, let's determine which events are considered unusual. Generally, an event with a probability less than or equal to 0.05 is considered unusual.

Let's compare the probabilities:

Probability in part (a): 0.00031213 (less than 0.05)

Probability in part (b): 0.57289761 (greater than 0.05)

Probability in part (c): 0.42710239 (greater than 0.05)

Based on the comparison, the only event that can be considered unusual is the event in part (a) because its probability is less than 0.05. Therefore, the correct answers are:

B. The event in part (a) is unusual because its probability is less than or equal to 0.05.

Learn more about probability click;

https://brainly.com/question/32117953

#SPJ12

Final answer:

The calculations show that the probability of all four people having B+ blood is 0.000028561, and the likelihood of none of them having B+ blood is 0.569532. The chance of at least one of them having B+ blood is 0.430468. Thus, only the event in part (a) is considered unusual due to its low probability.

Explanation:

This question is about using probability principles to figure out the likelihood of having certain blood types in a population.

(a) To find the probability that all four individuals have type B+ blood, we need to multiply the individual probabilities together. The probability that one person has B+ blood is given as 13% or 0.13. So, the probability that all four have B+ blood is 0.13*0.13*0.13*0.13 = 0.000028561.

(b) The probability that none of the four have type B+ blood is the complement of the probability that one person has B+ blood. This is 1 - 0.13 = 0.87. We now raise this to the power of four to find the probability that all four selected people do not have B+ blood: 0.87*0.87*0.87*0.87 = 0.569532.

(c) The probability that at least one has type B+ blood is the complement of the result in part b. We subtract our answer from part b from 1: 1 - 0.569532 = 0.430468.

(d) An event is considered unusual if its probability is less than or equal to 0.05. Here, the event in part (a) is unusual because its probability (0.000028561) is less than or equal to 0.05.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ11

Suppose Team A has a 0.75 probability to win their next game and Team B has a 0.85 probability to win their next game. Assume these events are independent. What is the probability that Team A wins and Team B loses

Answers

The probability that Team A wins and Team B loses is 0.112.

Given that,

Suppose Team A has a 0.75 probability to win their next game and Team B has a 0.85 probability to win their next game.

Assume these events are independent.

We have to determine,

What is the probability that Team A wins and Team B loses?

According to the question,

In an independent event and probability, the outcomes in an experiment are termed as events. Ideally, there are multiple events like mutually exclusive events, independent events, dependent events, and more.

Team A has a 0.75 probability to win their next game,

And Team B has a 0.85 probability to win their next game.

Therefore,

The probability that Team A wins and Team B loses is

[tex]\rm The \ probability \ of \ A \ wins \ and \ team \ B \ loses = Probability \ of \ team \ A winning \ game \times (1- Probability \ of \ team B \ lose \ the \ game)\\\\ The \ probability \ of \ A \ wins \ and \ team \ B \ loses = 0.75 \times (1-0.85)\\\\ The \ probability \ of \ A \ wins \ and \ team \ B \ loses =0.75 \times 0.15\\\\ The \ probability \ of \ A \ wins \ and \ team \ B \ loses =0.112[/tex]

Hence, The probability that Team A wins and Team B loses is 0.112.

For more details refer to the link given below.

https://brainly.com/question/743546

Final answer:

The probability that Team A wins and Team B loses is calculated by multiplying the probability of Team A winning (0.75) with the probability of Team B losing (1 - 0.85). The result is 0.1125 or 11.25%.

Explanation:

To calculate the probability that Team A wins and Team B loses, we use the rules of independent events. The event of Team A winning has a probability of 0.75, and the event of Team B losing is the complement of Team B winning, which has a probability of 0.85. Since these are independent events, we multiply the probabilities:

P(Team A wins and Team B loses) = P(Team A wins) × P(Team B loses)

P(Team B loses) = 1 - P(Team B wins) = 1 - 0.85 = 0.15

Therefore, P(Team A wins and Team B loses) = 0.75 × 0.15 = 0.1125.

The probability that Team A wins and Team B loses is 0.1125, or 11.25%.

After scoring a touchdown, a football team may elect to attempt a two-point conversion, by running or passing the ball into the end zone. If successful, the team scores two points. For a certain football team, the probability that this play is successful is 0.80.1. Let X = 1 if successful, X = 0 if not. Find the mean and the variance of X. Round the answers to two decimal places.The mean of X is = .The variance of X is =2. Let Y be the number of points scored. Find the mean and variance of Y. Round the answers to two decimal places.The mean of Y is =The variance of Y is =

Answers

Answer:

Step-by-step explanation:

given that after scoring a touchdown, a football team may elect to attempt a two-point conversion, by running or passing the ball into the end zone. If successful, the team scores two points.

X=1 if successful and

X=0 if not

pdf of X is

X      1       0

p    0.8   0.2

E(x) = [tex]1(0.8)+0(0.2)\\=0.8[/tex]

[tex]E(x^2) = 1^2(0.8) = 0.8[/tex]

Var(x) = 0.8-0.8*0.8

= 0.16

Now let us consider Y.

Y is the no of points scored.

Y      2       0

p     0.8    0.2

E(Y) = [tex]2(0.8)+0(0.2)\\=1,.6[/tex]

[tex]2^2(0.8)+0(0.2)\\= 3.2[/tex]

Final answer:

The mean and variance for X and Y are calculated using their definitions in probability theory. For X, the mean is 0.80 and variance is 0.16. For Y, the mean is 1.60 and variance is 0.64.

Explanation:

The random variable X is a Bernoulli random variable because it has only two outcomes: success (X=1) and failure (X=0). The mean and variance for a Bernoulli random variable can be found using the formulas: Mean (E[X]) = p and Variance (Var[X]) = p(1-p).

 For X:

The mean E[X] = p = 0.80. So, X = 1 with probability 0.80.

The variance Var[X] = p(1-p) = 0.80(1-0.80) = 0.16

The random variable Y represents the number of points scored which can either be 0 or 2. We let p be the probability of scoring 2 points i.e., p = 0.80. Hence, if the two-point conversion is successful, we will score 2 points, otherwise, we score 0.

For Y:

The mean E[Y] = 0*(1-p) + 2*p = 0 + 2*0.80 = 1.60

The variance Var[Y] = (0-E[Y])^2*(1-p) + (2-E[Y])^2*p = (0-1.60)^2*(1-0.80) + (2-1.60)^2*0.80 = 0.64

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ3

Some scientists believe that the average surface temperature of the world has been rising steadily. The average surface temperature can be modeled by T = 0.02t + 15.0. where T is temperature in ∘C and t is years since 1950.
(a) What do the slope and T-intercept represent?
(b) Use the equation to predict the average global surface temperature in 2050.

Answers

Answer:

(a)

The slope of the equation = 0.02

Therefore T-intercept equals 15

(b)

Therefore the average global surface temperature in 2050 is 17°C.

Step-by-step explanation:

If a equation is in the form

y= mx+c........(1)

Then the slope of the equation is m.

Slope: The tangent of the angle which is made with the positive x-axis.

If θ be the angle , Then slope (m)= tanθ.

If a equation in the form

[tex]\frac{x}{a} +\frac{y}{b} =1[/tex]............(2)

Then x-axis intercept equals a and y-axis intercept equals b.

Given equation is

T=0.02t+15.0

Comparing with equation (1)

The slope of the equation = 0.02

Again we can rewrite the equation as

[tex]T-0.02t=15[/tex]

[tex]\Rightarrow \frac{T}{15} -\frac{0.02t}{15}=1[/tex]

Comparing with (2)

Therefore T-intercept equals 15

(b)

Here t= 2050-1950 =100

Putting t=100 in the given equation

T=0.02(100)+15 = 2+15 =17

Therefore the average global surface temperature in 2050 is 17°C.

The grade point averages for 10 randomly selected high school students are listed below. Assume the grade point averages are normally distributed. 2.0 3.2 1.8 2.9 0.9 4.0 3.3 2.9 3.6 0.8 Find a 98% confidence interval for the true mean.

Answers

Answer:

[tex]2.54-2.82\frac{1.110}{\sqrt{10}}=1.55[/tex]    

[tex]2.54+2.82\frac{1.110}{\sqrt{10}}=3.53[/tex]    

So on this case the 98% confidence interval would be given by (1.55;3.53)

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

[tex]\bar X[/tex] represent the sample mean for the sample  

[tex]\mu[/tex] population mean (variable of interest)

s represent the sample standard deviation

n represent the sample size  

Solution to the problem

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

In order to calculate the mean and the sample deviation we can use the following formulas:  

[tex]\bar X= \sum_{i=1}^n \frac{x_i}{n}[/tex] (2)  

[tex]s=\sqrt{\frac{\sum_{i=1}^n (x_i-\bar X)}{n-1}}[/tex] (3)  

The mean calculated for this case is [tex]\bar X=2.54[/tex]

The sample deviation calculated [tex]s=1.110[/tex]

In order to calculate the critical value [tex]t_{\alpha/2}[/tex] we need to find first the degrees of freedom, given by:

[tex]df=n-1=10-1=9[/tex]

Since the Confidence is 0.98 or 98%, the value of [tex]\alpha=0.02[/tex] and [tex]\alpha/2 =0.01[/tex], and we can use excel, a calculator or a tabel to find the critical value. The excel command would be: "=-T.INV(0.01,9)".And we see that [tex]t_{\alpha/2}=2.82[/tex]

Now we have everything in order to replace into formula (1):

[tex]2.54-2.82\frac{1.110}{\sqrt{10}}=1.55[/tex]    

[tex]2.54+2.82\frac{1.110}{\sqrt{10}}=3.53[/tex]    

So on this case the 98% confidence interval would be given by (1.55;3.53)    

The 98% confidence interval would be given by (1.55;3.53)

A range of values that, with a particular level of confidence, is likely to encompass a population value is called a confidence interval. A population mean is typically stated as a percentage that falls between an upper and lower interval.

The range of values in a confidence interval below and above the sample statistic is called the margin of error.

The normal distribution is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

show the sample mean for the given sample.  

population mean (the relevant variable)

The sample standard deviation is denoted by s.

n stands for the number of samples.  

Resolution of the issue

The following formula produces the mean's confidence interval:

[tex]\bar x[/tex] ± [tex]\frac{t_a}{2} \frac{s}{\sqrt{n} }[/tex] ____________(1)

In order to calculate the mean and the sample deviation we can use the following formulas:  

[tex]\bar x =[/tex] [tex]\sum_{i =1}^n \frac{x_i}{n}[/tex]_______(2)

[tex]s = \sqrt{\frac{\sum^n_{i=1}(x_i-\bar x)}{n-1} }[/tex] ____________(3)

The mean calculated for this case is X = 2.54

The sample deviation calculated s = 1.110

t In order to calculate the critical value [tex]\frac{t_a}{2}[/tex] we need freedom, given by: to find first the degrees of

df = n-1=10-19

Since the Confidence is 0.98 or 98%, the value of a = 0.02 and a/2 = 0.01, and we can use excel, a calculator or a tabel to find the critical value.

[tex]\frac{t_a}{2}[/tex]  = 2.82

Now we have everything in order to replace into formula (1):

2.54 - 2.82 [tex]\frac{1.110}{\sqrt{10} }[/tex] = 1.55

2.54 +  2.82 [tex]\frac{1.110}{\sqrt{10} }[/tex]  = 3.53

A store sells 15 2/3 pounds of carrots, 12 1/3 pounds of asparagus, and 3 1/3 of cabbage. How many pounds did the store sell altogether?

Answers

Answer: the store sold 31 1/3 pounds

Step-by-step explanation:

The store sold 15 2/3 pounds of carrots. Converting to improper fraction, it becomes 47/3 pounds.

The store sold 12 1/3 pounds of asparagus. Converting to improper fraction, it becomes 37/3 pounds.

The store sold 3 1/3 pounds of cabbage. Converting to improper fraction, it becomes 10/3 pounds.

Therefore, the total number of pounds that the store sold is

47/3 + 37/3 + 10/3 = 94/3 = 31 1/3 pounds

To prepare for surgery, Anne mixes an anesthetic solution using two different concentrations: 40 mL of 25% solution and 60 mL of 40% solution.

What is the concentration of the mixed solution?

Answers

Answer:

34%

Step-by-step explanation:

Amount of anesthetic in the 25% solution + amount of anesthetic in the 40% solution = amount of anesthetic in the mixed solution

0.25 (40) + 0.40 (60) = x (40 + 60)

10 + 24 = 100x

x = 0.34

The concentration of the mixed solution is 34%.

The level of nitrogen oxides (NOX) in a exhaust of cars of a particular model varies normally with mean 0.25 grams per miles and standard deviation 0.05 g/mi. government regulations call for NOX emissions no higher than 0.3 g/mi.
a. What is the probability that a single car of this model fails to meet the NOX requirement?
b. A company has 4 cars of this model in its fleet. What is the probability that the average NOX level of these cars are above 0.3 g/mi limit?

Answers

Answer:

a) 15.87% probability that a single car of this model fails to meet the NOX requirement.

b) 2.28% probability that the average NOX level of these cars are above 0.3 g/mi limit

Step-by-step explanation:

We use the normal probability distribution and the central limit theorem to solve this question.

Normal probability distribution:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central limit theorem:

The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], a large sample size can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

In this problem, we have that:

[tex]\mu = 0.25, \sigma = 0.05[/tex]

a. What is the probability that a single car of this model fails to meet the NOX requirement?

Emissions higher than 0.3, which is 1 subtracted by the pvalue of Z when X = 0.3. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{0.3 - 0.25}{0.05}[/tex]

[tex]Z = 1[/tex]

[tex]Z = 1[/tex] has a pvalue of 0.8417.

1 - 0.8413 = 0.1587.

15.87% probability that a single car of this model fails to meet the NOX requirement.

b. A company has 4 cars of this model in its fleet. What is the probability that the average NOX level of these cars are above 0.3 g/mi limit?

Now we have [tex]n = 4, s = \frac{0.05}{\sqrt{4}} = 0.025[/tex]

The probability is 1 subtracted by the pvalue of Z when X = 0.3. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{0.3 - 0.25}{0.025}[/tex]

[tex]Z = 2[/tex]

[tex]Z = 2[/tex] has a pvalue of 0.9772

1 - 0.9772 = 0.0228

2.28% probability that the average NOX level of these cars are above 0.3 g/mi limit

The probability that a single car of this model fails to meet the NOX requirement is 15.87%.

What is z score?

Z score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:

z = (raw score - mean) / standard deviation

Given;  mean of 0.25 g and a standard deviation of 0.05 g/mi

a) For > 0.3:

z = (0.3 - 0.25)/0.05 = 1

P(z > 1) = 1 - P(z < 1) = 1 - 0.8413 = 0.1587

b) For > 0.3, sample size = 4

z = (0.3 - 0.25)/(0.05 ÷√4) = 2

P(z > 2) = 1 - P(z < 2) = 1 - 0.9772 = 0.0228

The probability that a single car of this model fails to meet the NOX requirement is 15.87%.

Find out more on z score at: https://brainly.com/question/25638875

It is known that IQ scores form a normal distribution with a mean of 100 and a standard deviation of 15. If a researcher obtains a sample of 16 students’ IQ scores from a statistics class at UT. What is the shape of this sampling distribution?

Answers

Answer:

[tex]X \sim N(100,15)[/tex]  

Where [tex]\mu=100[/tex] and [tex]\sigma=15[/tex]

We select a sample of n=16 and we are interested on the distribution of [tex]\bar X[/tex], since the distribution for X is normal then we can conclude that the distribution for [tex] \bar X [/tex] is also normal and given by:

[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]

Because by definition:

[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]

[tex] E(\bar X) = \mu[/tex]

[tex] Var(\bar X) = \frac{\sigma^2}{n}[/tex]

And for this case we have this:

[tex] \mu_{\bar X}= \mu = 100[/tex]

[tex] \sigma_{\bar X} = \frac{15}{\sqrt{16}}= 3.75[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the IQ scores of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(100,15)[/tex]  

Where [tex]\mu=100[/tex] and [tex]\sigma=15[/tex]

We select a sample of n=16 and we are interested on the distribution of [tex]\bar X[/tex], since the distribution for X is normal then we can conclude that the distribution for [tex] \bar X [/tex] is also normal and given by:

[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]

Because by definition:

[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]

[tex] E(\bar X) = \mu[/tex]

[tex] Var(\bar X) = \frac{\sigma^2}{n}[/tex]

And for this case we have this:

[tex] \mu_{\bar X}= \mu = 100[/tex]

[tex] \sigma_{\bar X} = \frac{15}{\sqrt{16}}= 3.75[/tex]

Other Questions
Which of the following are mass communication methods? (Select all that apply.)blogshand-written lettersradio newssocial media James' parents have few rules for him, and when he breaks them, they tend to ignore it. They are warm and supportive of him no matter what he does -- even if he causes terrible trouble. According to Baumrind, which parenting pattern do they fit? Please help this is hard A cyclist can cover a distance of 18 miles in 45 minute. How many miles the cyclist can cover in 6 hours? How did soviets use propoganda What major theme does the final couplet introduce into the sonnet?lovedeathlifeold age A competitive firm has been selling its output for $20 per unit and has been maximizing its profit, which is positive. Then, the price rises to S25, and the firm makes whatever adjustments are necessary to maximize its profit at the now-higher price. Once the firm has adjusted, its a. quantity of output is higher than it was previously. b. average total cost is higher than it was previously. c. marginal revenue is higher than it was previously. d. All of the above are correct. 5. 6. A profit-maximizing firm in a competitive market is currently producing 200 units of output. It has average revenue of $9 and average total cost of S7. It follows that the firm'se a. average total cost curve intersects the narginal cost curve at an output level of less than 200 units. b. average variable cost curve intersects tne maiguial cost curve at an output level of less : than 200 units.e c. profit is $400. d. All of the above are correct. Individuals who had been mistreated as children and did NOT have a particular form of the MAO-A gene were ______ likely to be violent and engage in a variety of antisocial behaviors as adults compared with individuals who had been mistreated as children and had the particular form of the MAO-A gene. What is the difference between the lithosphere and asthenosphere? At what depth does the lithosphere- asthenosphere boundary occur? Is this above or below the Moho? Is the asthenosphere entirely liquid? What is the main difference between federal and confederal systems of government?In a federal system there is no centralized authority, while in a confederal system power is distributed equally among thestatesOIn a federal system there is no centralized authority, while in a confederal system local offices give advice to a centralizedauthorityIn a federal system there is centralized authority, while in a confederal system power is distributed equally among thestatesIn a federal system power is distributed equally, while in a confederal system the states have less authority than thecentral government. Let u solve cu = 0. Show that any derivative, say w = uxt, also solves cw = 0. In cu = 0, u = u(t, x) do the change of variables (, ) specified below, to find the equation for v(, ). Is it v c 2v = 0? (a) Translation = t T, = x y where y, T are fixed. (b) Dilation = at, = ax for any constant a. (c) Find the change of variables (, ) = (?, ?) such that v(, ) satisfies 1v = v v = 0 Which type of sequence is shown ? -2,0,2,4,6 In the past, every ten-percentage-point increase in cigarette prices in the country of Coponia has decreased per capita sales of cigarettes by four percent. Coponia is about to raise taxes on cigarettes by 9 cents per pack. The average price of cigarettes in Coponia is and has been for more than a year 90 cents per pack. So the tax hike stands an excellent chance of reducing per capita sales of cigarettes by four percent.Which of the following is an assumption on which the argument depends?A. Tobacco companies are unlikely to reduce their profit per pack of cigarettes to avoid an increase in the cost per pack to consumers in Coponia.B. Previous increases in cigarette prices in Coponia have generally been due to increases in taxes on cigarettes.C. Any decrease in per capita sales of cigarettes in Coponia will result mainly from an increase in the number of people who quit smoking entirely.D. At present, the price of a pack of cigarettes in Coponia includes taxes that amount to less than ten percent of the total selling price.E. The number of people in Coponia who smoke cigarettes has remained relatively constant for the past several years. the interest paid on bonds issued by the united states government is less than the interest on many other forms of investment. Yet American citizens and people in other countries annually by billions of dollars in federal bonds. give reasons why many people choose this form of investment solve the equation 4x 3y = y 12 for x if y is 6. Make sure to first solve the equation for x in terms of y. X= ________ Why did president jefferson ask the american minister in paris to negotiate with napoleon bonaparte over the louisiana territory? How much force is required (in Newtons) to accelerate a 4-kg skateboard, along with its 46-kg rider, at 3m/s2? Greatest common factor 16, and 24 The following information was available for Paul Company at December 31, 2020: beginning inventory $90,000; ending inventory $70,000; cost of goods sold $968,000; and sales $1,360,000. Pauls inventory turnover in 2020 wasa21.5 days.b.26.4 days.c.30.2 days.d.33.8 days. What are the variance (to 2 decimals) and standard deviation (to 4 decimals) for the number of these tweets with no reaction? Steam Workshop Downloader