A spelunker is surveying a cave. She follows a passage 120 mm straight west, then 250 mm in a direction 45ââ east of south, and then 280 mm at 30ââ east of north. After a fourth unmeasured displacement, she finds herself back where she started.

(A) Use a scale drawing to determine the magnitude of the fourth displacement. Express your answer using two significant figures.

(B) Determine the direction of the fourth displacement.Express your answer using two significant figures.

Answers

Answer 1

Answer:

R = 207.45 mm , θ_return = 18.47 south west

Explanation:

This vector addition exercise is schematized in the attachment where the displacements are

1    d1 = 120 mm west

2   d2 = 250mm at 45 south east

3   d3 = 280 mm at 30 east of nort.

R  is the final displacement that takes the goat to its initial point (origin)

The analytical way to perform this exercise is to find the components of each displacement and add them

Decompose the displacement using trigonometry

Displacement d1

       d1ₓ = 120 cos 180 = -120 mm

Displacement d2, with the angle measured from the axis this   θ = 270 + 45

     sin 45 = [tex]d2_{y}[/tex] / d2

     cos 45 = d2ₓ / d2

      [tex]d2_{y}[/tex]  = d2 sin45

      [tex]d2_{y}[/tex]  = 250 sin (270 + 45)

      [tex]d2_{y}[/tex]  = -176.77 mm

     d2ₓ = d2 cos (270 + 45)

     d2ₓ = 176.77 mm

displacement d3, for half the angle from the east axis  θ = 90-30 = 60

     sin 60 =  [tex]d3_{y}[/tex]  / d3

     cos 60 = d3ₓ / d3

      [tex]d3_{y}[/tex]  = d3 sin 60

     d3ₓ = d3 cos 60

      [tex]d3_{y}[/tex]  = 280 sin 60 = 242.49 mm

     d3ₓ = 280 cos 60 = 140 mm

Having all the displacement components we can find the total displacement

         Rₓ = d1ₓ + d2ₓ + d3ₓ

         Ry =  [tex]d1_{y}[/tex] + [tex]d2_{y}[/tex] +  [tex]d3_{y}[/tex]  

         

          Rₓ = -120 + 176.77 +140

         Rₓ = 196.77 mm

         

         Ry = 0 -176.77 +242.49

         Ry = 65.72 mm

Therefore the displacement you must make to return to the starting point is

         R = RA Rx2 + Ry2)

         R = RA (196.77 2 + 65.72 2)

         R = 207.45 mm

 We used trigonometry

        tan tea = RY / Rx

        tea = tan-1 Ry / Rx

        ea = tan-1 (65.72 / 196.77)

        tea = 18.47

This is the point where the girl is, to return to its origin this path must be serial, but in the opposite direction,

       θ_return = 18.47 south west

A Spelunker Is Surveying A Cave. She Follows A Passage 120 Mm Straight West, Then 250 Mm In A Direction
Answer 2
Final answer:

The problem involves adding vectors to find the total displacement, then finding the negative of this displacement to calculate the magnitude and direction of the fourth displacement.

Explanation:

This problem involves the mathematical concept of vectors, particularly in determining the resultant vector, which in this context represents the spelunker's path. First, we convert the movements into rectangular coordinates: going 120 mm west is -120i, going 250 mm 45° east of south is -250 cos(45)i - 250 sin(45)j, and going 280 mm 30° east of north is 280 cos(30)i + 280 sin(30)j. Adding these vectors together, we get the spelunker's total displacement vector. The negatives of this sum will represent the fourth displacement needed to get the spelunker back to where she started.

(A) The magnitude of the fourth displacement is the sum of these vectors taken as negatives, because she has to go back, which is equivalent to the length of the path taken. This can be calculated using Pythagoras' theorem for two dimensions.

(B) The direction of the fourth displacement is calculated by finding the angle made by the resulting vector with respect to one of the axes (for instance, the x-axis). For this, we take the inverse tangent of the y-coefficient over the x-coefficient of the vector.

Learn more about Vectors here:

https://brainly.com/question/33923402

#SPJ3


Related Questions

How far is the center of mass of the Earth-Moon system from thecenter of the Earth? (Appendix C gives the masses of the Earth andthe Moon and the distance between the two.)

Answers

Answer:

[tex]\bar x=4679496.086\ m=4679.496086\ km[/tex] from the center of the earth.

Explanation:

We have a system of Earth & Moon:

we have the mass of earth, [tex]m_e=5.972\times 10^{24}\ kg[/tex]mass of the moon, [tex]m_m=7.348\times 10^{22}\ kg[/tex]distance between the center of the earth and the moon [tex]d=385000\ km[/tex]

Now we assume the origin of the system to be at the center of the earth.

Now for the center of mass of this system:

[tex]\bar x=\frac{m_e.x_e+m_m.x_m}{m_e+m_m}[/tex]

here:

[tex]x_e\ \&\ x_m[/tex] are the distance of the centers (center of masses) of the Earth and the Moon from the origin of the system.

[tex]x_e=0[/tex] ∵ since we have taken the point as the origin of the system.

[tex]x_m=d[/tex]

now putting the values in the above equation:

[tex]\bar x=\frac{(5.972\times 10^{24}\times 0)+(7.348\times 10^{22}\times 385000\times 1000)}{5.972\times 10^{24}+7.348\times 10^{22}}[/tex]

[tex]\bar x=4679496.086\ m=4679.496086\ km[/tex] from the center of the earth.

the density of gold is 19.3 g/cm3. suppose a certain gold wedding ring deplaced 0.55mL of liquid when dropped in a glass of sparkling cider. how much did this wedding ring cost

Answers

Final answer:

The question pertains to physics, specifically the concept of density. The mass of the gold in the ring is computed to be 10.615 g based on the provided volume displacement and density of gold. To determine the cost of the ring, additional information such as the current market price for gold and labor costs would be necessary.


Explanation:

The subject matter of this question relates to the physical property of density and its application in determining the mass of gold in a wedding ring. Given that the density of gold is 19.3 g/cm³ and the ring displaced 0.55 mL of liquid, one can calculate the mass of the ring using the rule that 1 mL equals 1 cm³. Hence, if the ring displaces 0.55 mL of the liquid, it means the volume of the ring is 0.55 cm³.

To find mass, we use Density = Mass/Volume, so Mass = Density * Volume. Therefore, the mass of the ring will be 19.3 g/cm³ * 0.55 cm³ = 10.615 g.

This calculation gives us the mass of the gold in the ring.

However, to determine the cost of the ring, we need more information such as the market price of gold per gram and the cost of workmanship and other potential elements in the ring, which are not provided in the question.


Learn more about Gold Density here:

https://brainly.com/question/36027928


#SPJ11

A rubber ball with a mass of 0.30 kg is dropped onto a steel plate. The ball's velocity just before impact is 4.5 m/s and just after impact is 4.2 m/s and just after impact is 4.2 m/s. What is the change in the ball's momentum?

Answers

Answer:

Change in momentum will be -2.61 kgm/sec

Explanation:

We have given mass of the rubber ball m = 0.30 kg

Velocity of the ball before the impact [tex]v_1=4.5m/sec[/tex]

Velocity of ball after impact [tex]v_2=-4.2m/sec[/tex] ( negative sign is due to opposite direction of motion )

Change in momentum is given by [tex]m(v_2-v_1)=0.3\times (-4.2-4.5)=0.3\times =0.3\times -8.7=-2.61kgm/sec[/tex] ( negative sign shows the direction of change in momentum )

Answer:

-0.09 kg m/s

Explanation:

Perform the following unit conversions using units of length, mass, and time only to convert. Show your work, do not just use Google.

(a) 1 L to in.3
(b) 0.135 kW to ft.·lbf./s
(c) 304 kPa to psi
(d) 122 ft.3 to m3
(e) 100 hp to kW
(f) 1000 lbm. to kg

Answers

Answer:

[tex]\mathbf{1\ L=61.02384\ in^3}[/tex]

[tex]\mathbf{0.135\ kW=99.5709185406\ ft-lb/s}[/tex]

[tex]\mathbf{304\ kPa=44.091435811\ psi}[/tex]

[tex]\mathbf{122\ ft^3=3.45465495258\ m^3}[/tex]

[tex]\mathbf{100\ hp=74.6\ kW}[/tex]

[tex]\mathbf{1000\ lbm=453.592\ kg}[/tex]

Explanation:

[tex]1\ L=10^{-3}\ m^3[/tex]

[tex]1\ m=39.3701\ in[/tex]

[tex]10^{-3}\ m^3=10^{-3}\times 39.3701^3=61.02384\ in^3[/tex]

[tex]\mathbf{1\ L=61.02384\ in^3}[/tex]

[tex]0.135\ kW=135\ W[/tex]

[tex]135\ W=135\ Nm/s[/tex]

[tex]1\ N=0.224809\ lbf[/tex]

[tex]1\ m=3.28084\ ft[/tex]

[tex]135\times 0.224809\times 3.28084=99.5709185406\ ft-lb/s[/tex]

[tex]\mathbf{0.135\ kW=99.5709185406\ ft-lb/s}[/tex]

[tex]304\ kPa=304000\ N/m^2[/tex]

[tex]1\ m=39.3701\ in[/tex]

[tex]304000\ N/m^2=304000\times 0.224809\times \dfrac{1}{39.3701^2}=44.091435811\ psi[/tex]

[tex]\mathbf{304\ kPa=44.091435811\ psi}[/tex]

[tex]122\ ft^3=\dfrac{122}{3.28084^3}=3.45465495258\ m^3[/tex]

[tex]\mathbf{122\ ft^3=3.45465495258\ m^3}[/tex]

[tex]1\ hp=746\ W[/tex]

[tex]100\ hp=100\times 746\ W=74.6\ kW[/tex]

[tex]\mathbf{100\ hp=74.6\ kW}[/tex]

[tex]1\ lbm=0.224809\ kg[/tex]

[tex]1000\ lbm=1000\times 0.453592=453.592\ kg[/tex]

[tex]\mathbf{1000\ lbm=453.592\ kg}[/tex]

If a scuba diver fills his lungs to full capacity of 5.7 L when 8.0 m below the surface, to what volume would his lungs expand if he quickly rose to the surface? Assume he dives in the sea, thus the water is salt. Express your answer using two significant figures

Answers

To calculate the pressure in the body we will use the definition of the hydrostatic pressure for which the pressure of a body at a certain distance submerged in a liquid is defined. After calculating this relationship we will apply the equations of the relationship between the volume and the pressure to calculate the volume in state 2,

[tex]P = P_{atm} + \rho gh[/tex]

Here,

[tex]\rho[/tex]= Density of the Fluid (Water)

g = Acceleration due to gravity

h = Height

[tex]P = P_{atm} + 10^3*9.8*8[/tex]

[tex]P = 1.01*10^{5} +10^3*9.8*8[/tex]

[tex]P = 179400Pa[/tex]

Applying the equations of relationship between volume and pressure we have

[tex]P_1V_1 = P_2 V_2[/tex]

[tex]179400*5.7 = 101000*V_2[/tex]

[tex]V_2 = 10.12L[/tex]

Therefore the volume that would his lungs expand if he quickly rose to the surface is 10.12L

Radiation from the Sun The intensity of the radiation from the Sun measured on Earth is 1360 W/m2 and frequency is f = 60 MHz. The distance between the Earth and the Sun is 1.5 x 1011 m.a) Assuming it radiates uniformly in all directions what is the total power output of the Sun?b) If the frequency increases by 1 MHz what would be the relative (percentage) change in the power output? c) For frequency in b) what is the intensity of the radiation from the Sun measured on Mars? Note that Mars is 60% farther from the Sun than the Earth is.

Answers

a) Total power output: [tex]3.845\cdot 10^{26} W[/tex]

b) The relative percentage change of power output is 1.67%

c) The intensity of the radiation on Mars is [tex]540 W/m^2[/tex]

Explanation:

a)

The intensity of electromagnetic radiation is given by

[tex]I=\frac{P}{A}[/tex]

where

P is the power output

A is the surface area considered

In this problem, we have

[tex]I=1360 W/m^2[/tex] is the intensity of the solar radiation at the Earth

The area to be considered is area of a sphere of radius

[tex]r=1.5\cdot 10^{11} m[/tex] (distance Earth-Sun)

Therefore

[tex]A=4\pi r^2 = 4 \pi (1.5\cdot 10^{11})^2=2.8\cdot 10^{23}m^2[/tex]

And now, using the first equation, we can find the total power output of the Sun:

[tex]P=IA=(1360)(2.8\cdot 10^{23})=3.845\cdot 10^{26} W[/tex]

b)

The energy of the solar radiation is directly proportional to its frequency, given the relationship

[tex]E=hf[/tex]

where E is the energy, h is the Planck's constant, f is the frequency.

Also, the power output of the Sun is directly proportional to the energy,

[tex]P=\frac{E}{t}[/tex]

where t is the time.

This means that the power output is proportional to the frequency:

[tex]P\propto f[/tex]

Here the frequency increases by 1 MHz: the original frequency was

[tex]f_0 = 60 MHz[/tex]

so the relative percentage change in frequency is

[tex]\frac{\Delta f}{f_0}\cdot 100 = \frac{1}{60}\cdot 100 =1.67\%[/tex]

And therefore, the power also increases by 1.67 %.

c)

In this second  case, we have to calculate the new power output of the Sun:

[tex]P' = P + \frac{1.67}{100}P =1.167P=1.0167(3.845\cdot 10^{26})=3.910\cdot 10^{26} W[/tex]

Now we want to calculate the intensity of the radiation measured on Mars. Mars is 60% farther from the Sun than the Earth, so its distance from the Sun is

[tex]r'=(1+0.60)r=1.60r=1.60(1.5\cdot 10^{11})=2.4\cdot 10^{11}m[/tex]

Now we can find the radiation intensity with the equation

[tex]I=\frac{P}{A}[/tex]

Where the area is

[tex]A=4\pi r'^2 = 4\pi(2.4\cdot 10^{11})^2=7.24\cdot 10^{23} m^2[/tex]

And substituting,

[tex]I=\frac{3.910\cdot 10^{26}}{7.24\cdot 10^{23}}=540 W/m^2[/tex]

Learn more about electromagnetic radiation:

brainly.com/question/9184100

brainly.com/question/12450147

#LearnwithBrainly

Final answer:

The total power output of the Sun is 3.8 x 10^26 W and does not change with frequency variations. Therefore, increasing frequency by 1MHz won't change the power output. Using a distance that takes into account Mars being farther from the Sun, the radiation intensity at Mars can be calculated.

Explanation:

The total power output of the sun can be calculated using the equation for the intensity of radiant power (P = I * 4πd^2). So, the total power output of the sun is P = 1360 W/m^2 * 4π * (1.5 x 10^11 m)^2 ≈ 3.8 x 10^26 W.

As for the relative change in power output with frequency change, it is important to note that the power output of the Sun is independent of frequency. Therefore, an increase in frequency by 1 MHz would not result in any relative change in power output. The power output remains 3.8 x 10^26 W regardless of frequency.

Lastly, to find the intensity at Mars which is 60% farther from the Sun than Earth, we use the same intensity equation (I = P / 4πd²) but adjust the distance accordingly. If r is the distance to Earth, then the distance to Mars is 1.6r. Substituting these values, we get I = 3.8 x 10^26 W / 4π * (1.6 * 1.5 x 10^11 m)². From this, you can calculate the radiation intensity at Mars.

Learn more about Sun's radiation here:

https://brainly.com/question/34694606

#SPJ3

A river barge, whose cross section is approximately rectangular, carries a load of grain. The barge is 28 ft wide and 93 ft long. When unloaded its draft (depth of submergence) is 6 ft, and with the load of grain the draft is 9 ft. Determine: (a) the unloaded weight of the barge, and (b) the weight of the grain.

Answers

Answer:

a) [tex] W_B = F_B = 62.4 \frac{lb}{ft^3} (6ft*28ft*93ft)= 974937.6 lb[/tex]

b) [tex] W_g= 62.4 \frac{lb}{ft^3} * (9ft*28ft*93ft) -974937.6 lb =487468.8 lb[/tex]

Explanation:

Part a

For this case we have the situation illustrated on Figure 1.  We will have two forces involved in equilibrium the weight [tex] W_B[/tex] and the Bouyance force[tex] F_B[/tex], and since the system is on equilibrium we have:

[tex] \sum F_{vertical}=0[/tex]

So then we have:

[tex] W_B = F_B = \gamma_{w} V_s[/tex]

Where [tex] V_s[/tex] represent the submerged volume. [tex]\gamma_w[/tex] represent the specific weight for the fluid. So we can replace and we have:

[tex] W_B = F_B = 62.4 \frac{lb}{ft^3} (6ft*28ft*93ft)= 974937.6 lb[/tex]

Part b

As we can see on figure 2 attached we have the illustration for this case. We add the weight for the grain and now the depth is 9ft.

W can do the balance of forces in the vertical and we got again:

[tex] W_B +W_g = F_B[/tex]

Where [tex] W_g[/tex] represent the weight for the grain.

And if we solve for [tex] W_g[/tex] we got:

[tex] W_g = F_B -W_B[/tex]

[tex] W_g =\gamma_w V_S -W_B[/tex]

Where [tex] \gamma_w[/tex] represent the specific weight of rthe water and [tex] V_s[/tex] the submerged volume. If we replace we got:

[tex] W_g= 62.4 \frac{lb}{ft^3} * (9ft*28ft*93ft) -974937.6 lb =487468.8 lb[/tex]

Final answer:

The weight of the unloaded barge is 975,769.6 lbs, and the weight of the grain is 486,572.8 lbs. These calculations were made based on Archimedes' principle, which states that the buoyant force (the weight of water displaced) is equal to the weight of the object.

Explanation:

This question is about calculating the weight of a river barge and its load based on the principles of fluid mechanics. Here, we are examining the fact that the weight of the water displaced by the barge equals the weight of the barge according to Archimedes' principle.

Firstly, we calculate the unloaded weight of the barge. The volume of water displaced by the barge when it is empty is the volume of a rectangular prism with dimensions 28ft x 93ft x 6ft, which gives us 15,624 cubic feet. Given that the density of water is 62.4 lbs/ft³, the weight of this water, which is equal to the weight of the empty barge, would be (Volume x Density) = 15,624ft³ x 62.4 lbs/ft³ = 975,769.6 lbs.

Secondly, let's calculate the weight of the grain. The volume of water displaced when the barge is loaded is the volume of a rectangular prism with dimensions 28ft x 93ft x 9ft, which equals 23,436 cubic feet. The weight of this water, which is equal to the weight of the loaded barge, is (Volume x Density) = 23,436ft³ x 62.4 lbs/ft³ = 1,462,342.4 lbs. Hence, the weight of the grain is the weight of the loaded barge minus the weight of the barge itself = 1,462,342.4 lbs - 975,769.6 lbs = 486,572.8 lbs.

Learn more about Archimedes' Principle here:

https://brainly.com/question/13106989

#SPJ3

momentum A proton interacts electrically with a neutral HCl molecule located at the origin. At a certain time t, the proton’s position is h1.6 × 10−9 , 0, 0i m and the proton’s velocity is h3200, 800, 0i m/s. The force exerted on the proton by the HCl molecule is h−1.12 × 10−11 , 0, 0i N. At a time t + (2 × 10−14 s), what is the approximate velocity of the proton? answer

Answers

Answer:

[tex]<3068.2352, 800, 0>\ m/s[/tex]

Explanation:

F = Force = [tex]<-1.12\times 10^{-11}, 0, 0>[/tex]

m = Mass of proton = [tex]1.7\times 10^{-27\ kg[/tex]

t = Time taken = [tex]2\times 10^{-14}\ s[/tex]

Acceleration is given by

[tex]a=\dfrac{F}{m}\\\Rightarrow a=\dfrac{<-1.12\times 10^{-11}, 0, 0>}{1.7\times 10^{-27}}\\\Rightarrow a=<-6.58824\times 10^{15}, 0, 0>\ m/s^2[/tex]

[tex]v=u+at\\\Rightarrow v=<3200, 800, 0>+<-6.58824\times 10^{15}, 0, 0>\times 2\times 10^{-14}\\\Rightarrow v=<3200, 800, 0>+<-6.58824\times 10^{15}, 0, 0>\times 2\times 10^{-14}\\\Rightarrow v=<3200, 800, 0>+<-131.7648, 0, 0>\\\Rightarrow v=<3068.2352, 800, 0>\ m/s[/tex]

The velocity of the proton is [tex]<3068.2352, 800, 0>\ m/s[/tex]

The blood flow rate through the aorta is measured to be 104.1 cm^3/s, and an adult is measured to have 4.93 L of blood. How long does it take for all of your blood to pass through the aorta?


If the adult's aorta has a diamter of 1.85 cm, what is the speed of blood as it flows through the aorta?

Answers

Answer:

a)time t = 47.4s

b)speed v = 38.7cm/s

Explanation:

Given:

Total volume of blood = 4.93L × 1000cm^3/L = 4930cm^3

Volumetric rate of flow = 104.1cm^3/s

a) Time taken for all the blood to pass through the aorta is:

Time t = total volume/ volumetric rate

t = 4930/104.1

t = 47.4s

b) Given that the diameter of the aorta is 1.85cm.

V = Av

Where V = Volumetric rate

A = area of aorta

v = speed of blood

v = V/A ...1

Area of a circular aorta = πr^2 = (πd^2)/4

d = 1.85cm

A = (π×1.85^2)/4

A = 2.69cm^2

From equation 1.

v = V/A = 104.1/2.69

v = 38.7 cm/s

A van traveling at a speed of 36.0 mi/h needs a minimum of 50.0 ft to stop. If the same van is traveling 69.0 mi/h, determine its minimum stopping distance (in ft), assuming the same rate of acceleration.

Answers

Answer:

Van will stop after a distance of 183.216 ft

Explanation:

We have given initial speed of the van = 36 mi/hr

As the van finally stops so final velocity v = 0 mi/hr

Distance after which van stop = 50 ft

As 1 ft = 0.000189 mi

So 50 ft [tex]=50\times 0.000189=0.00945mi[/tex]

From third equation of motion [tex]v^2=u^2+2as[/tex]

[tex]0^2=36^2+2\times a\times 0.00945[/tex]

[tex]a=-68571.42mi/hr^2[/tex]

In second case u = 69 mi/hr

And acceleration is same

So [tex]0^2=69^2-2\times 68571.42\times s[/tex]

[tex]s=0.03471mi[/tex]

As 1 mi = 5280 ft

So [tex]0.0347mi=0.0347\times 5280=183.216ft[/tex]

The error in the measurement of the radius of a sphere is 2%. What will be the error in the calculation of its volume?

Answers

To solve this problem we will apply the geometric concepts of the Volume based on the consideration made of the radius measurement. The Volume must be written in differential terms of the radius and from the formula of the margin of error the respective response will be obtained.

The error in radius of sphere is not exceeding 2%

[tex]\frac{dr}{r} = \pm 0.02[/tex]

The objective is to find the percentage error in the volume.

The volume can be defined as

[tex]V = \frac{4}{3} \pi r^3[/tex]

Differentiate with respect the radius we have,

[tex]\frac{dV}{dr} = 4\pi r^2[/tex]

[tex]dV = 4\pi r^2 \times dr[/tex]

[tex]dV = 4\pi r^2 (\pm 0.02r)[/tex]

[tex]dV = \pm 4\times 0.02 \times \pi r^3[/tex]

The percentage change in the volume is as follows

[tex]\% change = \frac{dV}{V} \times 100[/tex]

[tex]\% change = \frac{\pm 4 \times 0.02 \times \pi r^3 \times 3}{4\pi r^3}\times 100[/tex]

[tex]\% change = \pm 6\%[/tex]

Therefore the percentage change in volume is [tex]\pm 6\%[/tex]

An astronomer looks at the Andromeda galaxy (the other large galaxy in the Local Group) through her telescope. How long ago did that light leave Andromeda?

Answers

Answer:

[tex]2.537\times 10^{6}\ years[/tex]

Explanation:

Distance to Andromeda galaxy

[tex]2.537\times 10^{6}\ ly=2.537\times 10^{6}\times c\times y[/tex]

Speed of light is

[tex]c=3\times 10^8[/tex]

Time is given by

[tex]t=\dfrac{Distance}{Speed}\\\Rightarrow t=\dfrac{2.537\times 10^{6}\times c\times y}{c}\\\Rightarrow t=2.537\times 10^{6}\ y[/tex]

Hence, the light from Andromeda left [tex]2.537\times 10^{6}\ years[/tex] ago

The light observed from the Andromeda galaxy by the astronomer left Andromeda around 2 million years ago, showcasing the vast distances in space and providing insights into the universe's evolution.

The light from Andromeda galaxy that the astronomer observes left Andromeda approximately 2 million years ago. This is because the distance in light years is the same as the time it takes for the light to reach us.

This phenomenon is due to the vast distances in space. The Andromeda galaxy is the closest large galaxy to the Milky Way, located 2 million light years away from us.

Understanding the age of the light we observe helps us gain insights into the history of distant galaxies and the evolution of the universe.

Imagine you can take all the atoms in a single drop of water and put them on a single line as closely packed as they can be. How long would that line be in meters? There are approximately 1022 atoms in a droplet of water.a) 10^12 meters which is bigger than the distance between Sun and Earth.b) 10^20 meters, the size of a galaxy.c) 10^3 meters, this is one kilometer.d) 10^7 meters which is about the circumference of the Earth.

Answers

Answer:

option a

Explanation:

Size of an atom (diameter) = 10⁻¹⁰ m

There are approximately 10²² atoms in a single drop of water. If they are put in  a straight line, the length would be

l = diameter of an atom × number of atoms

l = 10²²×  10⁻¹⁰ m = 10¹² m

Distance between the Sun and the Earth is 1.47 × 10¹¹ m. The calculated length is greater than the distance between the Sun and the Earth.

Thus, option a is correct.

What region of the spectrum best corresponds to light with a wavelength equal to:_____ a. The diameter of a hydrogen atomb. The size of a virus.c. Your height?

Answers

We will make the comparison between each of the sizes against the known wavelengths.

In the case of the hydrogen atom, we know that this is equivalent to [tex]10^{-10}[/tex] m on average, which corresponds to the wavelength corresponding to X-rays.

In the case of the Virus we know that it is oscillating in a size of 30nm to 200 nm, so the size of the virus is equivalent to the range of the wavelength of an ultraviolet ray.

In the case of height, it fluctuates in a person around [tex]10 ^ 0[/tex] to [tex]10 ^ 1[/tex] m, which falls to the wavelength of a radio wave.

Final answer:

The region of the spectrum that best corresponds to light with a wavelength equal to the diameter of a hydrogen atom is the X-ray region. The visible light spectrum corresponds to objects around the same size as the wavelength. The size of a virus is much smaller than the wavelength of visible light

Explanation:

The region of the spectrum that best corresponds to light with a wavelength equal to the diameter of a hydrogen atom is the X-ray region of the electromagnetic spectrum.

The wavelength of visible light corresponds to the size of objects that are around the same size as the wavelength. For example, if you want to use light to see a human, you would need to use a wavelength at or below 1 meter, since humans are about 1 meter in size.

The size of a virus is much smaller than the wavelength of visible light, so the wavelength is very small compared to the object's size.

A wheel accelerates from rest to 59 rad/s^2 at a uniform rate of 58 rad/s^2. Through what angle (in radians) did the wheel turn while accelerating?

A) 24 rad
B) 38 rad
C) 30 rad
D) 60 rad

Answers

To solve this problem we will apply the physical equations of the angular kinematic movement, for which it defines the square of the final angular velocity as the sum between the square of the initial angular velocity and the product between 2 times the angular acceleration and angular displacement. We will clear said angular displacement to find the correct response

Using,

[tex]\omega^2 = \omega_0^2 +2\alpha \theta[/tex]

Here,

[tex]\omega[/tex] = Final angular velocity

[tex]\omega_0[/tex] = Initial angular velocity

[tex]\alpha =[/tex] Angular acceleration

[tex]\theta =[/tex] Angular displacement

Replacing,

[tex]59^2 = 0+2*58\theta[/tex]

[tex]\theta = 30rad[/tex]

Therefore the correct answer is C.

The angle at which the wheel turns while accelerating is 30 radians and this can be determined by using the kinematics equation.

Given :

A wheel accelerates from rest to 59 rad/[tex]\rm s^2[/tex] at a uniform rate of 58 rad/[tex]\rm s^2[/tex].

The equation of kinematics is used in order to determine the angle at which the wheel turn while accelerating.

[tex]\omega^2 = \omega^2_0+2\alpha \theta[/tex]

where [tex]\omega[/tex] is the final angular velocity, [tex]\omega_0[/tex] is the initial angular velocity, [tex]\alpha[/tex] is the angular acceleration, and [tex]\theta[/tex] is the angular displacement.

Now, substitute the values of the known terms in the above formula.

[tex]59^2 =0+2\times 58 \times \theta[/tex]

Simplify the above expression.

[tex]\rm \theta = 30\; rad[/tex]

Therefore, the correct option is C).

For more information, refer to the link given below:

https://brainly.com/question/408236

For each of the cases listed below, decide whether or not the motion described is an example of acceleration: (T/F)

1) a roller coaster as it starts to roll down the track
2) a ball tossed straight up, at the peak of its trajectory
3) a planet tracing out a circular orbit at a constant speed
4) a block sliding down a straight ramp at a constant speed
5) an airplane skidding to a stop on a runway
6) a dump truck carrying a load straight forward at a constant speed

Answers

Answer:

1. True

2. True

3. False

4. False

5. True

6. False

Explanation:

Acceleration: It refers to the change in velocity/speed of an object with respect to time. When the speed increases with time we call it acceleration and when its decreases it is called as deceleration.  Let us analyze each instance individually:

1. When roller coaster starts to roll down the track its speed will increase with time. That means it is accelerating.

2. When the ball reaches at the peak of its trajectory, it comes to a stop for a fraction of a second that means it decelerates.

3. Since the velocity remains constant there is no acceleration.

4. Since the speed is no changing with time, there is no acceleration.

5. Since the moving plane comes to a stop, it is a case of deceleration.

6. Since the truck is moving at a constant speed so the acceleration is zero.

Final answer:

A roller coaster as it starts to roll down a track and an airplane skidding to a stop are examples of acceleration, while a ball tossed straight up, a planet tracing a circular orbit, a block sliding down a ramp, and a dump truck carrying a load at a constant speed are not examples of acceleration.

Explanation:

1) True. When a roller coaster starts to roll down the track, it experiences a change in velocity, which means it is accelerating.

2) False. At the peak of its trajectory, a ball tossed straight up has zero velocity and is momentarily at rest, so it is not accelerating.

3) False. A planet tracing out a circular orbit at a constant speed is not experiencing a change in velocity, so it is not accelerating.

4) False. The block sliding down a ramp at a constant speed is not experiencing a change in velocity, so it is not accelerating.

5) True. An airplane skidding to a stop on a runway experiences a change in velocity, so it is accelerating.

6) False. A dump truck carrying a load straight forward at a constant speed is not experiencing a change in velocity, so it is not accelerating.

when the first artificial satilite was launched into orbit by the former soviet union in 1957 us president asked his scientific advisors to calculate the mass of the satilite would they have been able to make this calculation?

Answers

Answer:

No, they are not able to make this calculation

Explanation:

Acceleration Equation of satellite:

                                g = (G • Mcentral)/R2 ..............(1)

Acceleration equation of a satellite in circular motion:

                                a=(G • Mcentral)/R2...................(2)

Newton's form of Kepler's third law .

The period of a satellite (T) and the mean distance from the central body (R) are related by the following equation:

                                     [tex]\frac{T^{2} }{R^{3} }[/tex]=4×[tex]\pi ^{2}[/tex]/G×[tex]M_{central}[/tex].............(3)

T= the period of the satellite

R= The average radius of orbit for the satellite

G=6.673 x 10-11 N•m2/kg2.

According to all these three equations(1)(2)(3)

The period, speed and the acceleration of an orbiting satellite are independent upon the mass of the satellite.

The string is fixed at two ends with distance 1.5 m. Its mass is 5 g and the tension in the string is 50N and it vibrates on its third harmonic.

a) What is the wavelength of waves of the string.
b) What is the frequency of the waves.
c) The vibrations produce the sound with the same frequency. What is the wavelength of the sound emitted by the string?

Answers

Answer:

a) [tex]\lambda=1\ m[/tex]

b) [tex]f=122.47\ Hz[/tex]

c) [tex]\lambda_s=2.8\ m[/tex]

Explanation:

Given:

distance between the fixed end of strings, [tex]l=1.5\ m[/tex]

mass of string, [tex]m=5\ g=0.005\ kg[/tex]

tension in the string, [tex]F_T=50\ N[/tex]

a)

Since the wave vibrating in the string is in third harmonic:

Therefore wavelength λ of the string:

[tex]l=1.5\lambda[/tex]

[tex]\lambda=\frac{1.5}{1.5}[/tex]

[tex]\lambda=1\ m[/tex]

b)

We know that the velocity of the wave in this case is given by:

[tex]v=\sqrt{\frac{F_T}{\mu} }[/tex]

where:

[tex]\mu=[/tex] linear mass density

[tex]v=\sqrt{\frac{50}{(\frac{m}{l}) } }[/tex]

[tex]v=\sqrt{\frac{50}{(\frac{0.005}{1.5}) } }[/tex]

[tex]v=122.47\ m.s^{-1}[/tex]

Now, frequency:

[tex]f=\frac{v}{\lambda}[/tex]

[tex]f=\frac{122.47}{1}[/tex]

[tex]f=122.47\ Hz[/tex]

c)

When the vibrations produce the sound of the same frequency:

[tex]f_s=122.47\ Hz[/tex]

Velocity of sound in air:

[tex]v_s=343\ m.s^{-1}[/tex]

Wavelength of the sound waves in air:

[tex]\lambda_s=\frac{v_s}{f_s}[/tex]

[tex]\lambda_s=2.8\ m[/tex]

A 11.8-m-long steel [E = 206 GPa] pipe column has an outside diameter of 202 mm and a wall thickness of 5 mm. The column is supported only at its ends and it may buckle in any direction. Calculate the critical load Pcr for the following end conditions:

Answers

Answer:

A

Explanation:

i took the test pimp

If the length of the air column in the test tube is 14.0 cm, what is the frequency of this standing wave?

Answers

Answer:

f = 614.28 Hz

Explanation:

Given that, the length of the air column in the test tube is 14.0 cm. It can be assumed that the speed of sound in air is 344 m/s. The test tube is a kind of tube which has a closed end. The frequency in of standing wave in a closed end tube is given by :

[tex]f=\dfrac{nv}{4l}[/tex]

[tex]f=\dfrac{1\times 344}{4\times 0.14}[/tex]

f = 614.28 Hz

So, the frequency of the this standing wave is 614.28 Hz. Hence, this is the required solution.

You would like to know whether silicon will float in mercury and you know that can determine this based on their densities. Unfortunately, you have the density of mercury in units of kg.m^3 and the density of silicon in other units of 2.33 g.cm^3. You decide to convert the density of silicon into units of kg.m^3 to perform the comparison. By which combination of conversion factors will you multiply 2.33 g.cm^3 to perform the unit conversion?

Answers

Answer:

The conversion factor used here will be 1000 (kg/m^3)/(g/cm^3).

Which is a combination of two conversion factors:

1 kg = 1000 g

1 x 10^6 cm^3 = 1 m^3

Explanation:

We will use unitary method to convert g/cm^3 into kg/m^3. This is shown below:

Since, 1 kilogram is equivalent to 1000 gram and 1 meter is equivalent to 100 centimeter. Therefore:

1 g/cm^3 = (1 g/ cm^3)(1 kg/ 1000 g)(100 cm / 1 m)^3

1 g/cm^3 = 1000 kg/m^3

Hence, the conversion factor that will be multiplied is found to be 1000.

Using this in our case, we get:

Density of silicon = (2.33)(1000) kg/m^3

Density of Silicon = 2330 kg/m^3

Answer:

1000

Explanation:

Conversion from 'g' to 'kg': divide by 1000g/kg

Conversion from 'cm^3' to 'm^3': divide by 1000000cm^3/m^3

2.33g/cm^3 = [tex]\frac{2.33*1000000}{100}[/tex]

                    = 2330 kg/m^3

we simply multiply by 1000 to get the units converted to kg/m^3

The weight of the mass added to the hanger is equal to the extra force on the gas, but what area should we use to calculate the added pressure from this mass?

With some of the experimental details out of the way, let's think a bit about what we expect to see in our data if the ideal gas law is a good model for our gas. We would like to verify the ideal gas law PV = nRT

Answers

Answer: according to the Avagadro's law, volume is directly propotional to no of moles: VXn

according to the Charles law, volume is directly propotional to  temperatue: VXT

according to the Boyle's law, volume is inversely propotional to P: VX1/P

when we combine them we get:

VXnT1/P

V=knT/P

k= R(universal gas constant)

V=RnT/P

PV=nRT  

Find the change in internal energy of a system which receives 70 J of heat from its environment and does 20 J of work.
Select one:
a. 90 J
b. 50 J
c. Zero
d. -70 J

Answers

Answer:

option B

Explanation:

given,

Q = energy input = 70 J

U = increase in internal energy

W is the work done = 20 J

using first law of thermodynamics

The change in internal energy of a system is equal to the heat added to the system minus the work done.

U = Q - W

U = 70 - 20

U = 50 J

The change in internal energy is equal to 50 J

Hence, the correct answer is option B

A particle has a charge of -4.25 nC.

Part A

Find the magnitude of the electric field due to this particle at a point 0.250 m directly above it.

Part B

Find the direction of the field

up, away from the particle

down, toward the particle

Part C

At what distance from this particle does its electric field have magnitude of 13.0 N/C?

Answers

Answer:

Explanation:

q = - 4.25 nC = - 4.5 x 10^-9 C

(A) d = 0.250 m

The formula for the electric field is given by

[tex]E = \frac{1}{4\pi \epsilon _{0}}\frac{q}{d^{2}}[/tex]

By substituting the values

[tex]E = \frac{9\times 10^{9}\times 4.5\times10^{-9}}{0.25\times 0.25}[/tex]

E = 648 N/C

(B) As the charge is negative in nature so the direction of electric field is towards the charge and downwards.

(a) The magnitude of the electric field is 612 N/C.

(b) The direction of the electric field will be up, away from the particle.

(c) The distance from the particle is 1.71 m.

Magnitude of the electric field

The magnitude of the electric field is calculated as follows;

E = (kq)/r²

where;

k is Coulomb's constant

q is the charge

r is distance

E = ( 9 x 10⁹ x 4.25 x 10⁻⁹)/(0.25 x 0.25)

E =  612 N/C

Direction of the field

The direction of the electric field is always opposite to the direction of the negative charge.

Thus, the direction of the electric field will be up, away from the particle.

Distance from the particle

The distance from the particle is determined using the following formula;

E = (kq)/r²

r² = kq/E

r² = (9 x 10⁹ x 4.25 x 10⁻⁹) / 13

r² = 2.94

r = √2.94

r = 1.71 m

Learn more about electric field here: https://brainly.com/question/14372859

In the Boyle’s law experiment, what was used to increase the pressure on the air (gas)?

Answers

Answer:

Volume.

Explanation:

Boyle’s law experiment :

This is also known as Mariotte's law or in the other words it is also known as Boyle–Mariotte law.

This law tell us about the variation of gas pressure when the volume of the gas changes at the constant temperature.According to this law the abslute pressure is inversely proportional to the volume .

We can say that

[tex]P\alpha \dfrac{1}{V}[/tex]

Where P=Pressure

V=Volume

PV = K

K=Constant

When volume decrease then the pressure of the gas will increase.

That is why the answer is "Volume".

Verify that for values of n less than 8, the system goes to a stable equilibrium, but as n passes 8, the equilibrium point becomes unstable, and a stable oscillation is created.

Answers

Answer:

Biological system is one of the major causes of oscillation due to sensitive negative feedback loops. For instance, imagine a father teaching his son how to drive, the teen is trying to keep the car in the centre lane and his father tell him to go right or go left as the case may be. This is a example of a negative feedback loop of a biological system. If the father's sensitivity to the car's position on the road is reasonable, the car will travel in a fairly straight line down the centre of the road. On the other hand, what happens if the father raise his voice at the son "go right" or when the car drifts a bit to the left? The startled the son will over correct, taking the car too far to the right. The father will then starts yelling "go left" then the boy will over correct again and the car will definitely oscillate back and forth. A scenario that indicates the behavior of a car driver under a very steep feedback control mechanism. Since the driver over corrects in each direction. Therefore causes oscillations.

Explanation:

Final answer:

In physics, a system's equilibrium point is considered stable if the system returns to that point after being slightly disturbed. For an n value less than 8, the system remains in stable equilibrium; once n exceeds 8, stable oscillations indicate an unstable equilibrium. This concept can be visualized by the marble in a bowl analogy, where the bowl's orientation determines the stability of the marble's equilibrium.

Explanation:

The stability of an equilibrium point is determined by the response of a system to a disturbance. If an object at a stable equilibrium point is slightly disturbed, it will oscillate around that point. The stable equilibrium point is characterized by forces that are directed toward it on either side. On the contrary, an unstable equilibrium point will not allow the object to return to its initial position after a slight disturbance, since the forces are directed away from that point. For values of n less than 8, the system finds a stable equilibrium. However, when n surpasses 8, the system exhibits unstable equilibrium, leading to stable oscillations.

As an example, consider a marble in a bowl. When the bowl is right-side up, the marble represents a stable equilibrium; when disturbed, it returns to the center. If the bowl were inverted, the marble on top would be at an unstable equilibrium point; any disturbance would cause it to roll off, as the forces on either side would be directed outwards. Extending this concept to potential energy, n in a potential energy function acts as an adjustable parameter. For n=<8, the system remains in stable equilibrium, as with NaCl, which has an n value close to 8. Beyond this value, the equilibrium becomes unstable, giving rise to oscillatory behavior.

Stability also depends on the nature of damping in the system. An overdamped system moves slowly towards equilibrium without oscillations, an underdamped system quickly returns but oscillates, and a critically damped system reaches equilibrium as quickly as possible without any oscillations.

3. An engine’s fuel is heated to 2,000 K and the surrounding air is 300 K. Calculate the ideal efficiency of the engine. Hint: The efficiency (e) of a Carnot engine is defined as the ratio of the work (W) done by the engine to the input heat QH : e=W/QH. W=QH – QC, where Qc is the output heat. That is, e=1-Qc/QH =1-Tc/TH, where Tc for a temperature of the cold reservoir and TH for a temperature of the hot reservoir. The unit of temperature must be in Kelvin.

Answers

Answer: E = 0.85

Therefore the efficiency is: E = 0.85 or 85%

Explanation:

The efficiency (e) of a Carnot engine is defined as the ratio of the work (W) done by the engine to the input heat QH

E = W/QH.

W=QH – QC,

Where Qc is the output heat.

That is,

E=1 - Qc/QH

E =1 - Tc/TH

where Tc for a temperature of the cold reservoir and TH for a temperature of the hot reservoir.

Note: The unit of temperature must be in Kelvin.

Tc = 300K

TH = 2000K

Substituting the values of E, we have;

E = 1 - 300K/2000K

E = 1 - 0.15

E = 0.85

Therefore the efficiency is: E = 0.85 or 85%

Final answer:

To calculate the ideal efficiency of an engine with specified temperatures, convert to Kelvin and use the Carnot efficiency formula.

Explanation:

The Carnot Engine Efficiency Calculation:

First, convert the temperatures to Kelvin. TH = 2000 K, TC = 300 K.Calculate the efficiency using the formula: e = 1 - TC/TH = 1 - 300/2000 = 0.85.

Learn more about Carnot Engine Efficiency Calculation here:

https://brainly.com/question/36599883

#SPJ11

During a tennis match, a player serves the ball at a speed s, with the center of the ball leaving the racquet at angle θ below the horizontal at a height y0. The net is a distance d away and has a height h. When the ball is directly over the net, what is the distance between them?

Answers

Answer: Maximum distance

= {s²/g} * sine(2*theta)unit

Explanation: This is a projectile motion problem. The horizontal distance between the tennis player and where the tennis reaches over the net is given by the horizontal Range.

Range = {s² * sine2*theta}/g

(s)is the initial speed of projection

Theta is the angle of projection

g is acceleration due to gravity 10m/s².

What is the ratio of the intensities and amplitudes of an earthquake P wave passing through the Earth and detected at two points 27 km and 13 km from the source?

(a) I 27 / 13 =__________
(b) A 27 / 13 =_____________-

Answers

For both cases we will use the proportional values of the distance referring to the amplitude and intensity. Theoretically we know that the intensity is inversely proportional to the square of the distance, while the amplitude is inversely proportional to the distance, therefore,

PART A )  Intensity is inversely proportional to the square of the distance

[tex]Intensity \propto \frac{1}{distance^2}[/tex]

Therefore the intensity of the two values would be

[tex]\frac{I_{27}}{I_{13}} = \frac{(13km)^2}{(27km)^2}[/tex]

[tex]\mathbf{\therefore \frac{I_{27}}{I_{13}} = 0.232 }[/tex]

PART B) Amplitude is inversely proportional to the distance

[tex]Amplitude \propto \frac{1}{distance}[/tex]

[tex]\frac{A_{27}}{A_{13}}= \frac{(13km)}{(27km)}[/tex]

[tex]\mathbf{\therefore\frac{A_{27}}{A_{13}}= 0.4815}[/tex]

Final answer:

The intensity ratio of an earthquake P wave passing through the Earth and detected at two points is equal to the square of the amplitude ratio.

Explanation:

The ratio of the intensities of an earthquake P wave passing through the Earth and detected at two points is equal to the square of the ratio of their amplitudes.

Let's assume the amplitudes of the earthquake P wave at the two points are given by A27 and A13.

The intensity of a wave is given by the square of its amplitude. Therefore, the ratio of the intensities I27/I13 is equal to the square of the ratio of the amplitudes A27/A13.

So, the answer is:

(a) I27/I13 = (A27/A13)2

(b) A27/A13

Learn more about Earthquake P wave here:

https://brainly.com/question/4369432

#SPJ11

A stretched string is fixed at both ends which are 160 cm apart. If the density of the string is 0.038 g/cm, and its tension is 600 N, what is the wavelength of the 6th harmonic?

Answers

Final answer:

The wavelength of the 6th harmonic of a stretched string fixed at both ends with a length of 160 cm is 53.33 cm.

Explanation:

To calculate the wavelength of the 6th harmonic of a stretched string fixed at both ends, we need to use the formula for the wavelength of standing waves on a string. The formula for the nth harmonic on a string of length L is given by:

\[\lambda = \frac{2L}{n}\]

In this case, the length L is 160 cm, and the harmonic number n is 6.

So, the wavelength for the 6th harmonic is:

\[\lambda_6 = \frac{2 \times 160}{6}\]

\[\lambda_6 = \frac{320}{6}\]

\[\lambda_6 = 53.33 \text{ cm}\]

Therefore, the wavelength of the 6th harmonic is 53.33 cm.

Other Questions
Given a set of data sorted from smallest to largest, define the first, second, and third quartiles. a. The first quartile is the area within one standard deviation of the mean. The second quartile is the area within two standard deviations of the mean. The third quartile is the area within three standard deviations of the mean. b. The first quartile is the mean of the lower half of the data below the median. The second quartile is the median The third quartile is the mean of the upper half of the data above the median. c. The first quartile is the minimum value. The second quartile is the median. The third quartile is the maximum value. d. The first quartile is the median of the lower half of the data below the overall median. The second quartile is the overall median The third quartile is the median of the upper half of the data above the overall median. e. The first quartile is the area that contains the 25% of all values that are closest to the mean. The second quartile is the area that contains the 50% of all values that are closest to the mean. The third quartile is the area that contains the 75% of all values that are closest to the mean. The Doral Company manufactures and sells pens. Currently, 5,000,000 units are sold per year at $0.50 per unit. The fixed costs are $900,000 per year. Variable costs are $0.30 per unit. Consider each case separately: 1a. What is the current annual operating income? b. What is the present breakeven point in revenues? Compute the new operating income for each of the following changes: 2. A $0.04 per unit increase in variable costs 3. A 10% increase in fixed costs and a 10% increase in units sold 4. A 20% decrease in fixed costs, a 20% decrease in selling price, a 10% decrease in variable cost per unit and a 40% increase inunits sold. Compute the new breakeven point in units for each of the following changes: 5. A 10% increase in fixed costs 6. A 10% increase in selling price and a $20,000 increase in fixed costs A trucking company had 3 trucks. The first truck traveled 790 miles, the second truck traveled 830 miles, and the third truck traveled 948 miles. Each truck traveled 12 miles on a gallon of gas. Gas cost $1.60 per gallon. Compute the amount the trucking company spent on gas. Assume a system uses five protocol layers. If the application program creates a message of 100 bytes and each layer (including the fifth and the first) adds a header of 10 bytes to the data unit, what is the efficiency (the ratio of application layer bytes to the number of bytes transmitted) of the system? Which is an advantage of sexual reproduction over asexual reproduction? To enhance diagnostic specificity, DSM-5 replaced the previous "not otherwise specified" (NOS) designation with two options for clinical use: Other Specified [disorder] and Unspecified [disorder]. Which of the following statements about use of the Unspecified designation is true?a. The Unspecified designation is used when the clinician chooses not to specify the reason that criteria for a specific disorder were not met.b. The Unspecified designation is used when there is no recognized Other Specified disorder (e.g. recurrent brief depressions, sexual aversion).c. The Unspecified designation is used when the individual has fewer than three symptoms of any of the recognized disorders within the diagnostic class.d. The Unspecified designation is used when the individual presents with symptomatologyof disorders in two or more diagnostic classes.e. The Unspecified designation is used when the clinician believes the condition is of atemporary nature. Consider the linear system 211 + 3x2 - 5.23 = b 7.01 + 2.02 + 813 = b2 -X1 + 12 - 5.23 = b3 (a) Find the echelon form of the augmented matrix of the above system.(b) Find the conditions on b1,b2, b3 for which this system has a solution. (c) Do you see the shape of the points (61, 62, 63) for which the above system has a solution? (d) If you randomly picked a (61, 62, 63) in R3, do you expect the above system to have a solution? Who was chosen to lead the Continental Army? A cover letter should have no _______ Also, the sentences used in the cover letter should be_________ .1).a errors b graphics c personal names2).a humorous b detailed c precise A theater wants 2000$ and childrens tickets cost 5$ and adult tickets cost 10$.What is one combination of children and adult tickets that will make 2000$ The failure to notice something that is completely visible due to a lack of attention is referred to as inattentional ______________. Which is the best explanation of water transport in a non-vascular?Water moves only in the roots.Water moves from cell to cell.Water moves through a system of tubes.Water moves directly to the flowers from the roots. A vacuum chamber contains a uniform electric field directed downward. If a proton is shot horizontally into this region, it's acceleration is? Give direction and relative magnitude (Ex 45 degrees west of north, and is exponentially decreasing) If 70% of children who like green are boys,how many boys like green? The royal portrait figure of the kuba people shows the influence of Andy Warhol's silkscreens.True or false Consumer behavior can best be defined as the study of the processes individuals, groups, or organizations go through in order to _______________ Simone de Beauvoir once famously asserted that "one is not born a woman, but becomes one," to suggest that women are created by cultural forces. How might sociobiologists respond to this?A) De Beauvoir does not account for the role of industrialization in creating the category of woman.B) De Beauvoir misses that what constitutes a woman is biological as well as cultural.C) De Beauvoir fails to show how the category of woman is purely an effect of economics.D) De Beauvoir is correct because our biology determines our culture. In the last few decades, demand for ketchup has dropped in the United States, while demand for salsa has risen. Which factors that affect demand account for this? so far this season Malia scored two goals and missed on her six other shots on goal what is the experimental probability that maria will score a goal on her next shot ASAP FAST PLSKara is currently creating a storyboard for her web site. Which step of the web design process is she in? Coding Planning Proofreading Publishing Steam Workshop Downloader