A small object has a mass of 3.0 × 10-3 kg and a charge of -32C. It is placed at a certain spot where there is an electric field. When released, the object experiences an acceleration of 2.4 × 103 m/s2 in the direction of the +x axis. Determine the electric field, including sign, relative to the +x axis.

Answers

Answer 1

The electric field is [tex]-0.225N/C[/tex]  towards the negative x-axis.

The electric force (F) acting on a charged object in an electric field (E) is given by the following formula:

[tex]F=qE[/tex]

Here, q is the charge of the object and E is the electric field.

Given:

Acceleration, [tex]a=2.4 \times 10^3 m/s^2[/tex]

Mass, [tex]m=3.0 \times 10^{-3} kg[/tex]

Charge, [tex]q=-32C[/tex]

The force on the charge is computed as:

[tex]qE=ma\\E=\frac{3.0 \times 10^{-3} \times 2.4 \times 10^3}{-32}\\E=-0.225N/C[/tex]

The electric field is towards the negative x-axis.

Therefore, the electric field is [tex]-0.225N/C[/tex]  towards the negative x-axis.

To know more about the electric force, click here:

https://brainly.com/question/20935307

#SPJ12

Answer 2
Final answer:

The electric field that causes the object with a mass of 3.0 × 10⁻³kg and a charge of -32C to accelerate at 2.4 × 10³m/s^2 is -7.5 × 10² N/C, and it is in the +x axis direction.

Explanation:

The student's question involves determining the electric field that causes an object to experience a specific acceleration. The object has a mass of 3.0 × 10⁻³ kg and a charge of -32 C. To find the electric field E, we can use Newton's second law of motion and the definition of the electric force: F = ma = qE, where F is the force, m is the mass, a is the acceleration, q is the charge, and E is the electric field.

To calculate the electric field, we set F equal to the product of mass and acceleration and then solve for E:


E = F / q
= (m × a) / q
= (3.0 × 10^⁻³ kg × 2.4 × 10³ m/s²) / (-32 C)
= -7.5 × 10²N/C

The negative sign indicates that the electric field's direction is opposite to the charge's motion. Since the charge is negative and it accelerates in the direction of the +x axis, the electric field must be in the +x axis direction.


Related Questions

As a car drives with its tires rolling freely without any slippage, the type of friction acting between the tires and the road is 100) A) static friction. B) kinetic friction. C) a combination of static and kinetic friction. D) neither static nor kinetic friction, but some other type of friction. E) It is impossible to tell what type of friction acts in this situation.

Answers

Final answer:

The type of friction acting between the tires and the road when a car's tires roll freely without any slippage is static friction, as the tire's contact point with the road is momentarily at rest.

Explanation:

When a car's tires roll freely without any slippage, the type of friction acting between the tires and the road is static friction. This is because the bottom of the tire is at rest with respect to the ground for a moment in time, ensuring there's no relative movement between the contact surfaces. Static friction is what allows the car to move forward as it prevents the tires from slipping on the surface of the road. Once slipping occurs, for instance, if the tires are spinning without moving the car forward, it becomes kinetic friction. However, in a scenario where rolling without slipping occurs, it's due to the presence of static friction, which is necessary for proper motion and control of the vehicle.

28. A stone is projected at a cliff of height h with an initial speed of 42.0 mls directed at angle θ0 = 60.0° above the horizontal. The stone strikes at A, 5.50 s after launching. Find (a) the height h of the cliff, (b) the speed of the stone just before impact at A, and (c) the maximum height H reached above the grou

Answers

Answer:

a) 51.8 m, b) 27.4 m/s, c) 142 m

Explanation:

Given:

v₀ = 42.0 m/s

θ = 60.0°

t = 5.50 s

Find:

h, v, and H

a) y = y₀ + v₀ᵧ t + ½ gt²

0 = h + (42.0 sin 60.0) (5.50) + ½ (-9.8) (5.50)²

h = 51.8 m

b) vᵧ = gt + v₀ᵧ

vᵧ = (-9.8)(5.5) + (42.0 sin 60.0)

vᵧ = -17.5 m/s

vₓ = 42.0 cos 60.0

vₓ = 21.0 m/s

v² = vₓ² + vᵧ²

v = 27.4 m/s

c) vᵧ² = v₀ᵧ² + 2g(y - y₀)

0² = (42.0)² + 2(-9.8)(H - 51.8)

H = 142 m

(a) The height of the cliff is 51.82 m

(b) The final velocity of the stone before it strikes A is 27.36 m/s

(c) The maximum height reached by the stone is 67.50 m

The given parameters;

initial velocity of the object, u = 42 m/sangle of projection, = 60° time of motion of the stone, t = 5.5 s

(a) The height of the cliff is calculated as;

[tex]h_y = v_0_yt - \frac{1}{2} gt^2\\\\h_y = (v_0\times sin(\theta)) t \ - \ \frac{1}{2} gt^2\\\\h_y = (42\times sin(60))\times 5.5 \ - \ (0.5\times 9.8\times 5.5^2)\\\\h_y = 200.05 - 148.23\\\\h_y = 51.82 \ m[/tex]

(b) The final velocity of the stone before it strikes A is calculated as;

The vertical component of the final velocity

[tex]v_f_y = v_0_y - gt\\\\v_f_y = (v_0 \times sine (\theta)) - gt\\\\v_f_y = (42\times sin(60) - (9.8\times 5.5)\\\\v_f_y = -17.53 \ m/s[/tex]

The horizontal component of the final velocity

[tex]v_x_f = v_0\times cos(\theta)\\\\v_x_f = 42 \times cos(60)\\\\v_x_f = 21 \ m/s[/tex]

The resultant of the velocity at point A;

[tex]v_f = \sqrt{v_x_f^2 + v_y_f^2} \\\\v_f = \sqrt{(21)^2 + (-17.53)^2} \\\\v_f = 27.36 \ m/s[/tex]

(c) The maximum height reached by the projectile;

[tex]H = \frac{v_o^2 sin^2(\theta)}{2g} \\\\H = \frac{[42 \times sin(60)]^2}{2\times 9.8} \\\\H = 67.50 \ m[/tex]

Learn more here: https://brainly.com/question/15162556

A particle leaves the origin with an initial velocity of 3.00 m/s in the x direction, and moves with constant acceleration ax = -2.70 m/s2 and ay = 3.90 m/s2. How far does the particle move in the x direction before turning around?

Answers

Answer:

1.67 m

Explanation:

Ux = 3 m/s, ax = -2.7 m/s^2, vx =0

Let the distance travelled before stopping along x axis is x.

Use third equation of motion along x axis

Vx^2 = ux^2 + 2 a x

0 = 9 - 2 × 2.7 × x

X = 1.67 m

Suppose you dissolve 4.75 g of another solid (not urea) in 50.0 mL of water. You note that the temperature changes from 25.0 °C to 28.0 °C. Part 1: What is the mass of the solution?

Answers

Answer:

Mass of the solution  = 54.75 g

Explanation:

Mass of solid dissolved = 4.75 g

Mass of the solution = Mass of solid dissolved + Mass of water.

Mass of water = Volume x Density

Volume = 50 mL = 50 cm³

Density = 1 g/cm³

Mass of water = 50 x 1 = 50 g

Mass of the solution = 4.75 + 50 = 54.75 g

At a distance of 20 m from a source of sound, the sound level is 40 dB. If the observer backs up to a distance of 40 m from the source, what will the sound level be? O A. 34 dB O B. 28 dB ° C. 20 dB O D. 10 dB

Answers

Answer:

The sound level is 34 dB.

(A) is correct option.

Explanation:

Given that,

Distance from a source of sound [tex]r_{1}=20 m[/tex]

Sound level [tex]L_{1}= 40\ dB[/tex]

Distance from a source of sound[tex]r_{2}=40\ m[/tex]

We need to calculate the sound level

Using equation

[tex]L_{2}=L_{1}-|20 log(\dfrac{r_{1}}{r_{2}})|[/tex]

[tex]L_{2}=40-|20 log(\dfrac{20}{40})|[/tex]

[tex]L_{2}=40-|20 log(0.5)|[/tex]

[tex]L_{2}=33.9\ dB[/tex]

[tex]L_{2}=34\ dB[/tex]

Hence, The sound level is 34 dB.

The sound level decreases by 20 dB when the distance from the source is doubled because the intensity of sound decreases with the square of the distance. Thus, the sound level at 40 m would be 20 dB. The answer is option C.

When the observer moves from a distance of 20 m to 40 m away from the source of sound, the sound intensity decreases. This is due to the inverse square law, which states that the intensity of sound is inversely proportional to the square of the distance from the source. Since the observer doubles the distance from the source, the intensity of the sound will be reduced to one-fourth. Because each 10-fold decrease in intensity corresponds to a reduction of 10 dB in sound level, halving the distance corresponds to an intensity ratio of 1/4, which is two factors of 10 (or 102 times less intense). Thus, the sound level decreases by 20 dB (2 factors of 10).

Therefore, at a distance of 40 m, the sound level would be 20 dB less than the original 40 dB, leading to a new sound level of 20 dB. The answer is option C: 20 dB.

Suppose that an electromagnetic wave which is linearly polarized along the x−axis is propagating in vacuum along the z−axis. The wave is incident on a conductor which is placed at z > 0 region of the space. The conductor has conductivity σ, magnetic permeability µ and electric permittivity ε.
(a) Find the characteristic time for the free charge density which dissipates at the conductor.

(b) Write the Maxwell equations and derive the wave equation for a plane wave propagating in a conductor.

(c) Find the attenuation distance at which the incident amplitude reduces to e ^−1 of its initial value.

(d) Find the electric and magnetic fields inside the conductor. 8 (e) Find the power loss per area of the incident electromagnetic wave at the surface of conductor.

Answers

I think the answer to your question is B

A UHF antenna is oriented at an angle of 47o to a magnetic field that changes at a rate of 0.23 T/s. What is the induced emf of the antenna if it has a diameter of 13.4 cm? O 5.4 mV ? 2.2 ? 0027 ?

Answers

Answer:

Induced emf, [tex]\epsilon=2.2\ mV[/tex]

Explanation:

It is given that,

Rate of change of magnetic field, [tex]\dfrac{dB}{dt}=0.23\ T/s[/tex]

A UHF antenna is oriented at an angle of 47° to a magnetic field, θ = 47°

Diameter of the antenna, d = 13.4 cm

Radius, r = 6.7 m = 0.067 m

We need to find the induced emf of the antenna. It is given by :

[tex]\epsilon=-\dfrac{d\phi}{dt}[/tex]

Where

[tex]\phi[/tex] = magnetic flux, [tex]\phi=BA\ cos\theta[/tex]

So, [tex]\epsilon=\dfrac{d(BA\ cos\theta)}{dt}[/tex]

B = magnetic field

[tex]\epsilon=A\dfrac{d(B)}{dt}\ cos\theta[/tex]

[tex]\epsilon=\pi r^2\times \dfrac{dB}{dt}\times cos(47)[/tex]

[tex]\epsilon=\pi (0.067\ m)^2\times 0.23\ T-s\times cos(47)[/tex]

[tex]\epsilon=0.0022\ V[/tex]

[tex]\epsilon=2.2\ mV[/tex]

So, the induced emf of the antenna is 2.2 mV. Hence, this is the required solution.

A circular coil of radius 10 cm and a separate square coil of side 20 cm are both rotated in a magnetic field of 1.5 T. If the circular coil is rotated at a frequency of 60 Hz, then at what frequency must the square coil be rotated in order for both coils to have the same maximum induced voltage? A) 47 Hz
B) 60 Hz
C) 76 Hz
D) 19 Hz

Answers

Answer:

The frequency of square coil is 47 Hz.

(A) is correct option.

Explanation:

Given that,

Radius =10 cm

Side = 20 cm

Magnetic field = 1.5 T

Frequency = 60 Hz

We need to calculate the the maximum induced voltage

[tex]V_{m}=BAN\omega[/tex]

Where, B = magnetic field

A = area of cross section

N = number of turns

[tex]\omega=2\pi f[/tex]= angular frequency

Put the value into the formula

[tex]V_{m}=1.5\times3.14\times(10\times10^{-2})^2\times1\times2\times3.14\times60[/tex]

[tex]V_{m}=17.75\ V[/tex]

If the square coil have the same induced voltage.

Area of square of coil [tex]A =(20\times10^{-2})^2[/tex]

[tex]A=0.04\ m^2[/tex]

Now, The angular velocity of square coil

[tex]\omega=\dfrac{V_{m}}{AB}[/tex]

[tex]\omega=\dfrac{17.75}{0.04\times1.5}[/tex]

[tex]\omega=295.8\ \dfrac{rad}{s}[/tex]

Now, frequency of rotation

[tex]f = \dfrac{\omega}{2\pi}[/tex]

Put the value into the formula of frequency

[tex]f=\dfrac{295.8}{2\times3.14}[/tex]

[tex]f=47\ Hz[/tex]

Hence, The frequency of square coil is 47 Hz.

As a woman walks, her entire weight is momentarily placed on one heel of her high-heeled shoes. Calculate the pressure exerted on the floor by the heel if it has an area of 1.43 cm2 and the woman's mass is 60.5 kg. Express the pressure in pascals. (In the early days of commercial flight, women were not allowed to wear high-heeled shoes because aircraft floors were too thin to withstand such large pressures.)

Answers

Answer:

4.15 x 10^6 N

Explanation:

Area, A = 1.43 cm^2 = 1.43 x 10^-4 m^2

mass, m = 60.5 kg

Weight, F = m g = 60.5 x 9.8 = 592.9 N

Pressure = Force / Area

P = Weight / Area

P = 592.9 / (1.43 x 10^-4)

P = 4.15 x 10^6 N

Suppose the earth is shaped as a sphere with radius 4,0004,000 miles and suppose it rotates once every 24 hours. How many miles along the equator does it rotate each hour? (approximation is acceptable)

Answers

Answer:

1047 miles

Explanation:

The radius of the Earth is

[tex]r = 4000[/tex] (miles)

So its circumference, which is the total length of the equator, is given by

[tex]L=2\pi r= 2\pi(4000)=25133 mi[/tex]

Now we know that the Earth rotates once every 24 hours. So the distance through which the equator moves in one hour is equal to its total length divided by the number of hours, 24:

[tex]L' = \frac{25133 mi}{24h}=1047 mi[/tex]

A voltage source Vs = 10 V is in series with a resistor of 10 kOhm. If the source transformation theorem is applied, what will the value of the current source be in mA ?

Answers

Answer:

The current source is 1 mA.

Explanation:

Given that,

Voltage = 10 V

Resistor = 10 k ohm

We need to calculate the current

Using formula of transformation theorem

The source transformation must be constrained is given by

[tex]v_{s}=iR_{s}[/tex]

Where, V = voltage

I = current

R = resistor

Put the value into the formula

[tex]10=i\times10\times10^{3}[/tex]

[tex]i =\dfrac{10}{10\times10^{3}}[/tex]

[tex]i = 0.001\ A[/tex]

[tex]i=1\ mA[/tex]

Hence, The current source is 1 mA.

Final answer:

By using Ohm's Law (I = V/R), it can be determined that for a voltage source Vs = 10 V in series with a resistor of 10 kOhm, the current source would be 1mA after source transformation.

Explanation:

The question asks for the current value in a circuit when the source transformation theorem is applied. This involves using Ohm's law, which in basic form states that the current through a resistor equals the voltage across the resistor divided by the resistance. It's represented by the equation I = V/R.

In our case, the voltage (V) is 10 volts, and the resistance (R) is 10 kilo-Ohms or 10,000 Ohms. Applying Ohm's law gives I = V/R, so I = 10V/10,000Ω = 0.001 A. However, because the question asks for the current in milliamperes (mA), we need to convert from amperes to milliamperes, knowing that 1A = 1000mA. Therefore, 0.001A = 1mA.

Learn more about Ohm's Law here:

https://brainly.com/question/36009177

#SPJ12

A janitor opens a 1.10 m wide door by pushing on it with a force of 47.5 N directed perpendicular to its surface. HINT (a) What magnitude torque (in N · m) does he apply about an axis through the hinges if the force is applied at the center of the door? (b) What magnitude torque (in N · m) does he apply at the edge farthest from the hinges?

Answers

(a) 26.1 Nm

The magnitude of the torque exerted by a force acting perpendicularly to a surface is given by:

[tex]\tau = Fr[/tex]

where

F is the magnitude of the force

r is the distance from the pivot

In this situation,

F = 47.5 N is the force applied

[tex]r=\frac{1.10 m}{2}=0.55 m[/tex] is the distance from the hinges (the force is applied at the center of the door)

So, the magnitude of the torque is

[tex]\tau = (47.5 N)(0.55 m)=26.1 Nm[/tex]

(b) 52.3 Nm

In this case, the force is applied at the edge of the door farthest from the hinges. This means that the distance from the hinges is

r = 1.10 m

So, the magnitude of the torque is

[tex]\tau =(47.5 N)(1.10 m)=52.3 Nm[/tex]

The magnitude of torque applied about the axis of the door when the force is applied at the center is 26.125 N.m

The magnitude of the torque applied at the edge farthest from the center  is 52.25 N.m.

The given parameters;

width of the door, w = 1.10 mapplied force, F = 47.5 N

The torque applied by the janitor is the product of applied force and perpendicular distance.

τ = F.r

The torque applied about the axis of the door when the force is applied at the center.

[tex]\tau = F \times \frac{r}{2} \\\\\tau = 47.5 \times \frac{1.1}{2} \\\\\tau = 26.125 \ N.m[/tex]

The magnitude of the torque applied at the edge farthest from the center ;

[tex]\tau = F\times r\\\\\tau = 47.5 \times 1.1\\\\\tau = 52.25 \ N.m[/tex]

Learn more here:https://brainly.com/question/12473935

Two parallel-plate capacitors have the same plate area, but the plate gap in capacitor 1 is twice as big as capacitor 2. If capacitance of the first capacitor is C, then capacitance of the second one is:

Answers

Answer:

Capacitance of the second capacitor = 2C

Explanation:

[tex]\texttt{Capacitance, C}=\frac{\varepsilon_0A}{d}[/tex]

Where A is the area, d is the gap between plates and ε₀ is the dielectric constant.

Let C₁ be the capacitance of first capacitor with area A₁ and gap between plates d₁.

We have    

              [tex]\texttt{Capacitance, C}_1=\frac{\varepsilon_0A_1}{d_1}=C[/tex]

Similarly for capacitor 2

               [tex]\texttt{Capacitance, C}_2=\frac{\varepsilon_0A_2}{d_2}=\frac{\varepsilon_0A_1}{\frac{d_1}{2}}=2\times \frac{\varepsilon_0A_1}{d_1}=2C[/tex]

Capacitance of the second capacitor = 2C

At what height above the ocean the acceleration of gravity of the earth will have a value of 9.3m /s^2 ?

Answers

Answer:

160 km

Explanation:

g = 9.8 m/s^2, g' = 9.3 m/s^2

Let h be the height from ocean level.

Use the formula for acceleration due to gravity at height.

g' = g (1 - 2h/R)

The radius of earth is 6400 km

9.3 = 9.8 ( 1 - 2 H / R)

0.05 = 2 h/R

h = 0.05 × 6400 / 2 = 160 km

In an amusement park water slide, people slide down an essentially frictionless tube. The top of the slide is 3.2 m above the bottom where they exit the slide, moving horizontally, 1.2 m above a swimming pool. Does the mass of the person make any difference?

Answers

Answer:

No

Explanation:

When the person slides down, the change in gravitational potential energy is converted into kinetic energy, according to

[tex]\Delta U = \Delta K\\mg\Delta h = \frac{1}{2}mv^2[/tex]

where

m is the mass of the person

g is the acceleration of gravity

v is the final speed

[tex]\Delta h[/tex] is the change in heigth of the person

Here we have assumed that the initial speed is zero.

Re-arranging the equation,

[tex]v = \sqrt{2g \Delta h}[/tex]

and we see that this quantity does not depend on the mass of the person, so every person will have the same speed at the bottom of the slide, equal to:

[tex]v=\sqrt{2(9.8 m/s^2)(3.2 m-1.2 m)}=6.3 m/s[/tex]

For a rigid body in rotational motion, what can be stated about the angular velocity of all of the particles? The linear velocity?

Answers

Answer:

Explanation:

In case of rotational motion, every particle is rotated with a same angular velocity .

The relation between linear velocity and angular velocity is

V = r w

Where v is linear velocity, r is the radius of circular path and w be the angular velocity.

Here w is same for all the particles but every particle has different radius of circular path I which they are rotating, so linear velocity is differnet for all.

Three wires meet at a junction. Wire 1 has a current of 0.40 A into the junction. The current of wire 2 is 0.57 A out of the junction.What is the magnitude of the current in wire 3?

Answers

I₃ = 0.17 A into the junction.

The key to solve this problem is using Kirchhoff's Current Law which statements  that the algebraic sum of the currents that enter and leave a particular junction must be 0 (I₁+I₂+...+In = 0). Be careful, the currents that leaves a point is considered positive current, and the one that enters a point is considered negative.

In other words,  the sum of the currents that enter to the joint is equal to the sum of the currents that come out of the joint.

Three wire meet at junction. Wire 1 has a current of 0.40 A into the junction, the current of the wire 2 is 0.57 A out of the junction. What is the magnitude of the current in wire 3?

To calculate the current in the wire 3:

First, let's name the currents in the circuit. So:

The current in the wire 1 is I₁ = 0.40 A, the current in the wire 2 is I₂ = 0.57 A, and the current of wire 3 is I₃ = ?.

Second,  we make a scheme of the circuit, with the current I₁ of wire 1 into the junction, the current I₂ of wire 2 out of the junction, and let's suppose that the current I₃ of the wire 3 into the junction. (See the image attached)

Using Kirchhoff's Current Law, the sum of the currents I₁ and I₃ into the junction is equal to the current I₂ out of junction.

I₁ + I₃ = I₂

0.40 A + I₃ = 0.57 A

I₃ = 0.57 A - 0.40A

I₃ = 0.17 A

Checking the Kirchhoff's Current Law, the sum of all currents is equal to 0 :

I₁ + I₃ = I₂

I₁ - I₂ + I₃ = 0

0.40 A - 0.57 A + 0.17 A = 0

Let's suppose that the current I₃ of the wire 3 out the junction.

I₁ = I₂ + I₃

0.40 A = 0.57 A + I₃

I₃ = 0.40 A - 0.57 A

I₃ = -0.17 A which means that the current flow  in the opposite direction that we selected.

Final answer:

The magnitude of the current in wire 3 entering the junction is 0.17A. This result is based on the principle of conservation of electric current which states that the total current entering the junction must equal the total current exiting the junction.

Explanation:

This question involves the principle of the conservation of electric current, also known as Kirchhoff's Current Law. According to this concept, at any junction point the total current entering the junction is equal to the total current leaving the junction. In this case, if wire 1 has a current of 0.4A entering the junction and wire 2 has a current of 0.57A leaving the junction, the current in wire 3 would be the difference between these two values.

Since current can't be negative, if the current in wire 1 (entering the junction) is less than the current in wire 2 (exiting), the current in wire 3 must be entering the junction to balance the current flow.

Therefore, the magnitude of the current in wire 3 would be 0.57A - 0.4A = 0.17A. This means wire 3 has a current of 0.17A entering the junction.


Learn more about Current in a junction here:

https://brainly.com/question/8309214

#SPJ5

Compute the voltage drop along a 24-m length of household no. 14 copper wire (used in 15-A circuits). The wire has diameter 1.628 mm and carries a 13-A current. The resistivity of copper is 1.68×10−8Ω⋅m.

Answers

Answer:

Explanation:

We know that the formula for resistance in terms of length and area is given by

R = p l/ a

Where p be the resistivity and a be the area of crossection

a = pi × d^2 / 4

Where d be the diameter

a = 3.14 × (1.628 × 10^-3)^2 / 4

a = 2 × 10^-6 m^2

R = 1.68 × 10^-8 × 24 / (2 × 10^-6)

R = 20.16 × 10^-2 ohm

By use of Ohm's law

V = IR

V = 13 × 20.16 × 10^-2

V = 2.62 Volt

An ideal transformer has 60 turns in its primary coil and 360 turns in its secondary coil. If the input rms voltage for the 60-turn coil is 120 V, what is the output rms voltage of the secondary coil?

Answers

Answer:

Voltage of the secondary coil is 720 volts.

Explanation:

Number of turns in primary coil, N₁ = 60

Number of turns in secondary coil, N₂ = 360

Input rms voltage of primary coil, V₁ = 120 V

We have to find the output rms voltage of the secondary coil. The relationship between the number of coil and voltage is given by :

[tex]\dfrac{N_1}{N_2}=\dfrac{V_1}{V_2}[/tex]

[tex]\dfrac{60}{360}=\dfrac{120}{V_2}[/tex]

V₂ = output rms voltage of the secondary coil.

After solving above equation, we get :

V₂ = 720 V

Hence, the output rms voltage of the secondary coil is 720 volts.

A wheel rotates without friction about a stationary horizontal axis at the center of the wheel. A constant tangential force equal to 82.0 N is applied to the rim of the wheel. The wheel has radius 0.150 m . Starting from rest, the wheel has an angular speed of 12.8 rev/s after 3.88 s. What is the moment of inertia of the wheel?

Answers

Answer:

The moment of inertia of the wheel is 0.593 kg-m².

Explanation:

Given that,

Force = 82.0 N

Radius r = 0.150 m

Angular speed = 12.8 rev/s

Time = 3.88 s

We need to calculate the torque

Using formula of torque

[tex]\tau=F\times r[/tex]

[tex]\tau=82.0\times0.150[/tex]

[tex]\tau=12.3\ N-m[/tex]

Now, The angular acceleration

[tex]\dfrac{d\omega}{dt}=\dfrac{12.8\times2\pi}{3.88}[/tex]

[tex]\dfrac{d\omega}{dt}=20.73\ rad/s^2[/tex]

We need to calculate the moment of inertia

Using relation between torque and moment of inertia

[tex]\tau=I\times\dfrac{d\omega}{dt}[/tex]

[tex]I=\dfrac{I}{\dfrac{d\omega}{dt}}[/tex]

[tex]I=\dfrac{12.3}{20.73}[/tex]

[tex]I= 0.593\ kg-m^2[/tex]

Hence, The moment of inertia of the wheel is 0.593 kg-m².

Answer:

0.593 kg-m²

Explanation:

edg.

A semi with a mass of 9,565 kg and going at a velocity of 55 m/s and hits a parked car(992 kg) at rest. If all the momentum is transfered to the car (the semi is now at rest), at what speed does the car move forward (assume an elastic collison, no decimals in the answer and leave no spaces between units and answer).

Answers

Answer:

Speed of car, v₁ = 55 m/s

Explanation:

It is given that,

Mass of Semi, m₁ = 9565 kg

Initial velocity of semi, u₁ = 55 m/s

Mass of car, m₂ = 992 kg

Initial velocity of car, u₂ = 0 (at rest)

Since, the collision between two objects is elastic and all the momentum is transferred to the car i.e final speed of semi, v₂ = 0

Let the speed of the car is v₁. Using conservation of linear momentum as :

[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2[/tex]

[tex]9565\ kg\times 55\ m/s+992\ kg\times 0=9565\ kg\times v_1+0[/tex]

v₁ = 55 m/s

Hence, the car move forward with a speed of 55 m/s.

A bullet with a mass ????=12.5 g and speed ????=86.4 m/s is fired into a wooden block with ????=113 g which is initially at rest on a horizontal surface. The bullet is embedded into the block. The block-bullet combination slides across the surface for a distance ???? before stopping due to friction between the block and surface. The coefficients of friction are ????????=0.753 and ????????=0.659. (a) What is the speed (m/s) of the block-bullet combination immediately after the collision? (b) What is the distance d (m)?

Answers

Answer:

a) 8.61 m/s, b) 5.73 m

Explanation:

a) During the collision, momentum is conserved.

mv = (m + M) V

(12.5 g) (86.4 m/s) = (12.5 g + 113 g) V

V = 8.61 m/s

b) After the collision, energy is conserved.

Kinetic energy = Work done by friction

1/2 (m + M) V² = F d

1/2 (m + M) V² = N μk d

1/2 (m + M) V² = (m + M) g μk d

1/2 V² = g μk d

d = V² / (2g μk)

d = (8.61 m/s)² / (2 × 9.8 m/s² × 0.659)

d = 5.73 m

Notice we used the kinetic coefficient of friction.  That's the friction when an object is moving.  The static coefficient of friction is the friction on a stationary object.  Since the bullet/block combination is sliding across the surface, we use the kinetic coefficient.

A graduated cylinder contains 63.0 mL of water. A piece of gold, which has a density of 19.3 g/ cm3, is added to the water and the volume goes up to 64.5 mL. Calculate the mass in grams of the gold that was added to the water. Explain how you got your answer.

Answers

Answer:

29.0 g

Explanation:

The mass of the piece of gold is given by:

m = dV

where

m is the mass

d is the density

V is the volume of the piece of gold

The density of gold is

d = 19.3 g/cm^3

while the volume of the sample is equal to the volume of displaced water, so

V = 64.5 mL - 63.0 mL = 1.5 mL

And since

1 mL = 1 cm^3

the volume is

V = 1.5 cm^3

So the mass of the piece of gold is:

m = (19.3 g/cm^3)(1.5 cm^3)=29.0 g

A particle moves along a circle with radius R, so that the tangential component of its acceleration is constant. At t = 0 the velocity of the particle was equal to zero. Find
(a) the normal component an of the acceleration as function of time.
(b) the magnitude of the acceleration vector a as well as the angle the vector a forms with the position vector r as functions of time.

Answers

Final answer:

To find the normal component of acceleration, differentiate the velocity and acceleration functions.

Explanation:

In order to find the normal component of the acceleration, we need to first find the velocity and acceleration vectors as functions of time. Using the given position function, we can differentiate it to find the velocity function:

v(t) = dr/dt = -3(4sin(3t)i + 4cos(3t)ĵ)

Next, we can differentiate the velocity function to find the acceleration function:

a(t) = dv/dt = -3(3cos(3t)i - 3sin(3t)ĵ)

Since the tangential component of the acceleration is constant, we can set the coefficient of the tangential component equal to a constant value:

-3(3sin(3t)) = Constant

Solving this equation will give us the value of the constant. Once we know the value of the constant, we can substitute it back into the acceleration function to find the normal component of the acceleration as a function of time.

What will happen to the volume of a gas if its absolute temperature triples (increases by a factor of three) as the amount of gas and the pressure are held constant? Select the correct answer below: Question 3 options: The volume will decrease by a factor of three. The volume will triple (increase by a factor of three). The volume will double (increase by a factor of two).

Answers

Answer: The volume will triple (increase by a factor of three).

Explanation:

The expression for an Ideal Gas is:  

[tex]P.V=n.R.T[/tex]    (1)

Where:  

[tex]P[/tex] is the pressure of the gas  

[tex]V[/tex] is the volume of the gas  

[tex]n[/tex] the number of moles of gas  

[tex]R[/tex] is the gas constant  

[tex]T[/tex] is the absolute temperature of the gas  

Finding [tex]V[/tex]:

[tex]V=\frac{n.R.T}{P}[/tex]    (2)

If we are told the the amount of gas [tex]n[/tex] and pressure [tex]P[/tex] remain constant, but we increase the temperature [tex]T[/tex] by a factor of three; we will have to rewrite (2) with the new temperature [tex]T_{N}[/tex]:

[tex]T_{N}=3T[/tex]

[tex]V=\frac{n.R.3T}{P}[/tex]    (3)

[tex]V=3\frac{n.R.T}{P}[/tex]    (4)

Now, if we compare (2) with (4), it is clearly noticeable the volume of the gas has increased by a factor of 3.

The volume will triple ( increase by a factor of three )

[tex]\texttt{ }[/tex]

Further explanation

The basic formula of pressure that needs to be recalled is:

Pressure = Force / Cross-sectional Area

or symbolized:

[tex]\large {\boxed {P = F \div A} }[/tex]

P = Pressure (Pa)

F = Force (N)

A = Cross-sectional Area (m²)

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

In this problem , we will use Ideal Gas Law as follows:

Given:

Initial Temperature of The Gas = T₁

Final Temperature of The Gas = T₂ = 3T₁

Asked:

Final Volume of The Gas = V₂ = ?

Solution:

[tex]\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}[/tex]

[tex]\frac{PV_1}{T_1} = \frac{PV_2}{3T_1}[/tex]

[tex]\frac{V_1}{1} = \frac{V_2}{3}[/tex]

[tex]3(V_1) = 1(V_2)[/tex]

[tex]V_2 = 3V_1[/tex]

[tex]\texttt{ }[/tex]

Conclusion:

The volume will triple ( increase by a factor of three )

[tex]\texttt{ }[/tex]

Learn moreMinimum Coefficient of Static Friction : https://brainly.com/question/5884009The Pressure In A Sealed Plastic Container : https://brainly.com/question/10209135Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Pressure

[tex]\texttt{ }[/tex]

Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant , Liquid , Pressure, Volume , Ideal , Gas , Law

initially, a particle is moving at 5.33 m/s at an angle of 37.9° above the horizontal. Two seconds later, its velocity is 6.11 m/s at an angle of 54.2° below the horizontal. What was the particle's average acceleration during these 2.00 seconds in the x-direction (enter first) and the y-direction?

Answers

Explanation:

Average acceleration is the change in velocity over the change in time:

a = (v − v₀) / t

In the x direction:

aₓ = (6.11 cos (-54.2°) − 5.33 cos (37.9°)) / 2.00

aₓ = -0.316 m/s²

In the y direction:

aᵧ = (6.11 sin (-54.2°) − 5.33 sin (37.9°)) / 2.00

aᵧ = -4.11 m/s²

Final answer:

To find the average acceleration, decompose the given velocities into their x and y components. Then calculate the change in velocities in both directions divided by the time interval.

Explanation:

The average acceleration of a particle can be found using the change in velocity and the time interval. The given velocities are in magnitude and direction, so we need to decompose these into their x and y components. The initial and final x-components are Vix = 5.33 m/s cos(37.9°) and Vfx = 6.11 m/s cos(54.2°), respectively. The average x-direction acceleration (ax) can be calculated as ax = (Vfx - Vix)/time. Similarly, the initial and final y-components are Viy = 5.33 m/s sin(37.9°) and Vfy = 6.11 m/s sin(54.2°), respectively. The y-direction acceleration (ay) is ay = (Vfy - Viy)/time.

Learn more about average acceleration here:

https://brainly.com/question/33442003

#SPJ2

A water main is to be constructed with a 12.512.5​% grade in the north direction and a 2020​% grade in the east direction. Determine the angle thetaθ required in the water main for the turn from north to east.

Answers

Final answer:

The angle theta required for the water main to turn from north to east can be determined by treating the grades as the rise over run and using vector addition with trigonometry to find the resultant direction and its angle east of north.

Explanation:

To determine the angle theta (θ) required for the water main to make the turn from north to east with a 12.5% grade in the north direction and a 20% grade in the east direction, we need to use vector addition and trigonometry. The water main's path can be viewed as containing two components: one in the north direction and one in the east direction. We will represent these as vectors and find their resultant to determine the required angle between them.

The grades can be understood as the rise over run, which means the north vector has a rise of 12.5 units for every 100 units of run, and the east vector has a rise of 20 units for every 100 units of run. To find the resultant vector, we can use the arctangent function:

θ = arctan(opposite/adjacent) = arctan(east grade / north grade) = arctan(0.20 / 0.125) = arctan(1.6)

Once we calculate θ, this will give us the angle between the north direction and the resultant direction of the water main. Keep in mind that this angle should be measured east of north to reflect the correct orientation of the water main's turn.

A 150 kg uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. Calculate the magnitude of the tension in the wire if the angle between the cable and the horizontal is θ = 47°.

Answers

Answer:

T = 2010 N

Explanation:

m = mass of the uniform beam = 150 kg

Force of gravity acting on the beam at its center is given as

W = mg

W = 150 x 9.8

W = 1470 N

T = Tension force in the wire

θ = angle made by the wire with the horizontal =  47° deg

L = length of the beam

From the figure,

AC = L

BC = L/2

From the figure, using equilibrium of torque about point C

T (AC) Sin47 = W (BC)

T L Sin47 = W (L/2)

T Sin47 = W/2

T Sin47 = 1470

T = 2010 N

Final answer:

The tension in the cable supporting a 150 kg beam can be calculated by equating the weight of the beam to the vertical component of the tension in the cable. Solve 150 kg * 9.8 m/s² = T * sin(47°) for the tension T to find the force exerted by the cable.

Explanation:

The question concerns the calculation of the tension in the cable supporting a uniform beam. We begin by recognizing that this is a static situation with a beam of mass 150 kg in equilibrium. Thus, the total of the forces in the vertical direction must equal zero.

The forces acting on the beam are its weight (downwards) and the vertical component of the tension in the cable (upwards). The weight of the beam can be calculated by multiplying its mass by gravity g (approximately 9.81 m/s²), resulting in a downward force of 1471.5 N. The vertical component of the tension can be calculated using the sine function: T_vertical = T * sin(θ), where T is the total tension in the cable.

By setting the weight equal to the vertical component of the tension, we can solve for T: 150 kg * 9.8 m/s² = T * sin(47°). Solve this equation for the tension T to find the magnitude of the force exerted by the cable. This tension, along with its vertical and horizontal components, help maintain the beam in its horizontal position.

Learn more about Physics of tension

https://brainly.com/question/30804213

#SPJ3

A 0.30-m-radius automobile tire accelerates from rest at a constant 2.0 rad/s2. What is the centripetal acceleration of a point on the outer edge of the tire after 5.0 s

Answers

Answer:

The centripetal acceleration is 30 m/s²

Explanation:

Given that,

Radius = 0.30 m

Acceleration = 2.0 rad/s²

Time = 5.0

We need to calculate the centripetal acceleration

Using formula of angular velocity

[tex]\omega=a\times t[/tex]

Where,

a = acceleration

t = time

Put the value into the formula

[tex]\omega=2.0\times5.0[/tex]

[tex]\omega=10\ rad/s[/tex]

Using formula of centripetal acceleration

[tex]a_{c}=r\omega^2[/tex]

[tex]a_{c}=0.30\times10^2[/tex]

[tex]a_{c}=30\ m/s^2[/tex]

Hence, The centripetal acceleration is 30 m/s²

The centripetal acceleration of a point on the outer edge of the tire after 5.0 seconds is [tex]\( 30 \, \text{m/s}^2 \)[/tex].

The centripetal acceleration of a point on the outer edge of the tire after 5.0 seconds is given by the formula [tex]\( a_c = \omega^2 r \)[/tex], where [tex]\( \omega \)[/tex] is the angular velocity and [tex]\( r \)[/tex] is the radius of the tire.

First, we need to find the angular velocity at 5.0 seconds. Since the tire starts from rest and accelerates at a constant rate.

We can use the formula [tex]\( \omega = \omega_0 + \alpha t \)[/tex], where [tex]\( \omega_0 \)[/tex] is the initial angular velocity (0 rad/s in this case, since the tire starts from rest), [tex]\( \alpha \)[/tex] is the angular acceleration ([tex]2.0 rad/s^2[/tex]), and [tex]\( t \)[/tex] is the time (5.0 s).

Plugging in the values, we get:

[tex]\( \omega = 0 + (2.0 \, \text{rad/s}^2)(5.0 \, \text{s}) = 10.0 \, \text{rad/s} \)[/tex]

Now that we have the angular velocity, we can calculate the centripetal acceleration:

[tex]\( a_c = \omega^2 r = (10.0 \, \text{rad/s})^2(0.30 \, \text{m}) \)[/tex]

[tex]\( a_c = 100 \, \text{s}^{-2} \times 0.30 \, \text{m} \)[/tex]

[tex]\( a_c = 30 \, \text{m/s}^2 \)[/tex]

A force of 34N stretches a very light ideal spring 0.73 m from equilibrium, What is the force constant (spring constant) of the spring? (A) 47N/m (B) 38N/m (C) 53N/m (D) 25N/m

Answers

Answer:

Spring constant, k = 47 N/m

Explanation:

It is given that,

Force applied to a spring, F = 34 N

A very light ideal spring moves 0.73 m from equilibrium position i.e. x = 0.73 m

We have to find the force constant or spring constant of the spring. It can be calculated using Hooke's law. According to him, the force acting on the spring when it compresses or stretches is given by :

[tex]F=-kx[/tex]  (-ve sign shows opposite direction)

[tex]k=\dfrac{F}{x}[/tex]

[tex]k=\dfrac{34\ N}{0.73\ m}[/tex]

k = 46.5 N/m

or

k = 47 N/m

Hence, the spring constant of the spring is 47 N/m.

Final answer:

Utilizing Hooke's law, which posits that the force needed to compress or extend a spring is proportional to the distance, the spring constant can be calculated to be approximately 46.6 N/m by dividing the force (34N) by the displacement (0.73m). So, the closest option amongst the provided ones is (A) 47N/m.

Explanation:

In the situation described where a force of 34N stretches a very light ideal spring 0.73 m from equilibrium, you would want to find the spring's force constant, often denoted as k. This involves a principle in physics known as Hooke's law, which states that the force needed to extend or compress a spring by some distance is proportional to that distance. The equation for Hooke's law is F=kx.

To find the spring constant (k), you rearrange the equation for Hooke's Law to give you: k = F/x. Substituting the force (F = 34N) and displacement from equilibrium (x = 0.73m) into the equation gives: k = 34N / 0.73m. Calculating this gives a spring constant of approximately 46.6 N/m. So, none of the given options (A) 47N/m  (B) 38N/m  (C) 53N/m  (D) 25N/m are exactly correct, but Option A is the closest.

Learn more about Physics - Spring Constant here:

https://brainly.com/question/14586216

#SPJ3

Other Questions
For Mexican American infants born in Arizona in 1986 and 1987, the probability that a child's gestational age is less than 37 weeks is 0.142 and the probability that his or her birth weight is less than 2500 grams is 0.051. Furthermore, the probability that these two events occur simultaneously is 0.031. Please show work!a. are A and B independent?b. For a randomly selected Mexican American newborn, what is the probability that A or B or both occur?c.What is the probability that event A occurs given that event B occurs? Which structure may be used to store food? -taproot -root hair -root cap -fibrous root which characteristics gives a live radio play of a story an advantage over the book of the same story The average value of the function F (T) =(t-4)^2 on [0,9] is Think about the system associated with the equation x2+x+ 6 = 2x+ 8.Which graph represents the system? The basic types of tissue in the human body are The power of (-7)4 is negative. True False group formed to protect artisans and increase their profits James wants to build a wooden barrel to hold rain water to use for irrigation. He wants the height of the barrel in feet to be 4 lessthan the area of the base in square feet. He also wants the area of the base in square feet to be equal to its perimeter in feet. Healso needs to place a pump inside the barrel to move the collected water. After the pump is put inside the barrel, he needs it tostill hold at least 90 cubic feet of waterThe cost for the materials to build the barrel will be 58 per square foot. Since the barrel is meant to catch rain water, he will notneed a top. The cost of the pump is proportional to its volume. For each cubic foot of volume that the pump takes up the costwill be 550 James can only afford to spend up to $1,100 on this projectIf x represents the area of the base of the barrel in square feet and y represents the volume of the pump in cubic feet, then whichof the following systems of inequalities can be used to determine the dimensions of the barrel and the volume of the pump? Last year, Scott had 10,000 to invest. He invested some of it in an account that paid 7% simple interest per year, and he invested the rest in an account that paid 9% simple interest per year. After one year, he received a total of $740 in interest. How much did he invest in each account? How is radar used to forecast weather An exam was given to a group of freshman and sophomore students. The results are below: Freshman: 106 got As, 130 got Bs, and 149 got Cs. Sophomore: 192 got As, 118 got Bs, and 168 got Cs. If one student is chosen at random from those who took the exam, find the probability that: b)The student was a freshman or received a C . c) The student was a sophomore, given they got a C. d) The student got an A, given they are a freshman. *round to 4 decimal places as needed* Where is the famous mona lisa painting housed? Which scientist used cepheid variables to measure the distance to faint "nebulas" in our sky, proving they were actually whole other galaxies? 21. Which property is represented by theequation below?2/3 x 3/2=1A. Multiplicative Inverse PropertyB. Multiplicative Identity PropertyC. Distributive PropertyD. Commutative Property ofMultiplication Which type of literature focuses on a particular event or topic in a persons life?A.short storyB.memoirC.dramaD.poetry Given a cone with a volume of 288, and height 7 in., find the base radius of the cone. Use 3.14 for pi. Round your answer to thetenths place. Christopher has six times as much money as Michael. If Michael earns $80 and Christopher earns $60, Christopher will then have three times as much money as Michael. How much money do Christopher and Michael have before and after earning $60 and $80, respectively? KLMN and PQRS are similar trapezoids. which side of PQRS corresponds to LM Find the first, fourth, and tenth terms of the arithmetic sequence described by the given rule. 2.2, 11.8, 19.83, 11.8, 253, 9.6, 22.80, 6.6, 19.8 Steam Workshop Downloader