A thin, square metal plate measures 14 cm on each side and has emissivity of 0.60. The plate is heated to a temperature of 745°C. What is the rate at which the plate radiates energy ? The Stefan-Boltzmann constant is 5.67 × 10-8 W/(m2 ? K4). Remember that the plate will radiate energy from both its top and bottom surfaces.

Answers

Answer 1

Final answer:

To determine the rate at which a heated metal plate radiates energy, the Stefan-Boltzmann law is applied, incorporating the given emissivity, surface area, and absolute temperature to calculate a radiation rate of approximately 450.46 Watts.

Explanation:

To calculate the rate at which a square metal plate radiates energy, we need to apply the Stefan-Boltzmann law of radiation. The formula is: P = eT4, where o is the Stefan-Boltzmann constant (5.67 x 10-8 W/(m2 K4)), A is the surface area of the object, T is the absolute temperature in kelvin, and e is the emissivity of the material.

Given the square metal plate's side length of 14 cm (which we convert to 0.14 m for consistency in units), emissivity of 0.6, and a temperature of 745C (which is 1018 K in absolute temperature), we first calculate the surface area (A) of one side of the plate: A = (0.14 m)2 = 0.0196 m2. Since the plate has two sides, we double the area to account for both the top and bottom surfaces, resulting in 0.0392 m2.

The rate of energy radiated from the plate is then: P = (5.67 10-8 W/(m2 K4)) (0.0392 m2) (0.6) (1018 K)4. Calculating this we get:

P = 5.67

10-8

x 0.0392 m2

x 0.6

x (1018 K)4 = 450.46 Watts.

The metal plate thus radiates energy at a rate of approximately 450.46 W.


Related Questions

What do we mean when we say that the sun is in gravitational equilibrium?

Answers

D)

It has played a role throughout the Sun's history, but it was most important right after nuclear fusion began in the Sun's core. What do we mean when we say that the Sun is in gravitational equilibrium? ... There is a balance within the Sun between the outward push of pressure and the inward pull of gravity.

When we say that the sun is in gravitational equilibrium, it simply means that there's a balance within the sun between the outward push of pressure and the inward pull of gravity.

The sun is important as it holds the solar system together. The sun is the most important body to the Earth. It. helps in the provision of heat and energy to the Earth. Without the sun, the Earth will be lifeless.

It should be noted that the sun is stable. In this case, it's neither contracting nor expanding. In this case, the sun is in equilibrium and the forces within it are balanced.

Gravitational Equilibrium ensures that the core of the sun is at the right level of nuclear fusion.

When the sun is in gravitational equilibrium, there is a balance within the sun between the outward push of pressure and the inward pull of gravity.

In conclusion, the amount of energy that's released by fusion in the core of the sun will then be equal to the amount of energy that radiated from the surface of the sun into space.

Read related link on:

https://brainly.com/question/8011818

The law of conservation of energy states that (4 points)
energy is always created and destroyed
energy cannot be created or destroyed
energy is unable to change forms
energy should be saved as often as possible

Answers

Answer:

energy cannot be created or destroyed

Explanation:

Energy can't be created nor destroyed; rather, it transforms from one form to another.

Answer:

The law of conservation of energy states that energy  cannot be  created or destroyed.

If a substance is in the gas phase, which of qualities of the gas will stay constant?

A: volume
B: mass
C: shape
D: position of particles

Answers

Answer:

Mass will remain constant...

Explanation:

All will change but not mass in gas phase...

The answer is B) mass

When two point charges are a distance d part, the electric force that each one feels from the other has magnitude F. In order to make this force twice as strong, the distance would have to be changed to

A) 2d
B) d/2
C) sqrt2*d
D) d/4
E) d/sqrt2

Answers

Answer:

E) d/sqrt2

Explanation:

The initial electric force between the two charge is given by:

[tex]F=k\frac{q_1 q_2}{d^2}[/tex]

where

k is the Coulomb's constant

q1, q2 are the two charges

d is the separation between the two charges

We can also rewrite it as

[tex]d=\sqrt{k\frac{q_1 q_2}{F}}[/tex]

So if we want to make the force F twice as strong,

F' = 2F

the new distance between the charges would be

[tex]d'=\sqrt{k\frac{q_1 q_2}{(2F)}}=\frac{1}{\sqrt{2}}\sqrt{k\frac{q_1 q_2}{(2F)}}=\frac{d}{\sqrt{2}}[/tex]

so the correct option is E.

In which type of chemical reaction are electrons transferred

Answers

Answer:

Redox reactions

Explanation:

Redox (Reduction-Oxidation) reactions are reactions which involves the transfer of electrons. Here, one specie loses electrons while the other gains the electrons. The loss and gain of electrons makes one atom reduced while the other becomes oxidized. Transfer of electrons from one specie to another would eventually lead to a change in oxidation number of the reactants as they proceed to form products.

In non-redox reactions, there is no loss or gain of electrons and no change in oxidation number. An example is neutralization reaction.

The force of gravity on an object varies directly with its mass. The constant of variation due to gravity is 32.2 feet per second squared. Which equation represents F, the force on an object due to gravity according to m, the object’s mass?F = 16.1mF =F = 32.2mF =

Answers

Answer: F=32.2m

Explanation:

According Newton's 2nd Law of Motion the force [tex]F[/tex] is directly proportional to the mass [tex]m[/tex] and to the acceleration [tex]a[/tex] of a body:

[tex]F=m.a[/tex] (1)

When we talk about the force of gravity on an object (the weight) the constant acceleration is due gravity, this means:

[tex]a=g=32.2ft/s^{2}[/tex] (2)

Substituting (2) in (1):

[tex]F=m(32.2ft/s^{2})[/tex] (3)

This means the equation that best represents the force on an object due to gravity according to its mass, among the given options is:

[tex]F=32.2m[/tex]

The center of the Milky Way most likely contains

A.
empty space.


B.
a red giant star.


C.
a globular cluster.


D.
a supermassive black hole.

Answers

Answer:

The center of the Milky Way most likely contains a supermassive black hole.

Explanation:

Because it is  an eleptical galaxy, it has a little rotation to it but not enough to flatten out so the center will contain a supermassive black hole.

How far did lewis and clark travel round trip

Answers

Answer:

8,000 miles and for 2 years

Explanation:

from May 14, 1804, to September 23, 1806, from St. Louis, Missouri, to the Pacific Ocean and back Lewis and Clark traveled. They traveled nearly 8,000 miles (13,000 km). There expedition was called Corps of Discovery.

Hope this helps:)

If it does please mark brainliest :D

-A.Hazle

8000 miles or 1300 km

Resistivity of a material is the resistance of a cm long sample of the material of 1 cm2 cross-sectional area.

Answers

Yes the formula of resistivity is:

[tex]R=\dfrac{\rho l}{A}[/tex]

Where [tex]\rho[/tex] is relativistic resistance with units [tex]\dfrac{\Omega}{m}[/tex], each metal has different relativistic resistance you must find the relativistic resistance of your material using the table of relativistic resistances.

[tex]l[/tex] stands for the length of a wire.

[tex]A[/tex] stands for the area of the wire. Usually it is equal to [tex]\pi r^2[/tex] because.

So now we have data [tex]A=1cm^2[/tex] but nothing else was specified so we are unable to calculate anything.

Hope this helps.

r3t40

Answer:

Your answer is going to be 1 cm.

Explanation:

Someone please help me

Answers

Answer:

D or 49.7°

Explanation:

You are given the equation and all the information you need, so you simply need to understand what the question asks for and answer appropriately. Notice that the light wave travels from the water to air. This means that water should be labelled with a "1" as it comes prior to air, which should be labeled "2". Thus, all you need to do, is plug and chug:

[tex]\theta_2 = sin^{-1}(\frac{n_1sin(\theta_1)}{n_2}) = sin^{-1}(\frac{(1.33)sin(35)}{1})[/tex]

[tex]\theta_2 = sin^{-1}(0.763) = 49.7^o[/tex]

And, therefore, your answer is D, 49.7°.

All atoms of the same element must have the same number of

Answers

Answer: Protons

Explanation: The number of protons corresponds to the atomic number.

Explanation:

Atomic number is defined as the total number of protons present in an element.

Each element of the periodic table has different atomic number because each of them have different number of protons.

For example, atomic number of Na is 11, and atomic number of Ca is 20.

On the other hand, atomic mass is the sum of total number of protons and neutrons present in an atom.

For example, atomic mass of nitrogen is 14 that is, it contains 7 protons and 7 neutrons.

Thus, we can conclude that all atoms of the same element must have the same number of protons.

Relationship between electricity and magnetism

Answers

They both have repulsion and attraction

The mean free path of a helium atom in helium gas at standard temperature and pressure is 0.2 um.What is the radius of the helium atom in nanometers?

Answers

Answer:

r = 0.1217 nm

Explanation:

r^2 = (RT) / ( 4 * pi *P * A* L)

r^2 = 8.314 * 273 / ( 4 * pi * (1.01*10^5) * (6.022*10^23) * (0.2*10^-6))

r = 1.217*10^-10

r = 0.1217 nm

Final answer:

The radius of the helium atom in helium gas can be determined using the mean free path and the concept of cross-sectional area.

Explanation:

The radius of a helium atom can be determined using the mean free path and the concept of cross-sectional area. The mean free path is the average distance a molecule travels between collisions. In this case, the mean free path of a helium atom in helium gas at standard temperature and pressure is given as 0.2 um.

To find the radius of the helium atom, we can relate the cross-sectional area, which is 4r², to the mean free path using the formula (N/V)(4r²)(λ) = 1. Rearranging this formula, we have r = sqrt(1 / (4 * N / V * λ)), where N/V is the molar density of helium gas at standard temperature and pressure.

Since we are given the mean free path as 0.2 um, we can substitute this value into the formula. The molar density of helium gas at standard temperature and pressure is approximately 1.78 x 10^25 atoms/m³. Plugging in these values, we can calculate the radius of the helium atom in nanometers.

Using the formula, r = sqrt( 1 / (4 * 1.78 x 10^25 * 0.2 x 10^-6)), we can simplify and convert to nanometers to get r ≈ 0.109 nm. Therefore, the radius of the helium atom is approximately 0.109 nanometers.

Learn more about helium atom here:

https://brainly.com/question/591766

#SPJ11

A force of 45 newtons is applied on an object, moving it 12 meters away in the same direction as the force. What is the magnitude of work done on the object by this force? Part A: Enter the variable symbol for the quantity you need to find. Use your keyboard and the keypad to enter your answer. Then click Done.

Answers

Answer: 540 J

Explanation:

The Work [tex]W[/tex] done by a Force [tex]F[/tex] refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path.  

Now, when the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:  

[tex]W=(F)(d)[/tex] (1)  

In this case both (the force and the distance in the path) are parallel (this means they are in the same direction), so the work [tex]W[/tex] performed is the product of the force exerted to push the box [tex]F=45N[/tex] by the distance traveled [tex]d=12m[/tex].

Hence:  

[tex]W=(45N)(12m)[/tex]   (2)

[tex]W=540Nm=540J[/tex]

Answer: W

Explanation:

For Edmentum the answer is simply   W

How do I solve this question?

Answers

Explanation:

You can solve this with kinematics or with energy.  It looks like you want to use energy.

Energy is conserved, so:

initial energy = final energy

Kinetic energy = potential energy

1/2 m v² = m g h

1/2 v² = g h

h = v² / (2g)

If we double the velocity:

H = (2v)² / (2g)

H = 4v² / (2g)

H = 4h

So the new height is 4h.

Which atomic model was proposed as a result of j. J. Thomson’s work?

Answers

Answer: The "raising pudding" atomic model

Explanation:

During the 19th century the accepted atomic model, was Dalton's atomic model, which postulated the atom was an "individible and indestructible mass".

However, at the end of 19th century J.J. Thomson began experimenting with cathode ray tubes and found out that atoms contain small subatomic particles with a negative charge (later called electrons).  This meant the atom was not indivisible as Dalton proposed. So, Thomson developed a new atomic model.

Taking into consideration that at that time there was still no evidence of the atom nucleus, Thomson thought the electrons (with negative charge) were immersed in the atom of positive charge that counteracted the negative charge of the electrons. Just like the raisins embedded in a pudding or bread.

That is why this model was called the raisin pudding atomic model.

Which describes an object in projectile motion? Check all that apply.A.Gravity acts to pull the object downB.The object moves in a straight path.C.The forward velocity of the object is 0 m/s.D.The object’s inertia carries it forward.E.The path of the object is curved.

Answers

Projectile motion refers to an object in motion in the air, affected only by gravity. Attributes of such motion include gravity pulling the object down, inertia propelling it forward, and a parabolic trajectory resulting from these forces.

Projectile motion describes the movement of an object thrown or projected into the air and is influenced solely by gravity, which is the only force acting upon it accelerating the object downwards. The aspects that describe this motion include the following: Gravity acts to pull the object down, the object's inertia carries it forward in the direction it was thrown, and the path of the object is indeed curved due to the gravity acting on it. Option A and D

An object in projectile motion does not move in a straight path (therefore, option B is incorrect), and the forward velocity of the object is not 0 m/s as it has initial velocity in the horizontal direction (thus, option C is also incorrect). The combination of the forward motion and the acceleration due to gravity results in a parabolic trajectory, which signifies a two-dimensional motion.

Mariner 10 was the first to visit this planet in 1974. what is this planet?

Answers

Answer: Mercury

The Mariner 10 probe was launched by NASA on November 3rd, 1973, with the purpose of exploring the characteristics of two planets in the solar system that were closest to the Sun, Mercury and Venus.  

In addition, it was launched to explore the atmosphere and surface of both planets and prove that it was possible to use gravitational assistance (also called slingshot effect, a special orbital maneuver in order to use the gravitational field energy of a planet or massive body to accelerate or slow the probe and change the direction of its trajectory) in long interplanetary trips to save fuel.  

In this case, Mariner 10 first arrived at Venus and succeded in using its gravitational field to accelerate its trajectory towards Mercury.

The planet visited by Mariner 10 in 1974 was Mercury.

In 1974, Mariner 10 passed within 9500 kilometers of Mercury's surface and transmitted more than 2000 photographs back to Earth. These images provided unprecedented details of Mercury's surface.

Does current flow through or across a resistor?

Answers

Answer:

Current flows across a resistor.

Explanation:

Please mark brainliest and have a great day!

It's not exactly clear what you think the difference is between "through" and "across".

A resistor has two wires.  Electric current that flows into one wire, continues through the entire body of the resistor and out through the other wire.  If there's a crack or break anywhere along the body of the resistor, the circuit will be 'open' and the current will stop flowing.

Now, if you were to connect a voltmeter between the ends of the resistor, the meter would measure and indicate the difference in electric potential between those two points.  That would be called the voltage 'across' the resistor.  Numerically, it would be equal to the product of the resistor's resistance and the current through it.  

Is the wavelength comparable to the size of atoms?

Answers

Final answer:

The wavelength of objects like baseballs is extremely small compared to the size of atoms, rendering such wavelengths undetectable in the macroscopic world. However, for subatomic particles like electrons, their wavelength can be comparable to the size of atoms, influencing their behavior and energy levels within the atom. X-rays have wavelengths comparable to the size of the structures they interact with, allowing them to be effective in observing atomic and molecular structures.

Explanation:

When considering the size of an atom, which is typically on the order of 0.1 nanometers (10-10 meters), and comparing it to the wavelengths of various particles or types of radiation, we can make several observations. For instance, the diameter of an atom's nucleus is approximately 10⁻¹⁴ meters.

If we calculate the wavelength of a 0.145 kg baseball moving at 40 m/s, the resultant wavelength would be about 10-34 meters. This is immeasurably small compared to the size of an atom, indicating Their wavelength is very small compared to the object's size.

However, for subatomic particles like electrons, the wavelength is of the same order of magnitude as the size of an atom. The wavelike behavior of electrons is significant when they are confined within the atom, as this affects their possible energy levels. In the case of X-rays, the wavelength is comparable to the size of the structures it interacts with, such as the distances between atoms in a molecule, allowing X-rays to 'see' these structures.

If we scale an atom up to a size comparable to a mid-sized campus, the nucleus would be only a tiny fraction of that size, possibly comparable to a small familiar object like a marble.

Final answer:

Wavelengths of everyday large objects are considerably smaller than the size of atoms, and thus their wave properties are not detectable. However, for subatomic particles like electrons, their wavelengths can be of the same order as the size of atoms, indicating observable wavelike behavior. X-rays have wavelengths comparable to atomic dimensions and can effectively image atomic structures.

Explanation:

When considering the scale of wavelengths to the size of atoms, it's important to understand that typically the wavelength of everyday large objects, such as a baseball, is considerably smaller than atomic dimensions. If we calculate the wavelength of a 0.145 kg baseball moving at a speed of 40 m/s, we would get a wavelength of approximately 10-34 m. This is so short that it is undetectable even with the most advanced scientific instruments and is much smaller than the size of an atom, which is in the order of 10-10 m.

In contrast, the phenomena of wave-particle duality, as demonstrated by electrons, shows that wavelike behavior becomes prominent when the wavelength of particles is on the order of magnitude of atoms. The classic example involves the wave nature of electrons showing quantized wavelengths that fit just right around an atom, explaining why they can only occupy specific energy levels within an atom.

The significance of wavelengths being comparable to atomic sizes comes into focus especially in fields involving the electromagnetic spectrum, such as when using X-rays to probe structures at the atomic or molecular level. Here, the fact that the wavelength of X-rays is comparable to the spacing between atoms allows for the detailed imaging of such structures through diffraction patterns.

to permit a large water flow , the pipe must have, A.enough strength,B.a large cross sectional area, C.enough length to conduct the flow or ,D. a sufficient drop

Answers

Answer:

B. A large cross sectional area,

Explanation:

To permit a large flow of water in a pipe, the cross sectional area of the pipe must be significantly large. According to the flow rate equation:

                    V = [tex]\frac{Q}{A}[/tex]

Where:

           Q is the Volume flow rate and it is the volume of fluid that flows              through the pipe

            V is the velocity of the fluid in the pipe

            A is the cross sectional area of the pipe.

From the equation, we see that for a larger amount of water to flow in a pipe, the cross-sectional area must be very large. In short, Q varies directly as A.

Answer:

a large cross-sectional area

Explanation:

Leonard designed a parallel circuit to light two lightbulbs. But his circuit doesn't work. Which two items in the circuit must be addressed for the lightbulbs to light as planned?

Answers

The switch and the first lightbulb

Answer:

1. The source of power

2. Connection and accessories including, the power cable condition, switches and light bulbs

Explanation:

The items listed above should be tested with a suitable probe and any identified defective component should be replaced

The toy on a spring illustrated energy conversion among what different forms?

a.Gravitational potential energy, kinetic energy, and elastic potential energy
b.Gravitational potential energy, kinetic energy, and thermal energy
c.Kinetic energy, elastic potential energy, and thermal energy
d.Kinetic energy and elastic potential energy
e.Gravitational potential energy and thermal energy

Answers

Final answer:

The toy on a spring converts energy between elastic potential energy, kinetic energy, and gravitational potential energy, demonstrating the principles of the Law of Conservation of Mechanical Energy. So the correct option is a.

Explanation:

The toy on a spring illustrates energy conversion among different forms of energy. The correct answer is a. Gravitational potential energy, kinetic energy, and elastic potential energy. Initially, the toy has elastic potential energy due to the compression of the spring. When the spring is released, this energy is converted into kinetic energy as the toy begins to move. As the toy moves up a slope, kinetic energy is gradually converted into gravitational potential energy. The toy's energy transitions between these forms without any loss if we assume negligible friction and air resistance, consistent with the Law of Conservation of Mechanical Energy.

Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to orbit at an altitude of 6380 km. Satellite B is to orbit at an altitude of 22700 km. The radius of Earth REis 6370 km. (a) What is the ratio of the potential energy of satellite B to that of satellite A, in orbit? (b) What is the ratio of the kinetic energy of satellite B to that of satellite A, in orbit? (c) Which satellite (answer A or B) has the greater total energy if each has a mass of 35.0 kg? (d) By how much?

Answers

(a) 0.439

The potential energy of a satellite in orbit is given by

[tex]U=-\frac{GmM}{R+h}[/tex]

where

G is the gravitational constant

m is the mass of the satellite

M is the mass of the Earth

R is the Earth's radius

h is the altitude of the satellite

If we call

[tex]U_A=-\frac{GmM}{R+h_A}[/tex]

the potential energy of satellite A, with

[tex]h_A = 6380 km = 6.38\cdot 10^6 m[/tex]

being its altitude, and

[tex]U_B=-\frac{GmM}{R+h_B}[/tex]

the potential energy of satellite B, with

[tex]h_B = 22700 km = 22.7\cdot 10^6 m[/tex]

being the altitude of satellite B

and

[tex]R=6370 km = 6.37 \cdot 10^6 m[/tex] being the Earth's radius

The ratio between the potential energy of satellite B to that of satellite A will be

[tex]\frac{U_B}{U_A}=\frac{R+h_A}{R+h_B}=\frac{6.37\cdot 10^6 m+6.38\cdot 10^6 m}{6.37\cdot  10^6 m+22.7\cdot 10^6 m}=0.439[/tex]

(b) 0.439

The kinetic energy of a satellite in orbit has a similar expression to the potential energy

[tex]K=\frac{1}{2} \frac{GmM}{R+h}[/tex]

As before, if we call

[tex]K_A=\frac{1}{2} \frac{GmM}{R+h_A}[/tex]

the kinetic energy of satellite A, with

[tex]h_A = 6380 km = 6.38\cdot 10^6 m[/tex]

being its altitude, and

[tex]K_B=\frac{1}{2} \frac{GmM}{R+h_B}[/tex]

the kinetic energy of satellite B, with

[tex]h_B = 22700 km = 22.7\cdot 10^6 m[/tex]

being the altitude of satellite B,

the ratio between the kinetic energy of satellite B to that of satellite A is

[tex]\frac{K_B}{K_A}=\frac{R+h_A}{R+h_B}=\frac{6.37\cdot 10^6 m+6.38\cdot 10^6 m}{6.37\cdot  10^6 m+22.7\cdot 10^6 m}=0.439[/tex]

(c) Satellite B

The total energy of each satellite is given by the sum of the potential energy and the kinetic energy:

[tex]E= U+K = -\frac{GMm}{R+h}+\frac{1}{2} \frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}[/tex]

For satellite A we have:

[tex]E_A = -\frac{1}{2}\frac{GMm}{R+h_A}[/tex]

While for satellite B we have

[tex]E_B = -\frac{1}{2}\frac{GMm}{R+h_B}[/tex]

We see that the total energy is inversely proportional to the altitude of the satellite: therefore, the higher the satellite, the smaller the energy. So, satellite A will have the greater total energy (in magnitude), since [tex]h_A < h_B[/tex]; however, the value of the total energy is negative, so actually satellite B will have a greater energy than satellite A.

(d) [tex]3.07\cdot 10^8 J[/tex]

The total energy of satellite A is

[tex]E_A = -\frac{1}{2}\frac{GMm}{R+h_A}[/tex]

with

[tex]h_A = 6380 km = 6.38\cdot 10^6 m[/tex]

while the total energy of satellite B is

[tex]E_B = -\frac{1}{2}\frac{GMm}{R+h_B}[/tex]

with

[tex]h_B = 22700 km = 22.7\cdot 10^6 m[/tex]

So the difference between the two energies is

[tex]E_B - E_A = -\frac{1}{2}\frac{(6.67\cdot 10^{-11}(35 kg)(5.98\cdot 10^{24} kg)}{6.37\cdot 10^6 m +22.7\cdot 10^6 m}-(-\frac{1}{2}\frac{(6.67\cdot 10^{-11}(35 kg)(5.98\cdot 10^{24} kg)}{6.37\cdot 10^6 m +6.38\cdot 10^6 m})=3.07\cdot 10^8 J[/tex]

A balloon was filled to a volume of 2.50 l when the temperature was 30.0∘c. What would the volume become if the temperature dropped to 11.0∘c.

Answers

Answer:

2.34 L

Explanation:

Assuming the pressure inside the balloon remains constant, then we can use Charle's law, which states that for a gas kept at constant pressure, the ratio between the volume of the gas and its temperature remainst constant:

[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]

where in this problem we have:

[tex]V_1 = 2.50 L[/tex] is the initial volume

[tex]V_2 [/tex] is the final volume

[tex]T_1 = 30.0^{\circ}C+273 = 303 K[/tex] is the initial temperature

[tex]T_2 = 11.0^{\circ}C+273 = 284 K[/tex] is the final temperature

Substituting into the equation and solving for V2, we find the final volume:

[tex]V_2 = \frac{V_1 T_2}{T_1}=\frac{(2.50 L)(284 K)}{303 K}=2.34 L[/tex]

Final answer:

The volume of a balloon filled to 2.50 L at 30.0°C will decrease to approximately 2.34 L when the temperature drops to 11.0°C, as calculated using Charles's Law.

Explanation:

To determine the new volume of a balloon when the temperature drops from 30.0°C to 11.0°C, we can use Charles's Law which states that the volume of a gas is directly proportional to its temperature in kelvins. First, we convert the temperatures from Celsius to Kelvin by adding 273.15:

Initial temperature (T1) = 30.0°C = 303.15 KFinal temperature (T2) = 11.0°C = 284.15 K

With an initial volume (V1) of 2.50 L, we can set up the proportionality:

V1/T1 = V2/T2
Solving for the new volume (V2):

V2 = V1 · (T2/T1)
V2 = 2.50 L · (284.15 K / 303.15 K)
V2 = 2.50 L · 0.9373
V2 ≈ 2.34 L
The volume of the balloon will decrease to approximately 2.34 L when the temperature drops to 11.0°C.

Calculate the kinetic energy in joules of an automobile weighing 4345 lb and traveling at 75 mph. (1 mile

Answers

Answer:

1.11×10⁶ J

Explanation:

75 mi/hr × (1609.34 m / mi) × (1 hr / 3600 s) = 33.5 m/s

4345 lbf × (1 lbm / lbf) × (1 kg / 2.2 lbm) = 1975 kg

KE = 1/2 mv²

KE = 1/2 (1975 kg) (33.5 m/s)²

KE = 1.11×10⁶ J

The kinetic energy of the automobile weighing 4345lb and with a speed of 75mph is 1.1077 × 10⁶J

Given the data in the question;

Mass of the automobile [tex]m = 4345lb = 1970.859 kg[/tex]  

[we convert from pound to kilogram]

Velocity of the automobile; [tex]v = 75mph = 33.528m/s[/tex]  

[ we convert from miles per hour to meter per second]

Kinetic energy; [tex]K.E = ?[/tex]

We know that, Kinetic Energy ( K.E ) is a form of energy that a matter possesses by reason of its motion.

It is directly proportional to the mass of the matter and to the square of its velocity.

That is; [tex]K.E = \frac{1}{2} mv^2[/tex]

To find the Kinetic Energy, we simply substitute our given values into the equation

[tex]K.E = \frac{1}{2}\ * 1970.859kg\ *\ ( 33.528m/s)^2\\\\K.E = 1107747.69 kg.m^2/s^2\\\\K.E = 1.1077 * 10^6 J[/tex]

Therefore, the kinetic energy of the automobile weighing 4345lb and with a speed of 75 mph is 1.1077 × 10⁶J

Learn more; https://brainly.com/question/6883026

Which of the following represents an upside-down image?
O A. +do
O B. -do
O c. +m
O D.-m​

Answers

Answer:

D. -m

Explanation:

The magnification of an image is equal to the following ratio:

[tex]m = \frac{y'}{y}[/tex]

where

y' is the size of the image

y is the size of the real object

We have two situations:

- When m is positive, it means that y' has the same sign of y --> so the image has same orientation of the object (= image is upright)

- When m is negative, it means that y' has opposite sign to y --> so the image has opposite orientation to the object (= image is upside down)

So, the correct answer that describes an upside-down image is

D. -m

Final answer:

The representation of an upside-down image in optical physics is given as option D. -m, indicating a negative magnification, which means the image is inverted relative to the object.

Explanation:

The question is related to the formation of images by mirrors or lenses in physics and specifically refers to the sign conventions used to describe the nature of images. An upside-down image is produced when the magnification (m) is negative. This negative magnification indicates that the image is inverted relative to the object. In optics, a real image (produced by a single lens or mirror that can be displayed on a screen) is considered to be upside down if its magnification is negative. Thus, the option that represents an upside-down image is D. -m.

Ionic compounds have high melting points.
This can best be explained by the fact that the bonds in ionic compounds

A. involve the sharing of electrons.
B. require a great deal of energy to break.
C. occur between metals and nonmetals.
D. form between a positively charged atom and a negatively charged atom.

Answers

b.) require a great deal of energy to break.

Most ionic compounds exist as solids at room temperature. In order to melt or boil an ionic compound, the ionic bonds must be broken. It takes a great deal of energy to break an ionic bond. For this reason, ionic solids have high melting and boiling points.
Final answer:

Ionic compounds have high melting points due to the strong electrostatic forces of attraction between ions, which require a great deal of energy to break.

Explanation:

The high melting points of ionic compounds are best explained by the B option: ionic bonds require a great deal of energy to break. This is because ionic compounds are formed by the strong electrostatic forces of attraction between positively charged cations and negatively charged anions. This strong inter-ionic bonding makes ionic compounds hard, requiring substantial energy to overcome and result in a high melting point.

Learn more about Ionic Compounds here:

https://brainly.com/question/33500527

#SPJ6

The frequency of the middle c note on a piano is 261.63 hz. What is the wavelength of this note in centimeters? The speed of sound in air is 343.06 m/s.

Answers

Answer:

1.31 m

Explanation:

The relationship between frequency and wavelength of a sound wave is

[tex]c=f \lambda[/tex]

where

c is the speed of the wave

f is the frequency

[tex]\lambda[/tex] is the wavelenfth

In this problem, we have

c = 343.06 m/s

f = 261.63 Hz

So we can solve the formula for the wavelength:

[tex]\lambda=\frac{c}{f}=\frac{343.06 m/s}{261.63 Hz}=1.31 m[/tex]

Wavelength of the note of the piano is the ratio of speed of sound to its frequency. The wavelength of the note is centimeters is 131 centimeters.

What is wavelength of a wave?

Wavelength of a wave is the distance between the two consecutive crest or the thrust of that wave. The wavelength of the wave is represented with the Greek latter lambda (λ).

The wavelength of the wave can be given as,

[tex]\lambda=\dfrac{v}{f}[/tex]

Here, (v) is the speed of wave and (f) is the frequency of the wave.

It is given that, the frequency of the middle c note on a piano is 261.63 hz.

As the speed of sound in air is 343.06 meter per second. Thus put the values of the known variables in the above formula to find the wavelength of the note as,

[tex]\lambda=\dfrac{343.06}{261.63}\\\lambda=1.31\rm m[/tex]

The wavelength of this note in centimeters is 131 centimeters.

Learn more about the wavelength of a wave here;

https://brainly.com/question/25847009

You are driving on an Interstate highway in bad weather, and you do not feel safe at the speed limit. You should A: Follow closely behind a large truck. It will shield you from the weather. B: Slow down to the speed that allows you to have complete control of your vehicle. C: Always drive the same speed as other vehicles, even if it feels unsafe.

Answers

Answer:

B. Slow down to the speed that allows you to have complete control of your vehicle.

Explanation:

Your life is very important, and driving at the same speed as others or even closely behind could endanger your life. Being directly behind someone else, if they stop immediately you will hit them because you can't stop fast enough. If something feels unsafe never continue doing it.

Answer:

B.  slow down to the speed that allows you to h ave complete control of  your vehicle.

Explanation:

You can also reduce the risk of external factors by slowing down and keeping a safe distance from the vehicle in front of you.

Other Questions
A college career counselor working at a community college is part of what career area?A. AdministrationB. Professional support servicesC. Teaching and trainingD. Guidance counseling What tests were able to determine when continental crust was formed? A. Potassium-argon dating and half-life isotopes B. Relative dating and carbon-prototyping C. Stratigraphic measurement and argon-aluminum dating D. Stratigraphic measurement and strontium-rubidium dating Which of the following properties is necessary to simplify the expression given below?(2) + 5(x 3) 4x(6 + 1) In a survey of 520 likely voters in a certain city, 307 said that they planned to vote to reelect the incumbent mayor. What is the probability that a surveyed voter plans to vote to reelect the mayor? Write only a number as your answer. Round to two decimal places (for example: 0.43). Find the surface area of the sphere. Leave your answers in terms of pi.Radius = 100Surface Area = [ ? ] pi Packaged travel is a trip that a tourist takes without consulting with a travel agent or other travel professional. True False the population of one part of the city is recorded. in 2010 there was a population of 6500 people. from 2010 to 2014 our population increased by 10%. from 2014 to 2017, the population decreased by 6%. what was the population in 2017? URGENT WILL GIVE BRAINLIESTDetermine two pairs of polar coordinates for the point (5, 5) with 0 < 360. which of the following describes a simple event A.spinning a 2 on a spinner B.spinning a 3 on a spinner and rolling a 1 on a diceC.getting heads on a coin toss and rolling a 5 on a die D.drawing a queen from a deck of cards and getting a tail on a coin toss 20. A comet's tail always points away from the Sun because Dust; the solar wind pushes the particles away from the comet's head Ion; the solar wind pulls the particles towards the comet's head Dust; the solar wind pulls the particles towards the comet's head Ion; the solar wind pushes the particles away from the comet's head Many organizations have policies that require users to: a.retain their passwords for a minimum of 30 days. b.include at least three consecutive letters of part of their name in their passwords. c.change their passwords on a regular basis. d.share their passwords with the administrator. Match each pair of angle measures of a triangle with the remaining angle measure119 degrees and 23 degrees33 degrees16 degrees and 10 degreesBOOOO65 degrees20 degrees and 87 degrees35 degrees36 degrees and 51 degrees62 degrees Given f(x)= 3x-5 find f (x-2) The perimeter of a rectangular field is 26 yards. The length is 4 more yards than twice the width. Find the length and width of the field. A. Length = 8 yards; Width = 4 yards B. Length = 10 yards; Width = 3 yards C. Length = 13 yards; Width = 9 yards D. Length = 8.5 yards; Width = 4.5 yards Combine these radicals. 23 11 Wujuu! Hace ____________ aqu en las aguas tropicales. PLEASE HELP ME, WILL GIVE BRAINLIEST TO THE BEST ANSWER!! 15 POINTS!!Your school has recently decided to start serving genetically modified food as part of school lunches. Give a multimedia presentation to the student council arguing for or against the new policy. Include engaging visual elements and strong evidence that support your position. Simplify: 2(8 - 2x4). Which transition word best connects the ideas within the followingparagraph?Some people who disagree with the idea of climate change may refer it as a"non-science , these people may not realize that this claim is based onnon-science.OA. ThenOB. NowOC. ThereforeOD. However Was race identified with slavery before the era of European exploration? Why or why not? How did slaverys association with race change the institutions character? Steam Workshop Downloader