a) What percentage of the area under the normal curve lies to the left of μ? % (b) What percentage of the area under the normal curve lies between μ − σ and μ + σ? % (c) What percentage of the area under the normal curve lies between μ − 3σ and μ + 3σ? %

Answers

Answer 1

Answer:

a) 50%

b) 68%

c) 99%

Step-by-step explanation:

for a standard normal curve ,

a) since the standard normal curve is symmetric and centred around μ , 50% of the curve lies at the left of μ and 50% lies to the right

b) according to the 68-95-99 rule,  68% of the standard normal curve lies from μ − σ and μ + σ

c) from the same rule , 99% of the standard normal curve lies from μ − 3σ and μ + 3σ

Answer 2

Answer:

a) 50%

b) 68%

c) 99.7%

Step-by-step explanation:

The Empirical Rule states that, for a normally distributed random variable:

68% of the measures are within 1 standard deviation of the mean.

95% of the measures are within 2 standard deviation of the mean.

99.7% of the measures are within 3 standard deviations of the mean.

The normal distribution is also symmetric, which means that 50% of the measures are below the mean and 50% are above.

In this problem, we have that:

Mean μ

Standard deviation σ

Area under the normal curve = percentage

a) What percentage of the area under the normal curve lies to the left of μ?

Normal distribution is symmetric, so the answer is 50%.

(b) What percentage of the area under the normal curve lies between μ − σ and μ + σ?  

Within 1 standard deviation of the mean, so 68%.

(c) What percentage of the area under the normal curve lies between μ − 3σ and μ + 3σ?

Within 3 standard deviation of the mean, so 99.7%.


Related Questions

The Whitt Window Company, a company with only three employees, makes two different kinds of hand-crafted windows: a wood-framed and an aluminum-framed window. The company earns $300 profit for each wood-framed window and $150 profit for each aluminum-framed window. Doug makes the wood frames and can make 6 per day. Linda makes the aluminum frames and can make 4 per day. Bob forms and cuts the glass and can make 48 square feet of glass per day. Each wood-framed window uses 6 square feet of glass and each aluminum-framed window uses 8 square feet of glass.
The company wishes to determine how many windows of each type to produce per day to maximize total profit.
(a) Describe the analogy between this problem and the Wyndor Glass Co. problem discussed in Sec. 3.1. Then construct and fill in a table like Table 3.1 for this problem, identifying both the activities and the resources.
(b) Formulate a linear programming model for this problem.(c) Use the graphical method to solve this model.

Answers

Answer:

Maximize Z = 6x1 + 3x2

other answers are as follows in the explanation

Step-by-step explanation:

Employee Glass Needed per product(sq feet) Glass available per                                                                                                  production

                            Product      

Wood framed glass Aluminium framed glass    

doug 6                         0                                            36  

linda 0                        8                                             32  

Bob         6                        8                                            48  

profit  $300              $150  

per batch

Z = 6x1 + 3x2,

with the constraint

6x1 ≤ 36    8x2 ≤ 32      6x1 + 8x2 ≤ 48  

and x1 ≥ 0, x2 ≥ 0

Maximize Z = 6x1 + 3x2

to get the points of the boundary on the graph we say

when 6x1= 36

x1=6

when

8x2= 32

x2=4

to get the line of intersect , we go to  

6x1 + 8x2 ≤ 48  

so,  6x1 + 8x2 = 48  

When X1=0

8x2=48

x2=6

when x2=0

x1=8

the optimal point can be seen on the graph as attached

In this exercise we have to write the maximum function of a company, in this way we find that:

A)[tex]M(Z) = 6x_1+ 3x_2[/tex]

B)[tex]X_1= 8 \ and \ x_2 = 6 \ or \ 0[/tex]

A)So to calculate the maximum equation we have:

[tex]Z = 6x_1 + 3x_2\\6x_1 \leq 36 \\ 8x_2 \leq 32 \\ 6x_1 + 8x_2 \leq 48[/tex]

B) To calculate the limits of the graph we have to do:

[tex]6x_1= 36\\x_1=6\\8x_2= 32\\x_2=4\\6x_1 + 8x_2 = 48\\X_1=0\\8x_2=48\\x_2=6\\x_2=0\\x_1=8[/tex]

See more about graphs at brainly.com/question/14375099

Consider two people being randomly selected. (For simplicity, ignore leap years.)

(a) What is the probability that two people have a birthday on the 9th of any month?
(b) What is the probability that two people have a birthday on the same day of the same month?

Answers

Answer:

[tex](a) = \frac{144}{133225} \\\\(b) = \frac{1}{365}[/tex]

Step-by-step explanation:

Part (a) the probability that two people have a birthday on the 9th of any month.

Neglecting leap year, there are 365 days in a year.

There are 12 possible 9th in months that make a year calendar.

If two people have birthday on 9th; P(1st person) and P(2nd person).

[tex]=\frac{12}{365} X\frac{12}{365} = \frac{144}{133225}[/tex]

Part (b) the probability that two people have a birthday on the same day of the same month

P(2 people selected have birthday on the same day of same month) + P(2 people selected not having birthday on  same day of same month) = 1

P(2 people selected not having birthday on  same day of same month):

[tex]= \frac{365}{365} X \frac{364}{365} =\frac{364}{365}[/tex]

P(2 people selected have birthday on the same day of same month) [tex]= 1-\frac{364}{365} \\\\= \frac{1}{365}[/tex]

Final answer:

The probability that two people have a birthday on the 9th of any month is 1/133,225. The probability that two people have a birthday on the same day of the same month is also 1/133,225.

Explanation:

To calculate the probability that two people have a birthday on the 9th of any month, we need to consider the number of possible outcomes and the number of favorable outcomes. There are 12 months in a year, so the number of possible outcomes is 12. The probability of each person having a birthday on the 9th is 1/365. Therefore, the probability that two people have a birthday on the 9th of any month is (1/365) x (1/365) = 1/133,225.

To calculate the probability that two people have a birthday on the same day of the same month, we need to consider the number of possible outcomes and the number of favorable outcomes. There are 12 months in a year and each month has 30 or 31 days. So the number of possible outcomes is 12 x 31 = 372. The probability of each person having a birthday on a specific day is 1/365. Therefore, the probability that two people have a birthday on the same day of the same month is (1/365) x (1/365) = 1/133,225.

Pre Calculus, Trigonometry Help

Answers

Answer:

[tex]\displaystyle cos\theta=\frac{36}{164}=\frac{9}{41}[/tex]

[tex]\displaystyle tan\theta=\frac{160}{36}=\frac{40}{9}[/tex]

[tex]\displaystyle csc\theta=\frac{164}{160}=\frac{41}{40}[/tex]

[tex]\displaystyle sec\theta=\frac{164}{36}=\frac{41}{9}[/tex]

[tex]\displaystyle cot\theta=\frac{36}{160}=\frac{9}{40}[/tex]

Step-by-step explanation:

Trigonometric ratios in a Right Triangle

Let ABC a right triangle with the right angle (90°) in A. The longest length is called the hypotenuse and is the side opposite to A. The other sides are called legs and are shorter than the hypotenuse.

Some trigonometric relations are defined in a right triangle. Being [tex]\theta[/tex] one of the angles other than the right angle, h the hypotenuse, x the side opposite to [tex]\theta[/tex] and y the side adjacent to [tex]\theta[/tex], then

[tex]\displaystyle sin\theta=\frac{x}{h}[/tex]

[tex]\displaystyle cos\theta=\frac{y}{h}[/tex]

[tex]\displaystyle tan\theta=\frac{x}{y}[/tex]

[tex]\displaystyle csc\theta=\frac{h}{x}[/tex]

[tex]\displaystyle sec\theta=\frac{h}{y}[/tex]

[tex]\displaystyle cot\theta=\frac{y}{x}[/tex]

We are given the values of h=164 and x=160, let's find y

[tex]y=\sqrt{164^2-160^2}=36[/tex]

Now we compute the rest of the ratios

[tex]\displaystyle cos\theta=\frac{36}{164}=\frac{9}{41}[/tex]

[tex]\displaystyle tan\theta=\frac{160}{36}=\frac{40}{9}[/tex]

[tex]\displaystyle csc\theta=\frac{164}{160}=\frac{41}{40}[/tex]

[tex]\displaystyle sec\theta=\frac{164}{36}=\frac{41}{9}[/tex]

[tex]\displaystyle cot\theta=\frac{36}{160}=\frac{9}{40}[/tex]

On a certain airline, the chance the early flight from Atlanta to Chicago is full is 0.8. The chance the late flight is full is 0.7. The chance both flights are full is 0.6. Are the two flights being full independent events?

Answers

Answer:

No

Step-by-step explanation:

A- full early flight atlanta to chicago

P(a)=0,8

B- full late night flightt

P(b)=0,7

A&b- both are full

P(a&b) probability that both flights are full

Suppose that they are independet, then we have:

P(a&b)=p(a)*p(b)=0,8*0,7=0,56.

So if they are independet then p(a&b)=0,56, and that is not true.

If the Durbin-Watson statistic has a value close to 0, which assumption is violated? In other words, which assumption is the Durbin-Watson statistic checking to see is violated?

a - Independence of errors
b- Normality of errors
c- Homoscedasticity
d- none of the above

Answers

Answer:

Null Hypothesis: No first order autocorrelation

Alternative hypothesis: first order correlation exists

The assumptions to run this test are:

1) Errors are normally distributed with mean 0

2) Errors follows an stationary process

3) Independence condition between the erros

The statistic is defined as:

[tex] DW = \frac{\sum_{t=2}^ T (e_t -e_{t-1})^2}{\sum_{t=1}^T e^2_t}[/tex]

And if the value for the DW is near to 0 we can conclude that the assumption of Independence is not satisfied.

Step-by-step explanation:

The Durbin Watson test is a way to check autocorrelation in residuals for a time seeries or a regression.

We need to remember that the autocorrelation is the similarity of the time series in successive intervals. When we conduct this type of test we are checking if the time series can be modeled with and AR(1) process autoregressive.

The system of hypothesis on this case are:

Null Hypothesis: No first order autocorrelation

Alternative hypothesis: First order correlation exists

The assumptions to run this test are:

1) Errors are normally distributed with mean 0

2) Errors follows an stationary process

3) Independence condition between the errors

The statistic is defined as:

[tex] DW = \frac{\sum_{t=2}^ T (e_t -e_{t-1})^2}{\sum_{t=1}^T e^2_t}[/tex]

And if the value for the DW is near to 0 we can conclude that the assumption of Independence is not satisfied.

plz help me answer this question

Answers

Answer:

The answer to your question is distance = 3500000 km

Step-by-step explanation:

Data

Scale  1 : 500000

7 cm

Process

1.- To solve this problem use direct proportions or rule of three.

                          1 : 500 000 :: 7 : x

2.- Multiply the middle numbers and the result divide it by the edge.

                x = (7 x 500000) / 1

Simplification

                x = 3500000 km                            

A card is drawn from a standard deck of 5252 playing cards. What is the probability that the card will be a heart or a face card? Express your answer as a fraction or a decimal number rounded to four decimal places.

Answers

Answer:

The probability that the card will be a heart or a face card is P=0.4231.

Step-by-step explanation:

We have a standard deck of 52 cards.

In this deck, we have 13 cards that are a heart.

We also have a total of 12 face cards (4 per each suit). So there are 3 face cards that are also a heart.

To calculate the probability that a card be a heart or a face card, we sum the probability of a card being a heart and the probability of it being a face card, and substract the probability of being a heart AND a face card.

We can express that as:

[tex]P(H\,or\,F)=P(H)+P(F)-P(H\&F)\\\\P(H\,or\,F)=13/52+12/52-3/52=22/52=0.4231[/tex]

You are staffing a new department, and you have applications on your desk. You will hire 2 of the 5 software engineers who have applied, and 3 of the 7 computer engineers who have applied. What is the total number of possible complete staffs you could hire

Answers

Answer:

The total number of possible complete staffs you could hire is 350.

Step-by-step explanation:

The order that the software engineers are is not important. For example, hiring John and Laura as the software engineers is the same as hiring Laura and John. The same applies for the computer engineers. So we use the combinations formula to solve this question.

Combinations formula:

[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

What is the total number of possible complete staffs you could hire?

2 software engineers from a set of 5

3 computer engineers from a set of 7

So

[tex]T = C_{5,2}*C_{7,3} = \frac{5!}{2!3!}*\frac{7!}{3!4!} = 10*35 = 350[/tex]

The total number of possible complete staffs you could hire is 350.

One percent of all individuals in a certain population are carriers of a particular disease. A diagnostic test for this disease has a 93% detection rate for carriers and a 2% false positive rate. Suppose that an individual is tested. What is the probability that an individual who tests negative does not carry the disease? What is the specificity of the test?

Answers

Answer:

(1) The probability that an individual who tests negative does not carry the disease is 0.9709.

(2) The specificity of the test is 98%.

Step-by-step explanation:

Denote the events as follows:

X = a person carries the disease

Y = the test detected the disease.

Given:

[tex]P(X) = 0.01\\P(Y|X)=0.93\\P(Y|X^{c})=0.02[/tex]

The probability of a person not carrying the disease is:

[tex]P(X^{c})=1-P(X)=1-0.01=0.99[/tex]

The probability that the test does not detects the disease when the person is carrying it is:

[tex]P(Y^{c}|X)=1-P(Y|X)=1-0.93=0.07[/tex]

The probability that the test does detects the disease when the person is not carrying it is:

[tex]P(Y^{c}|X^{c})=1-P(Y|X^{c})=1-0.02=0.98[/tex]

(1)

Compute the probability that an individual who tests negative does not carry the disease as follows:

[tex]P(X^{c}|Y^{c})=\frac{P(Y^{c}|X^{c})P(X^{c})}{P(Y^{c}|X^{c})P(X^{c})+P(Y^{c}|X)P(X)} \\=\frac{(0.98\times 0.99)}{(0.98\times 0.99)+(0.07\times 0.01)} \\=0.9709[/tex]

Thus, the probability that an individual who tests negative does not carry the disease is 0.9709.

(2)

By specificity it implies that how accurate the test is.

Compute the probability of negative result when the person is not a carrier as follows:

[tex]P(Y^{c}|X^{c})=1-P(Y|X^{c})=1-0.02=0.98[/tex]

Thus, the specificity of the test is 98%.

A major television manufacturer has determined that its 44 inch screens have a mean service life that can be modeled by a normal distribution with a mean of 6 years and a standard deviation of one-half year (6 months). What is the probability that the service life of that product is between 5 and 7 years

Answers

Answer:

[tex]P(5<X<7)=P(\frac{5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{7-\mu}{\sigma})=P(\frac{5-6}{0.5}<Z<\frac{7-6}{0.5})=P(-2<z<2)[/tex]

And we can find this probability with thie difference:

[tex]P(-2<z<2)=P(z<2)-P(z<-2)[/tex]

And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.  

[tex]P(-2<z<2)=P(z<2)-P(z<-2)=0.97725-0.02275=0.9545[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the heights of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(6,0.5)[/tex]  

Where [tex]\mu=6[/tex] and [tex]\sigma=0.5[/tex]

We are interested on this probability

[tex]P(5<X<7)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(5<X<7)=P(\frac{5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{7-\mu}{\sigma})=P(\frac{5-6}{0.5}<Z<\frac{7-6}{0.5})=P(-2<z<2)[/tex]

And we can find this probability with thie difference:

[tex]P(-2<z<2)=P(z<2)-P(z<-2)[/tex]

And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.  

[tex]P(-2<z<2)=P(z<2)-P(z<-2)=0.97725-0.02275=0.9545[/tex]

Final answer:

The probability that a 44 inch television screen will have a service life between 5 and 7 years, given a normal distribution with a mean of 6 years and a standard deviation of 0.5 years, is approximately 95.45%.

Explanation:

To calculate the probability that the service life of a 44 inch television screen is between 5 and 7 years, we use the properties of the normal distribution where the mean (μ) is 6 years and the standard deviation (σ) is 0.5 years. We need to find the z-scores for 5 and 7 years and then use the standard normal distribution table or a calculator to find the probability that the service life falls between these two z-scores.

First, calculate the z-score for 5 years:
z = (X - μ) / σ
z = (5 - 6) / 0.5
z = -2.0

Next, calculate the z-score for 7 years:
z = (7 - 6) / 0.5
z = 2.0

Once we have the z-scores, we look up the corresponding probabilities in the normal distribution table or use a calculator with normal distribution functions. The probability of z being between -2.0 and 2.0 in a standard normal distribution is approximately 0.9545.

Therefore, the probability that a television will last between 5 and 7 years is approximately 95.45%.

Lightbulbs of a certain type are advertised as having an average lifetime of 750 hours. The price of these bulbs is very favorable, so a potential customer has decided to go ahead with a purchase arrangement unless it can be conclusively demonstrated that the true average lifetime is smaller than what is advertised. A random sample of 50 bulbs was selected, the lifetime of each bulb determined, and the following information obtained:
Average lifetime = 738.44 hours and a standard deviation of lifetimes equal to 38.2 hours.
Should the customer purchase the light bulbs?
(a) Make the decision on a significance level of .05?
(b) Make the decision on a significance level of .01?

Answers

Answer:

(a) Customer will not purchase the light bulbs at significance level of 0.05

(b) Customer will purchase the light bulbs at significance level of 0.01 .

Step-by-step explanation:

We are given that Light bulbs of a certain type are advertised as having an average lifetime of 750 hours. A random sample of 50 bulbs was selected,  and the following information obtained:

Average lifetime = 738.44 hours and a standard deviation of lifetimes = 38.2 hours.

Let Null hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 750 {means that the true average lifetime is same as what is advertised}

Alternate Hypothesis, [tex]H_1[/tex] : [tex]\mu[/tex] < 750 {means that the true average lifetime is smaller than what is advertised}

Now, the test statistics is given by;

       T.S. = [tex]\frac{Xbar-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

where, X bar = sample mean = 738.44 hours

               s  = sample standard deviation = 38.2 hours

               n = sample size = 50

So, test statistics = [tex]\frac{738.44-750}{\frac{38.2}{\sqrt{50} } }[/tex] ~ [tex]t_4_9[/tex]

                            = -2.14

(a) Now, at 5% significance level, t table gives critical value of -1.6768 at 49 degree of freedom. Since our test statistics is less than the critical value of t, so which means our test statistics will lie in the rejection region and we have sufficient evidence to reject null hypothesis.

Therefore, we conclude that the true average lifetime is smaller than what is advertised and so consumer will not purchase the light bulbs.

(b) Now, at 1% significance level, t table gives critical value of -2.405 at 49 degree of freedom. Since our test statistics is higher than the critical value of t, so which means our test statistics will not lie in the rejection region and we have insufficient evidence to reject null hypothesis.

Therefore, we conclude that the true average lifetime is same as what it has been advertised and so consumer will purchase the light bulbs.

Positive Test Result Negative Test Result
Hepatitis C 335 10
No Hepatitis C 2 1153

Based on the results of this study, how many false negatives should you expect out of 1000 tests

Answers

Answer:

In a sample of 1000 test the expected number of false negatives is 8.6.

Step-by-step explanation:

The table provided is:

                             Positive      Negative    TOTAL

Hepatitis C             335                  10            345

No Hepatitis C           2               1153           1155

TOTAL                     337               1163          1500

A false negative test result implies that, the person's test result for Hepatitis C was negative but actually he/she had Hepatitis C.

Compute the probability of false negative as follows:

[tex]P(Negative|No\ Hepapatits\ C)=\frac{n(Negative\cap No\ Hepapatits\ C)}{n(No\ Hepapatits\ C)} \\=\frac{10}{1163}\\ =0.0086[/tex]

Compute the expected number of false negatives in a sample is n = 1000 tests as follows:

E (False negative) = n × P (Negative|No Hepatitis C)

                              [tex]=1000\times0.0086\\=8.6[/tex]

Thus, in a sample of 1000 test the expected number of false negatives is 8.6.

An aerospace company has submitted bids on two separate federal government defense contracts. The company president believes that there is a 40% probability of winning the first contract. If they win the first contract, the probability of winning the second is 65%. However, if they lose the first contract, the president thinks that the probability of winning the second contract decreases to 49%.
What is the probability that they win both contracts?

Answers

Answer:

26% probability that they win both contracts.

Step-by-step explanation:

These following probabilities are important to solve this question:

0.4 = 40% probability of winning the first contract.

0.65 = 65% probability of winning the second contract if the first contract is won.

What is the probability that they win both contracts?

[tex]P = 0.4*0.65 = 0.26[/tex]

26% probability that they win both contracts.

In the game of Pick-A-Ball without replacement, there are 10 colored balls: 3 red, 4 white, and 3 blue. The balls have been placed into a small bucket, and the bucket has been shaken thoroughly. You will be asked to reach into the bucket without looking and select 2 balls. Because the bucket has been shaken thoroughly, you can assume that each individual ball is selected at random with equal likelihood of being chosen. Now, close your eyes! Reach into the bucket, and pick a ball. (Click "Pick-A-Ball!" to simulate reaching into the bucket and drawing your ball.) Pick-A-Ball! What is the probability of selecting the color of ball that you just selected? (Enter your answer in decimal format and round it to two decimal places.) Don’t put your first ball back into the bucket. Now, reach in (again, no peeking!), and pick your second ball. (Click "Pick-A-Ball!" to simulate reaching into the bucket and selecting your next ball.) Pick-A-Ball! What is the probability of selecting the color of ball that you just selected? (Enter your answer in decimal format and round it to two decimal places.)

Answers

Final answer:

The probability of selecting the color of the first ball is 3/10. The probability of selecting the same color for the second ball depends on the remaining number of balls of that color divided by the total remaining number of balls.

Explanation:

The probability of selecting the color of the first ball is determined by the number of balls of that color divided by the total number of balls. In this case, there are 3 red balls out of 10, so the probability is 3/10.

After selecting the first ball without replacement, the probability of selecting the same color for the second ball depends on the remaining number of balls of that color divided by the total remaining number of balls. If the first ball was red, there are 2 red balls left out of 9, resulting in a probability of 2/9.

The probability of selecting a ball of the same color as the first ball drawn, without replacement, is as follows:

For red:[tex]\boxed{0.22}[/tex]

For white:[tex]\boxed{0.33}[/tex]

For blue:[tex]\boxed{0.22}[/tex]

Let's think step by step.To solve this problem, we need to calculate the probability of selecting a ball of the same color as the first ball drawn, without replacement. We will consider the two events separately: first, the probability of selecting a ball of the same color as the first ball when there are 10 balls in total, and second, the probability of selecting a ball of the same color as the first ball when there are only 9 balls left in the bucket (since the first ball is not replaced).

First Ball Selection:

When the first ball is picked, there are 10 balls in total, with 3 red, 4 white, and 3 blue balls. The probability of picking a ball of any specific color is the number of balls of that color divided by the total number of balls.

 For example, if the first ball drawn is red, the probability of drawing a red ball is:

[tex]\[ P(\text{first red}) = \frac{\text{Number of red balls}}{\text{Total number of balls}} = \frac{3}{10} \][/tex]

 Similarly, if the first ball is white, the probability is:

[tex]\[ P(\text{first white}) = \frac{\text{Number of white balls}}{\text{Total number of balls}} = \frac{4}{10} \][/tex]

 And if the first ball is blue, the probability is:

[tex]\[ P(\text{first blue}) = \frac{\text{Number of blue balls}}{\text{Total number of balls}} = \frac{3}{10} \][/tex]

 Second Ball Selection:

After the first ball is drawn and not replaced, there are 9 balls left in the bucket.

 If the first ball drawn was red, there are now 2 red balls left out of 9 total balls. The probability of drawing another red ball is:

[tex]\[ P(\text{second red} | \text{first red}) = \frac{\text{Number of red balls left}}{\text{Total number of balls left}} = \frac{2}{9} \][/tex]

If the first ball was white, there are now 3 white balls left out of 9 total balls. The probability of drawing another white ball is:

[tex]\[ P(\text{second white} | \text{first white}) = \frac{\text{Number of white balls left}}{\text{Total number of balls left}} = \frac{3}{9} = \frac{1}{3} \][/tex]

If the first ball was blue, there are now 2 blue balls left out of 9 total balls. The probability of drawing another blue ball is:

[tex]\[ P(\text{second blue} | \text{first blue}) = \frac{\text{Number of blue balls left}}{\text{Total number of balls left}} = \frac{2}{9} \][/tex]

Now, let's calculate the probabilities for each color and round them to two decimal places:

 For red:

[tex]\[ P(\text{second red} | \text{first red}) = \frac{2}{9} \approx 0.22 \][/tex]

 For white:

[tex]\[ P(\text{second white} | \text{first white}) = \frac{1}{3} \approx 0.33 \][/tex]

 For blue:

[tex]\[ P(\text{second blue} | \text{first blue}) = \frac{2}{9} \approx 0.22 \][/tex]

Final

The probability of selecting a ball of the same color as the first ball drawn, without replacement, is as follows:

For red:[tex]\boxed{0.22}[/tex]

For white:[tex]\boxed{0.33}[/tex]

For blue:[tex]\boxed{0.22}[/tex]

 These probabilities are rounded to two decimal places.

 The answer is: 0.22.

A market analyst is developing a regression model to predict monthly household expenditures on groceries as a function of family size, household income, and household neighborhood (urban, suburban, and rural). The response variable in this model is _____.

Answers

Answer:

Monthly household expenditures on groceries

Step-by-step explanation:

The response variable is the one for which measurements are desired and that depends on other variables.

In this case, family size, household income, and household neighborhood are independent variables, while the response variable is the monthly household expenditures on groceries.

Listed below are the numbers of manatee deaths caused each year by collisions with watercraft. The data are listed in order for each year of the past decade.
(a) Find the​ range, variance, and standard deviation of the data set.
(b) What important feature of the data is not revealed through the different measures of​ variation?

80 68 71 72 95 89 97 72 75 81

Answers

Answer:

Range = 29

Variance=   (X₁- U) ² / N= 973/10 = 97.3

Standard Deviation= √variance= √97.3=  9.864

Step-by-step explanation:

Range = Difference between the highest and lowest value = 97-68= 29

Variance

                  X₁                X₁-U               (X₁- U) ²              

                 80               0                     zero

                 68                -12                   144

                 71                 -9                     81

                 72                -8                     64

                 95                 15                    225                  

                89                  9                     81

                97                   17                   289

                72                    -8                 64

                75                     -5                 25

                81                     1                   1

∑              800                ZERO            973  

u=  ∑X₁ /10=800/10=80

Variance=   (X₁- U) ² / N= 973/10 = 97.3

Standard Deviation= √variance= √97.3=  9.864

(b) The important feature of the data is not revealed through the different measures of​ variation is that the variability of two or more than two sets of data cannot be compared unless a relative measure of dispersion is used .

Consider the problem of shrinkage in a supply chain. Use this data: Expected Consumer Demand = 5,000 Retail: Theft and Damage - 5% Distribution Center: Theft and Damage - 4% Packaging Center: Damage - 3% Manufacturing: Defect rate - 4% Materials: Supplier defects - 5% How many units should the materials plan account for in order to meet the expected consumer demand? (Choose the closest answer.)

Answers

Answer: units = 6198

Step-by-step explanation:

expected consumer demand is 5000, the units that must be planned given shrinkage percentage levels in different stages of the supply chain we have to use the trial and error method.

lets try 6200 units

6200 x 95% = 5890, 5890 x 96% = 5654.4, 5654.40 x 97% = 5484.768, 5484.768 x 96% = 5265.37728, 56265 x 95% = 5002.1084165002

6198 units

(6198  x 95% = 5888.10) (5888.10 x 96% = 5652.576) (5652.576 x 97% = 5482.99872) (5482.99872 x 96% = 5263.6787712) (5263.6787712 x 95% = 5000.4948326) ≈ 5000

using the same procedure for 6197 units the answer will be 4999.688041

units that should be produced to cover the demand of 5000 = 6198

Final answer:

To meet the 5,000 unit consumer demand, the materials plan should account for approximately 6,195 units, considering the cumulative loss percentages at each stage of the supply chain.

Explanation:

To meet the expected consumer demand of 5,000 units while accounting for shrinkage at various stages of the supply chain, we need to calculate the cumulative effect of theft, damage, and defects on the number of units. We need to work backwards from the consumer to the materials supplier to determine the initial quantity needed.

Start with the expected consumer demand: 5,000 units.Account for retail theft and damage: 5% loss means we need 5,000 / (1 - 0.05) = 5,263 units from the distribution centers.Account for distribution center theft and damage: 4% loss means we need 5,263 / (1 - 0.04) ≈ 5,482 units from the packaging center.Account for packaging center damage: 3% loss means we need 5,482 / (1 - 0.03) ≈ 5,650 units from manufacturing.Account for manufacturing defects: 4% loss means we need 5,650 / (1 - 0.04) ≈ 5,885 units from the materials.Finally, account for supplier defects: 5% loss means we need 5,885 / (1 - 0.05) ≈ 6,195 units.

The materials plan should account for approximately 6,195 units to meet the expected consumer demand, accounting for expected losses due to theft, damage, and defects throughout the supply chain stages.

According to the Bureau of Labor Statistics it takes an average of 16 weeks for young workers to find a new job. Assume that the probability distribution is normal and that the standard deviation is two weeks. What is the probability that 20 young workers average less than 15 weeks to find a job?

Answers

Answer:

1.25% probability that 20 young workers average less than 15 weeks to find a job

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem:

The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sample means with size n of at least 30 can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

In this problem, we have that:

[tex]\mu = 16, \sigma = 2, n = 20, s = \frac{2}{\sqrt{20}} = 0.4472[/tex]

What is the probability that 20 young workers average less than 15 weeks to find a job?

This is the pvalue of Z when X = 15. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{15 - 16}{0.4472}[/tex]

[tex]Z = -2.24[/tex]

[tex]Z = -2.24[/tex] has a pvalue of 0.0125.

1.25% probability that 20 young workers average less than 15 weeks to find a job

An article in Medicine and Science in Sports and Exercise "Maximal Leg-Strength Training Improves Cycling Economy in Previously Untrained Men," (2005, Vol. 37 pp. 131–1236) studied cycling performance before and after eight weeks of leg-strength training. Seven previously untrained males performed leg-strength training three days per week for eight weeks (with four sets of five replications at 85% of one repetition maximum). Peak power during incremental cycling increased to a mean of 315 watts with a standard deviation of 16 watts. Construct a 99% two-sided confidence interval for the mean peak power after training. Assume population is approximately normally distributed.

Answers

The 99% confidence interval for the mean peak power after training is approximately [tex](292.61, 337.39)[/tex] watts.

Identify the given data:

Mean peak power after training: [tex]\bar{x} = 315[/tex] watts

Standard deviation: [tex]s = 16[/tex] watts

Sample size: [tex]n = 7[/tex]

Confidence level: 99%

Find the critical value:

Since the sample size is small (n < 30) and the population standard deviation is not known, we use the t-distribution. For a 99% confidence interval with [tex](n-1) = 6[/tex] degrees of freedom, the critical value (t-value) can be found from the t-table. Using the t-table, [tex]t_{\frac{\alpha}{2},6} = 3.707[/tex].

Calculate the standard error (SE):
[tex]SE = \frac{s}{\sqrt{n}} = \frac{16}{\sqrt{7}} = \frac{16}{2.6458} \approx 6.04[/tex] watts

Compute the margin of error (ME):
[tex]ME = t_{\frac{\alpha}{2}} \times SE = 3.707 \times 6.04 \approx 22.39[/tex] watts

Construct the confidence interval:

Lower bound: [tex]\bar{x} - ME = 315 - 22.39 \approx 292.61[/tex] watts

Upper bound: [tex]\bar{x} + ME = 315 + 22.39 \approx 337.39[/tex] watts

) Let y(1) = y0, y 0 (1) = v0. Solve the initial value problem. What is the longest interval on which the initial value problem is certain to have a unique twice differentiable solution?

Answers

QUESTION IS INCOMPLETE.

Nevertheless, I will explain how to find, without solving, the longest interval in which an initial value problem is certain to have a unique twice differentiable solution.

Step-by-step explanation:

Consider the Existence and uniqueness theorem:

Let p(t) , q(t) and r(t) be continuous on an interval a ≤ t ≤ b, then the differential equation given by:

y''+ p(t) y' +q(t) y = r(t) ;

y(t_0) = y_0, y'(t_0) = y'_0

has a unique solution defined for all t in the stated interval.

Example:

Consider the differential equation

ty'' + 9y = t

y(1) = y_0,

y'(1) = v_0

ty'' + 9y = t .................................(1)

First, write the differential equation (1) in the form:

y'' + p(t)y' + q(t)y = r(t) ..................(2)

by dividing (1) by t

So

y''+ (9/t)y = 1 ....................................(3)

Comparing (3) with (2)

p(t) = 0

q(t) = 9/t

r(t) = 1

For t = 0, p(t) and r(t) are continuous, but q(t) is undefined.

q(t) is continuous everywhere apart from the point t = 0.

We say (-∞, 0) and (0,∞) are the points where p(t), q(t) and r(t) are continuous.

But t = 1, which is contained in the initial conditions y(1) = y_0 and y'(1) = v_0 is found in (0,∞).

So, we conclude that this interval is the longest interval in which the initial value problem has a unique twice differentiable solution.

In one study on preferences, researchers formed different displays of grills by rearranging the position (left, center and right) of 3 different grills (A, B, and C), and asked participants to rank the displays from favorite to least favorite.
If, prior to the experiment, all displays were expected to have equivalent levels of preference, what is the probability that a given participant would rank as the favorite a display that had grill A on the left and grill B on the right?

Answers

Answer:

Step-by-step explanation:

Total possibilities: 3×2×1 = 6

what are some questions to ask about a function when sketching its graph?

Answers

Some questions are: 1) what is the y intercept (if there is one, 2) where are the x intercepts (if there are any), 3) is the graph even or odd, 4) is the graph exponential or linear, and 5) where does the graph end (if it doesn’t go on for infinity)

This table gives a few (x,y) pairs of a line in the coordinate plane

x (48) (61) (74)
y (-30) (-45) (-60)

what is the x-intercept of the line?

Answers

Answer:(22,0)

Step-by-step explanation: you have to find when y equals 0

Find each difference in the photo below

Answers

Answer:

[tex]= - 2 x^{3} + 4x -8[/tex]

Step-by-step explanation:

The first step is to open the parenthesis,

Since there is a negative sign before the second parenthesis, so the sign of all the values in second parenthesis will be changed and the equation will look something like this

[tex]= 2x^{3} + 4x -2 - 4 x^{3} + 6[/tex]

The second step is to re arrange the equation

[tex]= 2x^{3} - 4 x^{3} + 4x - 2 + 6[/tex]

The last and final step is to solve the equation

[tex]= - 2 x^{3} + 4x -8[/tex]

This is our answer

Answer:

The difference is -2x³ + 4x + 4.

Step-by-step explanation:

Subtract the two expression as follows:

[tex](2x^{3}+4x-2)-(4x^{3}-6)=2x^{3}+4x-2-4x^{3}+6\\[/tex]

Combine the like terms together:

                                         [tex]=2x^{3}-4x^{3}+4x-2+6[/tex]

Simplify as follows:

                                         [tex]=-2x^{3}+4x+4[/tex]

Thus, the difference is -2x³ + 4x + 4.

Agee Storage issued 35 million shares of its $1 per common stock at $16 per share several years ago. Last year, for the first time, Agee reacquired 1 million shares at $14 per share. If Agee now retires 1 million shares at $19 per share. By what amount will Agee's total paid-in capital decline?

Answers

Answer:

$18 Millions

Step-by-step explanation:

Decline in total paid in capital=Total value of reacquisition - Decline in retained earnings

$19-$1=$18 millions

Answer:

$18 000 000

Step-by-step explanation:

The first step is to calculate the par value of shares

$1*35000000=35000000

=$35000000

Issued shares of the the par

amount over par

=$16-$1=$15

Then paid capital in excess of par

$15*1000000

=$525000000

The first reacquire remember there were issued at $16

so for first reacquire

$16-$14=$2

$2*35000000=$70 000000

so Agee total paid-in capital will decline by

$15+$2+$1=$18 per share

In ΔABC, b = 68 inches, ∠B=65° and ∠C=93°. Find the length of a, to the nearest inch.

Answers

Answer:

28 inches

Step-by-step explanation:

∠A + ∠B + ∠C = 180°

∠A + 65° +93° = 180°

∠A + 158° = 180°

∠A= 180°-158° = 22°

Using Law of Sines

a/sinA= b/sinB

a/sin22= 68 inches/sin65

a/sin22 = 68/0.9063 = 75.03

a = 75.03 x sin 22

a = 75.03 x 0.3746 = 28.106238≈28 inches

Given that x is a normal variable with mean μ = 49 and standard deviation σ = 6.7, find the following probabilities. (Round your answers to four decimal places.) (a) P(x ≤ 60) (b) P(x ≥ 50) (c) P(50 ≤ x ≤ 60)

Answers

Answer:

0.9500, 0.4407, 0.3904

Step-by-step explanation:

(a) P(x ≤ 60).  We need to find the area under the standard normal curve to the left of x = 60.  The appropriate command when using a TI-83 Plus calculator with statistical functions is normcdf(-1000, 60, 49, 6.7).  This comes out to 0.9500.  P(x ≤ 60) = 0.9500

(b) P(x ≥ 50) would be normcdf(50, 1000,49, 6.7), or 0.4407

(c) P(50 ≤ x ≤ 60) would be normcdf(50,60,49,6.70, or 0.3904

Final answer:

The question involves finding probabilities for a normal distribution given mean μ and standard deviation σ. By converting x values to z-scores and using the standard normal distribution, we can calculate the desired probabilities.

Explanation:

The student is asking about probabilities related to a normally distributed random variable with a given mean (μ) and standard deviation (σ). To find these probabilities, we convert the x values to z-scores and use the standard normal distribution.

P(x ≤ 60): Subtract the mean from 60 and divide by the standard deviation to get the z-score. Then use the standard normal distribution table or a calculator's normalcdf function to find the probability.P(x ≥ 50): Find the z-score for x = 50, then calculate 1 minus the cumulative probability up to that z-score to obtain the probability that x is greater than or equal to 50.P(50 ≤ x ≤ 60): Calculate the z-scores for x = 50 and x = 60, then find the cumulative probability for each. The desired probability is the difference between these two cumulative probabilities.

Calculations here are based on the normal distribution parameters provided and the standard normal distribution. The z-score is the key to converting any normal distribution to the standard normal distribution, enabling the use of standard tables or software functions for probability calculations.

In 2001, a total of 15,555 homicide deaths occurred among males and 4,753 homicide deaths occurred among females. The estimated 2001 midyear populations for males and females were 139,813,000 and 144,984,000 respectively
a) Calculate the homicide-related death rates for males per 100,000.
b) Calculate the homicide-related death rates for females per 100,000.
c) What type(s) of mortality rates did you calculate in Questions 17and 18?
d) Calculate the ratio of homicide-mortality rates for males compared to females.
e) Interpret the rates you calculated in Question 20 as if you were presenting information to a policymaker.

Answers

Answer:

a. 11

b. 3

c. homicide mortality rate

d. 11:3

Step-by-step explanation:

a.) If 15,555 homicide cases were recorded among males of 139,813,000 population, then in every 100,000 males, the number of homicides cases will become:

= [15,555/139,813,000] * 100,000

= 11.13 aproximately 11 homicide cases in every 100,000 males.

b.) If 4,753 homicide cases were recorded among Females of 144,984,000 population, then in every 100,000 Females, the number of homicides cases will become:

= [4753/144,984,000] * 100,000

= 3.28 approximately 3 homicide cases in every 100,000 females

C.) Homicide-mortality rate

d.) ratio of male to female homicide rate = 11 : 3

e.) What those rates means is that in every 100,000

Males in 2001, 11 of them were Victims of homicide and in every 100,000 females, 3 of them are victims of homicide.

The number of accidents on a certain section of I-40 averages 4 accidents per weekday independent across weekdays. Assuming the number of accidents on a day follows a Poisson distribution.
What is the probability there are no car accidents on that stretch on Monday?

Answers

Answer:

1.83% probability there are no car accidents on that stretch on Monday

Step-by-step explanation:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given time interval.

The number of accidents on a certain section of I-40 averages 4 accidents per weekday independent across weekdays.

This means that [tex]\mu = 4[/tex]

What is the probability there are no car accidents on that stretch on Monday?

This is P(X = 0).

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-4}*(4)^{0}}{(0)!} = 0.0183[/tex]

1.83% probability there are no car accidents on that stretch on Monday

Final answer:

The probability of there being no car accidents on Monday on a certain section of I-40 can be calculated using the Poisson distribution. In this case, with an average of 4 accidents per weekday, the probability is approximately 1.83%.

Explanation:

To calculate the probability of there being no car accidents on Monday, we can use the Poisson distribution. In this case, the average number of accidents per weekday is given as 4. The Poisson distribution can be used to calculate the probability of a specific number of events occurring in a given time period.

The formula for calculating the probability of x events occurring in a Poisson distribution is:

P(x) = (e^-λ * λ^x) / x!

Where λ is the average number of events, and x is the number of events we want to calculate the probability for.

In this case, the average number of accidents per weekday is 4, so λ = 4. And we want to calculate the probability of there being no accidents, so x = 0.

Using the formula, we can calculate:

P(0) = (e^-4 * 4^0) / 0! = (e^-4 * 1) / 1 = e^-4, approximately 0.0183

Therefore, the probability of there being no car accidents on Monday is approximately 0.0183, or 1.83%.

A product has a 4 week lead time. The standard deviation of demand for each of the week is given below. What is the standard deviation of demand over the lead time? (Answer to 2 decimal places) Week Standard deviation of demand 1 16 2 15 3 17 4 13

Answers

÷Answer:

Standard Deviation  =  176.5

Step-by-step explanation:

To calculate the standard deviation, calculate the mean score for the 4 standard deviation scores:

mean, m = Σx ÷ n

where Σx represents summation of each value = 162 + 153 + 317 + 413

= 1045

n = number of samples to be considered = 4

mean, m = 1045 ÷4

= 261.25

To calculate the standard deviation, use the formula below

SD    =   [tex]\sqrt{\frac{Σ(x-m)}{n} ^{2} }[/tex]

where x =  each value from the week lead time

m = mean = 261.25

n = the size = 4

The Standard deviation formula can be simplified further

when x = 162

[tex]\sqrt{\frac{(x1-m)}{n} ^{2} }[/tex] = 49.625

when x = 153

[tex]\sqrt{\frac{(x2-m)}{n} ^{2} }[/tex] = 23.125

when x = 317

[tex]\sqrt{\frac{(x3-m)}{n} ^{2} }[/tex]=  27.875

when x = 413

[tex]\sqrt{\frac{(x4-m)}{n} ^{2} }[/tex]= 75.875

Note that the above 4 equations can be lumped up into one giant equation by applying a big square root function instead of breaking it down

SD = 49.625 + 23.125 + 27.875 + 75.875

SD = 176.5

Other Questions
A random sample of 6 homes in Gainesville, Florida between 1800 and 2200 square feet had a mean of 212990 and a standard deviation of 14500. Construct a 95% confidence interval for the average price of a home in Gainesville of this size. Group of answer choices (201387, 224592) (197773, 228207) (196318, 229662) (196557, 229422) . Which of the following quartic functions has x = -2 and x=-3 as its only two real zeros? =Initial Knowledge CheckQuestion 8A veterinarian treated 7 dogs this morning. The list below gives the weights (in pounds) of each dog.66, 8, 12, 74, 36, 66, 7Find the range of the data set.x? Particles are a major component of air pollution in many areas. It is of interest to study the sizes of contaminating particles. Let X represent the diameter, in micrometers, of a randomly chosen particle. Assume that in a certain area, the probability density function of X is inversely proportional to the volume of the particle ; that is, assume that fX(x) = c x 3 , x > 1, where c is a constant. (a) Find the value of c so that fX is a probability density function. (b) The term PM10 refers to particles 10 m or less in diameter. What proportion of contaminating particles are PM10 ? (c) The term PM2.5 refers to particles 2.5 m or less in diameter. What proportion of contaminating particles are PM2.5 ? (d) What proportion of the PM10 particles are PM2.5 ? mrs.darby works at the local bakery as a cake decorator if it takes her 1 1/3 hours to decorate one cake how many cakes can she dcorate in a 30-hour week all quiet on the western front What is the realization that the men come to about who wanted the war 4.The Deepwater Horizon oil spill in 2010 is considered to be the largest oil spill in petroleum industry history. This spill affected over 8,000 marine species including fish, birds, mammals, and more. Do a web search to find information about the affected ecosystems in the Gulf of Mexico. Have these ecosystems and the affected populations full recovered from this oil spill A map has a scale of 1 inch =35 miles what is the distance if the distance on the map is 3.5 A stock has a spot price of $55. Its May options are about to expire. One of its puts is worth $5 and one of its calls is worth $10. The exercise price of the put must be ______________ and the exercise price of the call must be ________________. evaluate the following 7 = 5x+y3-3y Eva just upgraded her software package. However, even though the updated version contains a number of more efficient methods for working with files, Eva continues to work with the files the way she did before the upgrade. In this case, Eva is showing evidence of:_____________.1. Beief perseverance2. Priming3. Mental set A therapist who is worried that her clients will receive short-term care rather than more promising long-term treatment, and that confidential treatment reports will be read by others, is concerned about: PAGE 151) Describe the relationship shown in the table of values.X 5 4 0Y 8 9 13A Relation only.B Function only.C Both relation and function.D Neither relation nor function. 2. What is a political party?A a group of people who share common ideas about governmentOB a group of people who hold meetings to discuss politicsC a group of people who seek to be elected to public officeOD a group of people who decide where to hold political events Makoto's summer job is mowing and edging lawns. He charges $20 to mow a lawn and $10 to edge a lawn. Makoto earned $180 mowing some lawns and edging 4 lawns. How many lawns did he mow? 13. If you complete an application.a. sentenceb. fragment 3. - Tienes software en tu bolso?- No Nunca tengo software en mi bolso. Slo tengoen el bolsoCA una guitarra y mi dineroOB, mis anteojos de sol y mi alfombraOC mi cartera y anteojos de solOD. mi computadora y mi pupitre An Inter City Express train traveling at 250 km/h isbraked to a stop in a distance of 4820 m. If the mass of thetrain is 8.63 X 105 kg, what is the average braking force? A map's orientation is typically determined by a/an A. LegendB. Grid patternC. Index D. Compass rose What is an equation of a line which passes through (6,9) and is perpendicular to the line whose equation is 4x 6y = 15?31) y9=2(x6)22) y9= 3(x6)33) y+9=2(x+6)4) y+9=23(x+6) Steam Workshop Downloader