Answer:
CO₃²⁻ + Ca²⁺ → CaCO₃(s)
Explanation:
In a net ionic equation there are listed just the ions that are involved in the reaction.
For the reaction:
Na₂CO₃(aq) + Ca(NO₃)₂(aq) → 2NaNO₃(aq) + CaCO₃(s)
Ions are:
2 Na⁺ + CO₃²⁻ + Ca²⁺ + 2 NO₃⁻ → 2 Na⁺ + 2 NO₃⁻ + CaCO₃(s)
Thus, ions that react are just CO₃²⁻ and Ca²⁺ and net ionic equation is:
CO₃²⁻ + Ca²⁺ → CaCO₃(s)
The net ionic equation for the reaction between Na2CO3 and Ca(NO3)2, removing the spectator ions, is 2Na+ + CO32- + Ca2+ → CaCO3 + 2Na+.
Explanation:You were asked to write the net ionic equation for the reaction that occurs when solutions of Na2CO3 and Ca(NO3)2 are mixed. The net ionic equation only includes those substances and ions in the ionic compounds that undergo a chemical change. In this case, they are the ions that combine to form the precipitate CaCO3.
The net ionic equation removes any spectator ions (ions that do not participate directly in the reaction but exist in the solution). In this reaction, the nitrate ions (NO3-) and the sodium ions (Na+) are the spectator ions, as they remain in the solution and do not form a part of the precipitate.
Therefore, the net ionic equation is: 2Na+ + CO32- + Ca2+ → CaCO3 + 2Na+
Learn more about Net Ionic Equation here:https://brainly.com/question/36522237
#SPJ3
A mixture of gases at a total pressure of 725 mmHg contains nitrogen, carbon dioxide, helium, and oxygen. The partial pressure of carbon dioxide is 175 mmHg, the partial pressure of nitrogen is 355 mmHg, and the partial pressure of helium is 15 mmHg. What is the partial pressure of oxygen?
Answer: The partial pressure of oxygen is 180 mm Hg
Explanation:
According to Dalton's law, the total pressure is the sum of individual pressures.
[tex]p_{total}=p_{N_2}+p_{CO_2}+p_{He}+p_{O_2}[/tex]
Given : [tex]p_{total}[/tex] =total pressure of gases = 725 mm Hg
[tex]p_{N_2}[/tex] = partial pressure of nitrogen = 355 mm Hg
[tex]p_{CO_2}[/tex] = partial pressure of carbon dioxide = 175 mm Hg
[tex]p_{He}[/tex] = partial pressure of helium = 15 mm Hg
[tex]p_{O_2}[/tex] = partial pressure of oxygen = ?
putting in the values we get:
[tex]725=355+175+15+p_{O_2}[/tex]
[tex]p_{O_2}=180mmHg[/tex]
The partial pressure of oxygen is 180 mm Hg
2. As the caisson is pushed deeper underwater, the air pressure in the caisson rises to 26.1 psi. Since it is 1869, the caisson is illuminated using flame. At the beginning of the shift, the temperature in the caisson was 91oF. But by the end of the shift, the heat from the lights and body heat have increased the temperature in the caisson to 95oF. What is the new air pressure in the caisson?
Answer:
The new air pressure is 21.76 psi
Explanation:
The caisson is a fixed volume structure hence we have pressure variation with temperature at constant volume which is explained by Gay Lussac's law which states that the pressure of a given mass of gas is directly proportional to its Kelvin temperature provided that the volume remain constant.
Therefore, P₁/T₁ = P₂/T₂
Where:
P₁ = Initial air pressure = 26.1 psi
T₁ = Initial air temperature = 91 °F = 305.93 K
P₂ = New air pressure = Required
T₂ = New air temperature = 95 °F = 308.15 K
Therefore, making P₂ the subject of the formula, we have;
P₂ = (P₁ × T₂)/T₁ = (26.1×308.15)/305.93 = 21.76 psi
The new air pressure = 21.76 psi.
What phrase best defines a star system?
Answer:
A
Explanation:
Hundreds of stars
Answer:
The meaning of star system is group of hundreds of stars , that form around the same time .
Explanation:
how many Hydrogen atoms are found on the REACTANT side of the chemical equation below? P4O10+H2O——> H3PO4
Answer:
12
Explanation:
Balanced Chemical equation is
P4O10+ 6H2O —> 4 H3PO4
Therefore number of H atoms in the reactant side is 12
The reaction 2CH4(g)⇌C2H2(g)+3H2(g) has an equilibrium constant of K = 0.154. If 6.30 mol of CH4, 4.20 mol of C2H2, and 11.15 mol of H2 are added to a reaction vessel with a volume of 6.00 L , what net reaction will occur?
Answer:
C₂H₂ + 3H₂ ⟶ 2CH₄
Explanation:
The initial concentrations are:
[CH₄] = 6.30 ÷ 6.00 = 1.05 mol·L⁻¹
[C₂H₂] = 4.20 ÷ 6.00 = 0.700 mol·L⁻¹
[H₂] = 11.15 ÷ 6.00 = 1.858 mol·L⁻¹
2CH₄ ⇌ C₂H₂ + 3H₂
I/mol·L⁻¹: 1.05 0.700 1.858
[tex]Q = \dfrac{\text{[C$_{2}$H$_{2}$][H$_{2}$]}^{3}}{\text{[CH$_{4}$]}^{2}} = \dfrac{ 0.700\times 1.858^{3}}{1.05^{2}}= 4.07[/tex]
Q > K
That means we have too many products.
The reaction will go to the left to get rid of the excess products.
C₂H₂ + 3H₂ ⟶ 2CH₄
As the magnesium reacts, the hydrogen gas produced is collected by water displacement at 23.0oC. The pressure of the gas in the collection tube is measured to be 749 torr. Given that the equilibrium vapor pressure of water is 21 torr at 23.0oC, calculate the pressure that the H2(g) produced in the reaction would have if it were dry.
Answer: The pressure that the [tex]H_2(g)[/tex] produced in the reaction would have if it were dry will be 728 torr
Explanation:
According to Dalton's law, the total pressure is the sum of individual pressures.
[tex]p_{total}=p_{H_2}+p_{H_2O}[/tex]
Given : [tex]p_{total}[/tex] =total pressure of gas = 749 torr
[tex]p_{H_2}[/tex] = partial pressure of hydrogen = ?
[tex]p_{H_2O}[/tex] = partial pressure of water = 21 torr
putting in the values we get:
[tex]749=p_{H_2}+21[/tex]
[tex]p_{H_2}=728torr[/tex]
Thus the pressure that the [tex]H_2(g)[/tex] produced in the reaction would have if it were dry will be 728 torr
To calculate the dry pressure of the hydrogen gas, subtract the equilibrium vapor pressure of H2O at 23.0°C from the total pressure in the tube: 749 torr - 21 torr = 728 torr. Therefore, the pressure of the H2(g) would be 728 torr if it were dry.
Explanation:The pressure of hydrogen gas produced in the reaction is determined by taking the total pressure in the collection tube and subtracting the equilibrium vapor pressure of water at the same temperature. In this case, the total pressure is 749 torr, and the equilibrium vapor pressure of water is 21 torr at 23.0°C.
To calculate the dry pressure of the hydrogen gas, you would perform this calculation: Dry H2(g) pressure = total pressure - vapor pressure of water = 749 torr - 21 torr = 728 torr.
This tells us if the hydrogen gas were dry, its pressure would be 728 torr. This involves concepts related to gas laws, vapor pressure, and reactions producing gas in chemistry.
Learn more about Hydrogen Gas Pressure Calculation here:https://brainly.com/question/29661628
#SPJ3
Which term describes a substance that increases the concentration of hydroxide (OH-) ions in solution? *
Answer:
Arrhenius definition of a base
Explanation:
got it right on edge
Complete the following analogy:
coach: football plays as meteorologist:
A
sediment
B
writing
C
Sun
D
precipitation patterns
Coach is to football plays, as meteorologist is to: D. precipitation patterns.
A coach refers to an individual who is an expert or professional in the game of soccer and as such he or she manages a football team, while guiding the team members on how to play football. Thus, the activity of a coach is directly related to football plays against an opposition team.
On the other hand, a meteorologist refers to an individual who is an expert or professional in the field of meteorology and studies the weather in a region. This ultimately implies that, a meteorologist is saddled with the responsibility of studying the elements of weather in a particular geographic region and over a specific period of time.
Generally, some examples of the elements of weather are:
TemperatureAtmospheric pressureWindRelative humidityPrecipitationDeductively, we can conclude that a meteorologist studies precipitation patterns in a particular geographic region and over a specific period of time.
Read more on meteorologist here: https://brainly.com/question/24939205
Question: DNA is a ___________ found in the nucleus of cells in all living organisms.
Question: The genome, chromosomes and ___________ of an organism are all made of DNA.
Question: DNA is a long set of coiled set of basic ___________ or letters.
Questions: Genes are instructions on how to build______________
Question: Even though organisms are different, they can have ________genes.
Answer:
moleculegenesthey tried to trick u, its only letters, it then converts into sentences or chaptersproteinssimilarhope this helped :D1 point
If 2 moles of CO2 are created how many moles of C2H6 reacted?
2 C2H6
+ 702
4CO2 + 6H2O
3.5 mol C2H6
1 mol C2H6
4 mol C2H6
8 mol C2H6
Answer:
1 mole of C2H6.
Explanation:
The balanced equation for the reaction is given below:
2C2H6 + 7O2 —> 4CO2 + 6H2O
We can determine the number of mole of C2H6 that reacted to produce 2 moles of CO2 as follow:
From the balanced equation above,
2 moles of C2H6 reacted to produce 4 moles of CO2.
Therefore, Xmol of C2H6 will react to produce 2 moles of CO2 i.e
Xmol of CO2 = (2 x 2)/4
Xmol of CO2 = 1 mole.
Therefore, 1 mole of C2H6 is required to produce 2 moles of CO2.
When barium hydroxide and ammonium chloride react,the temperature of the mixture decreases.What kind of reaction is this?
Answer:
Endothermic
Explanation:
When barium hydroxide and ammonium chloride react, the temperature decreases because it's an endothermic reaction, where heat is absorbed, causing a cooling effect.
Explanation:When barium hydroxide and ammonium chloride react, the temperature of the mixture decreases because the reaction is endothermic. An endothermic reaction is a type of chemical reaction that absorbs heat from its surroundings, resulting in a decrease in temperature. This is in contrast to exothermic reactions, which release heat, raising the temperature of the surroundings. In the case of barium hydroxide reacting with ammonium chloride, the cooling effect is so substantial that it can cause water to freeze, showcasing the highly endothermic nature of this reaction.
Endothermic reactions are characterized by their requirement for heat to proceed, thereby cooling the environment. This concept is essential in understanding thermochemistry, which involves the study of energy changes that occur during chemical reactions. The reaction between barium hydroxide and ammonium chloride serves as an example of how chemical reactions can absorb heat energy, leading to a temperature drop in the immediate environment.
Learn more about Endothermic Reaction here:https://brainly.com/question/40334230
#SPJ11
Which equation represents the combined gas law?
Answer:
Equation 3
Explanation:
It combines all the gas laws and it is called the ideal gas equation
Answer:
C.
Explanation:
If a neutral compound is composed of carbon and hydrogen and you know that it has exactly 2 carbons connected by a double bond, how many hydrogens will the compound have?
A. 4
B. 8
C. 2
D. 6
Answer: The answer is A. 4
Explanation: I just had this question on a quiz
The compound with two carbon atoms connected by a double bond is an alkene known as ethene or ethylene, and it has 4 hydrogens. The general formula for alkenes (CnH2n) confirms this, as 2 carbons (n=2) would correspond to 4 hydrogens.
Explanation:In the world of organic chemistry, a compound with two carbon atoms connected by a double bond is known as an alkene. The simplest alkene is ethene (also known as ethylene), which consists of 2 carbon (C) atoms connected by a double bond and 4 hydrogen (H) molecules. According to the general formula for alkenes, which is CnH2n, if n=2 (representing the 2 carbon atoms), the corresponding number of hydrogen atoms is 2*2, which equals to 4. Therefore, the correct answer is A. 4.
Learn more about Organic Chemistry here:https://brainly.com/question/34720918
#SPJ2
answer the questions.
Answer:
See explanation and images attached
Explanation:
The equation for the laboratory preparation of nitrogen is:
NH4Cl(aq) + NaNO2(aq) → N2(g) + 2H2O(l) + NaCl (aq).
When concentrated sulphuric acid is used, the nitrogen gas is oxidized to ammonia
N2(g) + 3H2(g) -----> 2NH3(g)
2Na(s) + 2H2O(l) -----> 2NaOH(aq) + H2(g) NOTE HERE THAT THE SECOND PRODUCT IN THIS REACTION IS HYDROGEN GAS AND NOT WATER AS WRITTEN IN THE WORD EQUATION.
Molecular formula of calcium phosphate is Ca3(PO4)2
Molecular formula of sodium bicarbonate is NaHCO3
In the duplet state, the outermost shell of an atom contains only two electrons e.g helium.
Octet state means that the outermost shell of the atom contains eight electrons as in the noble gases Ne, Ar, Kr etc
The equation for the laboratory preparation of oxygen is ;
2KClO3(s)----> 2KCl(s) + 3O2(g)
Finally, if an element burns in air to give a soluble oxide which turns red litmus blue (basic property) then the element is a metal. Metals form basic oxides which dissolve in water to form alkaline solutions which turns red litmus paper blue.
How long can carbon dioxide remain in the environment after it is released?
A. 50 to 200 years
B. 12 to 17 years
C. 12 to 17 months
D. 50 to 200 days
Answer:
A. 50 to 200 years
Answer:
A. 50 to 200 years
Explanation:
Hope this helped! stay safe!
Rozwiaz logogryf. Z wyróżnionych pól odczytaj hasło i je zapisz.
1.Pierwiastek chemiczny będący głownym składnikiem powietrza (zajmuje 78% jego objętości),
2.Najprostrzy węglowodór nasycony,
3.Powstaje w wyniku połączenia dwóch cząsteczek aminokwasów,
4.Gaz o ostrym zapachu rozpuszczalny w wodzie; produkt syntezy wodoru i azotu.
5.Zwyczajowa nazwa kwasu aminooctowego
(pierwsze ma cztery kratki drugie ma pięć kratek trzecie ma osiem czwarte ma siedem piąte ma siedem). Z góry dziękuję
Answer:
1) Nitrogen
2) Methane
3) Dipeptide
4) Ammonia
5) Glycine
In Polish/Po polsku
1) Azot
2) metan
3) dipeptyd
4) Amoniak
5) glicyna
Explanation:
English Translation
Solve logogriffs. Read the password from the highlighted fields and write it down.
1.The chemical element being the main component of air (it occupies 78% of its volume),
2. The simplest saturated hydrocarbon,
3. Is a result of combining two amino acid molecules,
4. Gas with a pungent odor, soluble in water; hydrogen and nitrogen synthesis product.
5. Common name of aminoacetic acid
(the first has four boxes, the second has five boxes, the third has eight quarters has seven, fifths and seven).
Thank you in advance
1) The main component of air that makes up 78% of the air is Nitrogen.
2) The simplest saturated hydrocarbon is the first member of the alkane family, Methane.
3) Two amino acids combine by forming peptide bonds between the carboxyl group of one amino acid and the amino group of another through dehydration synthesis (loss of 1 molecule of water). Hence, the result of the combination of two amino acids are called Dipeptides.
4) Nitrogen and Hydrogen come together to form only one known water soluble gas with pungent smell, called Ammonia.
5) Aminoacetic acid as its name suggests is an amino acid with the acetyl group. It is the simplest amino acid. The common name for this compound is Glycine.
In Polish/Po polsku
1) Głównym składnikiem powietrza, które stanowi 78% powietrza, jest azot.
2) Najprostszym nasyconym węglowodorem jest pierwszy członek rodziny alkanów, metan.
3) Dwa aminokwasy łączą się, tworząc wiązania peptydowe między grupą karboksylową jednego aminokwasu i grupą aminową innego przez syntezę odwodnienia (utrata 1 cząsteczki wody). Stąd wynik połączenia dwóch aminokwasów nazywa się dipeptydami.
4) Azot i wodór tworzą razem jeden znany gaz rozpuszczalny w wodzie o ostrym zapachu, zwany amoniakiem.
5) Kwas aminooctowy, jak sama nazwa wskazuje, jest aminokwasem z grupą acetylową. To najprostszy aminokwas. Powszechna nazwa tego związku to glicyna.
Hope this Helps!!!
Mam nadzieję że to pomoże!!!
Many cactus plants, such as the species shown in the illustration, use a special type of photosynthesis called CAM photosynthesis. This specialized process allows the cactus plant to keep the stoma or leaf openings closed during the day. Most other plant species keep their stoma open during daylight hours. Which is the MOST likely reason that cactus use this special photosynthetic process?
A) retain oxygen
B) conserve wate
C) avoid insect predators
D) conserve energy in the form of ATP
A chemical equilibrium, the amount of (blank) because( blank)
Answer:
the amount of product and reactant remains constant because the rates of the foward and reverse reactions are equal
Explanation:
Chemical equilibrium is a state where reactant and product concentrations remain constant over time, as the forward reaction rate equals the reverse reaction rate, known as dynamic equilibrium.
In a chemical reaction, chemical equilibrium is the state in which both reactants and products are present in concentrations which have no further tendency to change over time. This state occurs when the rate of the forward reaction is equal to the rate of the reverse reaction, leading to no net changes in the concentrations of the reactant(s) and product(s). This is referred to as a dynamic equilibrium.
The equilibrium constant (Kc) is a value that represents the ratio of products to reactants at this equilibrium state, computed from a balanced chemical equation. The concept of dynamic equilibrium is essential for understanding many chemical processes, as it represents a condition where despite the ongoing forward and backward reactions, the overall concentrations remain constant, illustrating a balanced chemical system.
Which statement describes compounds? Compounds are made of one type of atom. Compounds cannot be represented by models. Compounds are represented by chemical formulas. Compounds cannot be broken down into simpler forms.
Why is it often difficult to determine the actual pathway for a chemical reaction?
Answer:
Each step in a mechanism will have a transition state. The transition states are often very difficult to identify and during a reaction the molecules exist in this state for essentially zero time. ... It is more of a theoretical idea for the configurations the chemical species must pass through during the reaction.
Explanation:
The absolute temperature of a gas is increased four times while maintaining a constant volume. What happens to the pressure of
the gas?
It decreases by a factor of four.
It increases by a factor of four.
It decreases by a factor of eight.
It increases by a factor of eight.
Answer:
DECREASE BY A FACTOR OF FOUR
Explanation:
Using pressure equation:
P 1 / T1 = P2 /T2 (at constant volume)
P1 = P
T1 =T
P2 = ?
T2 = 4 T
So therefore;
P2 = P1T1/ T2
P2 = P T/ 4 T
P2 = 1/4 P
The pressure is decreased by a factor of four, the new pressure is a quarter of the formal pressure of the gas.
Answer:
A on edg
Explanation:
If the total atmospheric pressure is 760.00 mmHg what is the partial pressure of CO2
Answer:
0.24 mm Hg
Explanation:
Chemistry Convert the following measurement
Answer:
Explanation:
8.97 x 10⁵ [tex]\frac{m}{s^2}[/tex]
= 8.97 x 10² x 10⁵ [tex]\frac{cm}{s^2}[/tex]
= 8.97 x 10² x 10⁵cm /(10³ms)²
= 8.97 x10 x 10⁶cm / 10⁶ ms²
= .897 x 10² [tex]\frac{cm}{ms^2}[/tex]
89.7 cm/ms^2
Explanation:
1 m/s^2 = 0.0001 cm/ms^2
So, 8.97 x 10^5 m/s^2 = 89.7 cm/ms^2
Learn more about unit conversion here:
https://brainly.com/question/174910
#SPJ6
What mass of water (H2O)will be collected if 20.0 grams of oxygen gas(H2) are consumed
2H2+O2-->2H2O
The mass of water should be 180g.
The calculation is as follows:[tex]no\ of\ mole\ of\ H2 = mass\div RAM[/tex]
[tex]=20\div 2(2)[/tex]
=5mol
And, the mass of water should be
[tex]=5mol\times 2(2+16)mol/g[/tex]
=180g
Learn more: https://brainly.com/question/994316?referrer=searchResults
Note the molecular mass of a copper(I) oxide molecule in the image below. What is the mass of 8.250 moles of Cu2O?
Answer : The mass of copper(I) oxide is, 1180.5 grams.
Explanation : Given,
Moles of copper(I) oxide = 8.250 mol
Molar mass of copper(I) oxide = 143.09 g/mol
Formula used:
[tex]\text{ Mass of copper(I) oxide}=\text{ Moles of copper(I) oxide}\times \text{ Molar mass of copper(I) oxide}[/tex]
Now put all the given values in this formula, we get:
[tex]\text{ Mass of copper(I) oxide}=(8.250moles)\times (143.09g/mole)=1180.5g[/tex]
Therefore, the mass of copper(I) oxide is, 1180.5 grams.
Match these items.
1
.
0 degrees Celsius
amount of matter in object
2
.
chemical property
upward force of a fluid on an object
3
.
buoyancy
fixed shape
4
.
gas
freezing point of water
5
.
mass
expands
6
.
solid
no definite internal order
7
.
crystalline
molecules far apart
8
.
frozen water
fixed internal order
9
.
amorphous
ability to react with another substance
Match these items are given below .
1) 0 °C Freezing point of water
2) chemical property ability to react with another substance
3) Buoyancy upward force of a fluid on an object
4) gas molecules far apart
5) mass amount of matter in object
6) solid fixed shape
7) crystalline fixed internal order
8) frozen water expands
9) Amorphous no definite internal order
Thus,
1) 0 °C Freezing point of water
2) chemical property ability to react with another substance
3) Buoyancy upward force of a fluid on an object
4) gas molecules far apart
5) mass amount of matter in object
6) solid fixed shape
7) crystalline fixed internal order
8) frozen water expands
9) Amorphous no definite internal order
To learn more about solid liquid gas here
https://brainly.com/question/13940489
#SPJ1
Items 1-9 are matched and described. The topic is the characteristics and properties of matter.
Explanation:The matching items in this question are:
0 degrees Celsius matches with freezing point of waterupward force of a fluid on an object matches with buoyancyfixed shape matches with solidexpands matches with gasmass matches with amount of matter in objectmolecules far apart matches with amorphousfixed internal order matches with crystallineability to react with another substance matches with chemical propertyno definite internal order matches with gasLearn more about Properties of Matter here:https://brainly.com/question/24672553
#SPJ6
A high jumper reaches a height of 2.45 m. If they generated an estimated 1030 J to reach that height in 0.71 s, how much power did his legs generate in that jump
Answer:
Power = 1471.4W or 1.47kW
Explanation:
Height = 2.45m
Energy = 1030J
Time = 0.70s
Power = energy dissipated / time taken
Power = 1030 / 0.70
Power = 1471.42 watt
Power = 1.47kW
His legs generated a power of 1.47kW in that jump
a gas has a volume of 45.0 mL and a pressure of 760.0 mm. If the pressure increased to 850.0 mm and the temperature remained the same, what would be its new volume?
Answer:
40 mL
Explanation:
V2=P1V1/P2
You can check this by knowing that P and V at constant T have an inverse relationship. Hence, this is correct.
The new volume will be "40 mL".
Boyle's LawA gas equation or principle essentially asserts that perhaps the pressure generated by something like a gaseous molecule (with a particular mass as well as constant temperatures) seems to be inversely proportional towards its volume.
According to the question,
Pressure, P₁ = 760.0 mm
P₂ = 850.0 mm
Volume, V₁ = 45.0 mL
V₂ = ?
By using Boyle's Law,
→ P₁V₁ = P₂V₂
or,
New volume will be:
V₂ = [tex]\frac{P_1 V_1}{P_2}[/tex]
By substituting the values,
= [tex]\frac{760\times 45}{850}[/tex]
= [tex]\frac{34200}{850}[/tex]
= 40 mL
Thus the response above is correct.
Find out more information about Volume here:
https://brainly.com/question/1437490
How do the small bodies in the solar system differ from one another?
The solar system has small bodies categorized mainly as asteroids and comets. Asteroids are rocky bodies found mostly between Mars and Jupiter, while comets are made of frozen gases and reside within distant, cooler regions. Other bodies include moons and ring systems around giant planets.
Explanation:The solar system consists of various small bodies, each categorized due to their composition and location. Primarily, there are two classes, asteroids and comets.
Asteroids are primarily rocky bodies that orbit the Sun and are mostly found in the space between Mars and Jupiter, although a few cross the orbits of planets like Earth. These are remnants from when the solar system was forming, even predating the planets. Some small moons are actually captured asteroids - the moons of Mars, for instance.
Another class, comets, are primarily made of various frozen gases such as water, carbon dioxide, and carbon monoxide. Like asteroids, comets are remnants from the formation of the solar system. However, they were formed in distant, cooler regions of the solar system and continue to remain in these regions.
Besides these, we also have moons that orbit planets, and ring systems around the giant planets which are made up of countless small bodies, and still-smaller objects with masses less than about 1/100th the mass of the Sun, which are also called planets.
Learn more about Small Bodies in the Solar System here:https://brainly.com/question/29583203
#SPJ12
How many moles of gas will occupy 3.5 L container at 315 K, if the pressure is 2.1 atm?
Answer: 3 moles
Explanation:
Using the ideal gas equation; PV = nRT
P= Pressure= 2.1 Atm V= Volume = 3.5L T= Temperature = 315K
n= no of moles
R= Gas constant = 0.08206 L .atm. mol-1 . K-1
Making 'n' the subject of the formular, we then have;
n = PV / RT
= 2.1 Atm x 3.5L / 0.08206 L .atm. mol-1 . K-1 x 315K
= 7.35 / 25.849
= 0.28 approx 3moles