Answer:
The answer is A
Explanation:
Because the fern can tolorate less water.
Answer:
C. The angiosperms would out-compete the ferns since their sperm do not need moist conditions to get to their eggs as ferns do.
Explanation:
Ferns release their ciliated sperms in water which swim and travel to the archegonia to reach the egg cell. However, angiosperms do not need water for reproduction. They use pollinating agents to mount the pollen on stigma. Hence, in the lower water supply to the creek would not allow reproduction of ferns and angiosperms would out-compete.
4. Natural selection involves energetic trade-offs between A) choosing how many offspring to produce over the course of a lifetime and how long to live. B) producing large numbers of gametes when employing internal fertilization and fewer numbers of gametes when employing external fertilization. C) increasing the number of individuals produced during each reproductive episode and a corresponding increase in parental care. D) high survival rates of offspring and the cost of parental care.
Answer:
i think its D but im not 100%
Explanation:
Natural selection involves trade-offs between producing a larger number of offspring over a lifetime and investing resources in longevity.. The Option A.
How does natural selection involve trade-offs between offspring production and lifespan?Organisms face a limited amount of energy and resources that can be allocated to different life history traits. If an individual allocates more energy towards reproduction, it may have a higher number of offspring but may also have a shorter lifespan.
But if an organism invests more energy in survival and longevity, it may have a smaller number of offspring. These trade-offs are shaped by the specific ecological and environmental conditions in which the organisms exist. Therefore, the Option D is correct.
Read more about Natural selection
brainly.com/question/23929271
#SPJ6
Proteins are polymers of _____. hydrocarbons amino acids CH2O units glycerol nucleotides
Hey there! :D
If you ever learned about protein synthesis, you probably have heard about how it is made with amino acids. Messenger RNA (a portion of DNA in the nucleus) is taken to the ribosomes (which make the protein) and the code from the DNA is converted to amino acid sequences, therefore, the polymer and correct answer is amino acid. These amino acids, all combined, become protein chains. I would encourage you to look into the process because it is very interesting and very helpful!
I hope this helps!
~kaikers
Proteins are polymers of amino acids. Proteins are large, complex molecules that play essential roles in almost all biological processes.
Proteins are polymers, which means they are composed of repeating units called monomers. In the case of proteins, the monomers are amino acids.
Amino acids are organic compounds consisting of a central carbon atom bonded to an amino group (NH₂), a carboxyl group (COOH), a hydrogen atom, and a unique side chain or "R" group. There are 20 different amino acids commonly found in proteins, each with a different side chain, giving them unique chemical properties.
During protein synthesis, amino acids are linked together through peptide bonds, which form between the carboxyl group of one amino acid and the amino group of another. This process results in the formation of a linear chain of amino acids, known as a polypeptide chain.
The sequence and arrangement of amino acids in a polypeptide chain determine the protein's structure and function. Proteins can have various levels of structural organization, including primary, secondary, tertiary, and quaternary structures, all of which contribute to their specific biological functions.
Proteins are involved in numerous vital functions within cells, such as enzymatic reactions, cell signaling, transport of molecules, structural support, and immune responses. They are the workhorses of the cell, carrying out a diverse range of tasks critical for the survival and functioning of living organisms. Understanding the structure and function of proteins is central to many areas of biology, biochemistry, and medicine.
To learn more about Proteins, here
https://brainly.com/question/30986280
#SPJ6
Where is the squid shell found and what is it called
Answer:
It is called pen and it is located at the dorsal side
Explanation:
Squid belongs to the class Cephalopoda, subclass Coleoidea which is characterized by internal shell (unlike subclass Nautiloidea in which shell is located externally).
The shell of the squid (the pen) in very reduced and small, formed from chitin and located at the dorsal side. The pen provides attachment for muscles and it gives the squid stiffness.
Most likely, this internal shell evolved from the external shell, because it is believed the ancestral of the organisms from the Coleoidea was probably nautiloid-like.
How many different alleles are possible? Why?
For humans, we have 19,000 protein-coding genomes. For every gene, there are 2 alleles. This means that humans have 38,000 alleles (19,000×2=38,000).
What can be said about the diversity of life in the high tide zone compared to that of the low tide zone?
A. There is more biodiversity in the high tide zone because there is plenty of sunlight.
B. There is less biodiversity in the high tide zone because the tidal changes make survival difficult.
C. There is more biodiversity in the high tide zone because the waves bring additional nutrients to the area.
D. There is less biodiversity in the high tide zone because there is less water here than in other regions shown.
Question 17(Multiple Choice Worth 3 points)
Answer:
B. There is less biodiversity in the high tide zone because the tidal changes make survival difficult.
Explanation:
The high tide and low tide zones are located on the seashore as the ocean water merges with land.
High tide zones are usually covered with water during high ocean tide while low tide zones are always submerged in water.
There is low biodiversity in the high tide zone because the tide here changes rapidly and organisms find it difficult to adapt. Organisms that inhabit here must be welll adapted to withstand peroids of high tides.
Answer:
I'm doing this question right now.
I'm pretty sure it's C. There is more biodiversity in the high tide zone because the waves bring additional nutrients to the area.
The uterine phase where the thickness of the endometrium doubles is the
Answer:
Proliferative phase
Explanation:
Uterine cycle is part of the menstrual cycle in which changes occur in the reproductve female system in order to prepare female on possible pregnacy. Uterine cycle isdivided into three phases:
Menstrual phase-characterized by the process of menstruationProliferative phase-estogen causes the production of new endomethrium layer (thickening of the endomethrium)Secretory phase-characterized by the production of progesteron which prepares endomethrium for the implementation.The proliferative phase is when the endometrium doubles in thickness. This phase is stimulated by increased estrogen levels and prepares the uterus for potential pregnancy. If no fertilization occurs, this thickened lining is shed during menstruation.
Explanation:During this phase, the granulosa and theca cells of the tertiary follicles begin to produce increased amounts of estrogen, stimulating the endometrial lining to rebuild. This phase occurs after menstrual flow ceases and is characterized by a thickening of the endometrium, the inner lining of the uterus, due to an increase in blood vessels and tissue in preparation for a potential pregnancy. If the egg is not fertilized, the corpus luteum degrades, leading to a decline in progesterone production and the shedding of the endometrium during menstruation.
Learn more about Proliferative phase here:https://brainly.com/question/27549434
#SPJ12
Please Help!
Where does replication occur in eukaryotic cells?
only in the nibosome
only in the cytoplasm
only in the mitochondra
only in the nucleus
Answer:
I believe it is the "Nucleus."
Explanation:
Hope my answer has helped you!
Answer:
only in the nucleus
Explanation:
DNA replication is when DNA makes another copy of itself. DNA replication is needed in order to maintain the number of chromosomes that is characteristic to a species during cell division. During cell division, one parent cell divides into two daughter cells. If DNA replication did not occur, then the daughter cells would receive only half the number of chromosomes characteristic of that species.
Changing a single amino acid in a protein consisting of 433 amino acids would
Hey there! :D
Changing amino acids in a protein of 433 amino acids would change the entire protein. It would no longer be the same. It depends on where the protein is affected, the first sequence, or the last one. One wrong nucleotide leading to a wrong amino acid affects the whole chain and destroys the proteins natrual purpose.
I hope this helps!
~kaikers
Changing a single amino acid in a protein can significantly alter the function and structure of the protein. This is demonstrated in medical conditions such as sickle cell anemia, where a single amino acid substitution affects the entire protein function.
Explanation:Changing a single amino acid in a protein consisting of 433 amino acids can indeed have a substantial effect on the structure and function of the protein, as the functional properties of a protein are determined by its specific sequence of amino acids. For instance, in the case of sickle cell anemia, a single substitution of the amino acid glutamic acid with valine in the hemoglobin molecule changes its structure, leading to a different shape of red blood cells and subsequently a dramatic decrease in life expectancy. The unique sequence for every protein is ultimately determined by the gene encoding it. Gene mutations such as substitution, deletion or insertions can cause such changes in the amino acid sequence, resulting either in minor differences in the protein or tangibly altering its function. For example, frameshift mutations caused by insertions or deletions of a number of nucleotides can change every amino acid after the point of the mutation, possibly including a stop codon before the end of the coding sequence, rendering the resulting protein nearly always nonfunctional.
Learn more about Amino Acid Change here:https://brainly.com/question/2503887
#SPJ3
Which laboratory technique would be used to determine the energy content of food items?
the technique of calorymetry is used to determine the energy content of food items.
●Determination of energy is the basic principle technique.
What is the ultimate source of genetic variation?
Answer:
mutations
Explanation:
Mutations are changes in DNA sequence that can create genetic variation within the population and thus are the ultimate source of new alleles . Mutations are important for evolution because of their ability to form a new genetic variant (allele) that can be spread to the offspring. If a new variant of a trait formed by a mutation is advantageous and helps the organism to survive and reproduce, it is going to be favourable by natural selection. That variation will more likely be passed to the next generation and remain over time.
mutation cause a protein to be synthesized with one incorrect amino acid?
Answer:
A mutation that causes incorporation of an incorrect amino acid in a synthesizing protein is known as missense mutation.
Explanation:
Because of the protein that this amino acid would be carrying.
Answer:
The correct answer will be- Missense mutation
Explanation:
A missense mutation is a type of mutation which takes place due to the change in the single base pair nucleotide caused by the substitution of a different nucleotide.
The change in the single nucleotide leads to change in the codon read during the translation. This change in the codon causes the substitution of a different amino acid which could result in a different protein.
Thus, missense mutation is the correct answer.
Using the model provided, which statement would not be correct regarding ATP?
A) The hydrolysis of ATP to ADP is reversible.
B) When a phosphate group is removed from ATP, ADP is produced and energy is provided for cellular processes.
Eliminate
C) When phosphate is added to ADP, free energy from food sources is stored in the phosphate bond, producing ATP.
D) When a phosphate group is removed from ATP by hydrolysis, ADP is produced and energy is stored for cellular processes.
Answer:
D.)
When a phosphate group is removed from ATP by hydrolysis, ADP is produced and energy is stored for cellular processes.
Explanation:
Answer: I also think the answer is D).
What do we mean when we say that the genetic code is degenerate?A single codon can encode more than one amino acid.An amino acid can be encoded by more than one codon.Codons are not always read correctly, resulting in the insertion of the wrong amino acid.A frameshift mutation usually results in abnormal protein.
Answer:
An amino acid can be encoded by more than one codon.
Explanation:
Codons are triplets of nucleotides in mRNA that are used for the protein synthesis (translation). A codon specifies a single amino acid, but there are exceptions. tRNA molecule contain anticodons, triplets of nucleotides that are complementary to codons. So, during the translation, tRNA carries the amino acid, that corresponds to the codon in mRNA.
Degenerate genetic code (more than one codon can code for the same amino acid) is important, because when point mutation occurs it is possible that the amino acid remains unchanged.
The genetic code is considered 'degenerate' because more than one codon can encode for the same amino acid. Despite this, the code is unambiguous - each codon uniquely specifies an amino acid. This feature helps reduce the negative impacts of random genetic mutations.
Explanation:When we say that a genetic code is degenerate, we refer to the unique feature of the genetic code where multiple three-nucleotide sequences, or codons, can specify the same amino acid. In total, there are 64 possible codon combinations (4 nucleotide types to the power of 3 positions in the codon), but these only encode 20 amino acids and three stop codons. This means that some amino acids have more than one corresponding codon in the DNA and RNA alphabets.
For instance, let's take Amino Acid X. The codons UCU, UCC, UCA, and UCG could all code for Amino Acid X. This is what we mean when we say the genetic code is 'degenerate'. An important aspect here is that while the genetic code is degenerate, it is not ambiguous - each specific codon codes for one and only one amino acid.
Understanding this degeneracy is important because it reduces the negative impact of random mutations on protein synthesis. In other words, errors in the genetic code may still result in the correct or a similar-enough amino acid being produced, protecting the cell's ability to function correctly.
Learn more about Degeneracy of Genetic Code here:https://brainly.com/question/36837851
#SPJ3
Why is it more difficult to identify eukaryotic genes than prokaryotic genes using genomic techniques?
Answer:
Because eukaryotic genes contain introns
Explanation:
Eukaryotic genes are much more complex than prokaryotic genes. Some of the differences between these two groups of organisms are:
existence of exons and introns (which are spliced during the process of mRNA processing)post-transcriptional modifications (poly A tail and 5' cap)regulatory elements which control gene expression.On the other hand, prokaryotic genes are organized in operons, structural units that contain more that one gene, under the control of one promotor.
Eukaryotic gene expression is more complex due to physical separation of transcription and translation, epigenetic regulation, and larger genomes.
Eukaryotic gene expression is more complex than prokaryotic gene expression because the processes of transcription and translation are physically separated within the eukaryotic cell. Eukaryotic cells can regulate gene expression at multiple levels, beginning with control of access to DNA through epigenetic regulation. This complexity is further enhanced by the larger genomes, alternative splicing of mRNAs, and chromatin wrapping in eukaryotes.
Which of the following is not part of a microarray used to detect SNPs? Question 2 choices Choice A., short DNA sequences attached to a glass slide Choice B., oligonucleotides that match the sequence of a known SNP site in the genome Choice C., mRNAs that are expressed from a specific gene Choice D., short DNA sequences synthesized with a specific sequence Choice E., oligonucleotides that differ in sequence only at the SNP itself and are positioned at different locations on a glas
The Answer:
Choice C: mRNAs that are expressed from a specific gene.
What characteristic of the subunits allows for a uniform diameter of the double helix?
The diameter of the DNA double helix is uniform throughout because a purine (two rings) always pairs with a pyrimidine (one ring) and their combined lengths are always equal.
Final answer:
The uniform diameter of the DNA double helix is due to the base pairing between purine and pyrimidine bases, which each occupy the same amount of space, resulting in a consistent structure with a diameter of 2 nm.
Explanation:
The characteristic of the subunits that allows for a uniform diameter of the double helix in DNA is the base pairing between a purine and a pyrimidine. DNA comprises two anti-parallel strands twisted around each other, with the purine bases (adenine and guanine) pairing with the pyrimidine bases (thymine and cytosine) in the opposing strand. This pairing is stabilized by hydrogen bonds; adenine pairs with thymine via two hydrogen bonds, while guanine pairs with cytosine via three hydrogen bonds. The purine and pyrimidine bases pair so that the DNA strands form a double helix with a uniform diameter of 2 nm. These base pairs each take up the same amount of space and create a regular pattern of major and minor grooves along the DNA molecule, which assists in binding proteins to the DNA.
If you ground up a cell and put all the molecules from the cell in a test tube, would this mixture of molecules be alive? Explain why or why not.
Answer:
No, because if you ground up a human and put it in a test tube, it would be dead but still have the same molecules
Explanation:
In his study with pea plants, Mendel studied how short and tall the offspring were after crossing the purebreds. This would be an example of a:
a) Dihybrid cross
b) Trihybrid cross
c) Monohybrid cross
d) Both a and c answers are correct.
Answer: The answer is C, a monohybrid cross.
Explanation:
A dihybrid cross would be crossing 2 (usually linked) traits in the same punnett square, while a trihybrid cross is with 3 traits. Since he's only studying 1 trait (tall vs. short) the answer is C, a monohybrid cross.
Mendel's experiments with pea plants focusing on a single trait are examples of monohybrid crosses. In these, he crossed two purebred plants differing in one trait, observing dominant and recessive patterns. Hence, the correct answer is c) Monohybrid cross.
In his study with pea plants, Mendel primarily examined single characteristics, such as plant height (short vs. tall), through controlled breeding experiments. This type of experiment, where two purebred individuals with different forms of a single characteristic are crossed, is known as a monohybrid cross. Therefore, the correct answer to the question is: c) Monohybrid cross
In a monohybrid cross, Mendel observed that when he crossed two purebred plants differing in one trait (e.g., tall vs. short), the resulting F1 generation all showed the dominant trait (e.g., tall). When these F1 hybrids were self-pollinated, the recessive trait reappeared in a 3:1 ratio in the F2 generation.
To summarize, Mendel's initial experiments that focused on one trait at a time, such as plant height, exemplify a monohybrid cross, fundamental for understanding basic inheritance patterns.
Assume that in a small population, 15 percent of the people are blue-eyed and have brown hair. Assume further that within this population, there is an adventurous group that wishes to explore the region and settle down in new territory. Of this adventurous group, 87 percent are blue-eyed and have brown hair. When they leave, the gene frequencies in the remaining population will change for blue-eyes and brown hair in the next generation. This is an example of
Answer:
Natural selection
Explanation:
this is what the example would be
When they leave, the gene frequencies in the remaining population will change for blue-eyes and brown hair in the next generation. This is an example of genetic drift.
What is genetic drift?Genetic drift is the arbitrary change in the population's frequency of a gene variant that already exists. Gene variations may totally vanish due to genetic drift, which would limit genetic diversity.
Additionally, it can make previously uncommon alleles far more common and even fixed.
Genetic drift occurs when the frequency of different alleles, or variable forms of a gene, fluctuates over time through chance. Changes in allele frequencies are used to measure these differences in allele presence.
Genetic drift, also known as genetic sampling error or the Sewall Wright effect, is an entirely random shift in the gene pool of a small population.
Thus, this is an illustration of genetic drift.
For more details regarding genetic drift, visit:
https://brainly.com/question/29764189
#SPJ5
Approximately how many deaths occur each year as a result of side effects from medicine
Answer:
These studies estimate that 6.7% of hospitalized patients have a serious adverse drug reaction with a fatality rate of 0.32%. If these estimates are correct, then there are more than 2,216,000 serious ADRs in hospitalized patients, causing over 106,000 deaths annually.
Explanation:
ADRs in hospitalized patients, causing over 106,000 deaths annually.
Flower cluster whose name can be read as a challenge
Science Question
if the parent hydra has 32 chromosomes, how many chromosomes does the hydra offspring have?
Answer:
16 i guess
Explanation:
bcs i think it will bcome half it is called haploid or diploid im not sure the name
Assuming that the N-terminal ends of polypeptides were never removed, what would be the first (N-terminal) amino acid in every polypeptide?MethionineArginineLysineAUG
Answer:
AUG
Explanation:
AUG is the start codon of every amino acid chain.
Compare and contrast prokaryotes and eukaryotes
There are two main types of cells among living organisms:
Eukaryotic cell (plants, animals, fungi) which is more compound, conntains nucleus with genetic material in it, membrane-bound organelles (mitochondria, Golgi apparatus, lysosomes etc). Because of their complex structure, the process within such cells are often more comlex then those in prokaryotes. Eukaryotic organisms are usually multicellularProkaryotic cell is simple cell found in Archea and Bacteria kingdom. It doesn't have nucleus neither membrane-bound organelles. Genetic material of these cell is located within the cytoplasm together with proteins and metabolites. First living cell was prokaryotic cell. Organisms that are prokaryotic are usually unicellular.From which of the following are the other
three eukaryotic kingdoms thought to have evolved?
A.) Eubacteria
B.) Protista
C.) Fungi
D.) Plantae
B. Protista
Bcoz in kingdom protista
Euglenoids and slime moulds are present - having characteristics of both plants and animals..
And protozoans are also present-primituve relatives of animals.
The answer is B. Protista
Which of these is the accessory organ to digestion that produces most of the digestive enzymes?
Answer:
I'm pretty sure it's liver
Explanation:
Which of the following brings amino acids to the ribosome for use in translation?A rRNA (ribosomal RNA)B tRNA (transfer RNA)C mRNA (messenger RNA)
Answer:
mRNA
Explanation:
Answer:
I THINK its mRNA because i know it isnt a
Explanation:
have a great day
What is the process by which bacteria remove nitrogen from the air and make it available to plants?
It’s called Nitrogen fixation
Which scientific force is primarily responsible for maintaining control of your vehicle?
Answer:
Inertia
Explanation:
This force ensures that objects remain in one course with less tendency to change direction when in motion or at rest. This force is the reason why you can let free the wheel of a car in motion and the car will more or less maintain course without toppling over. It is this same force that ensures that greater energy is required to launch the car from complete stall to motion.
Final answer:
Friction is the primary force responsible for controlling a vehicle, providing the necessary forces for both acceleration and circular motion via the interaction of the tires with the road surface.
Explanation:
The scientific force primarily responsible for maintaining control of your vehicle is friction. When tires rotate and attempt to push against the ground, friction acts in the opposite direction, allowing the vehicle to move forward in response to your control inputs. According to Newton's Third Law, for every action, there is an equal and opposite reaction, which in the context of movement, means the ground pushes back on the tires with a reactionary friction force. Secondly, per Newton's Second Law, this friction force causes the car to accelerate, as the throttle, engine, and drivetrain work in unison to apply force to the road through the tires.
During circular motion, such as turning a corner, it's the friction force that keeps the car from sliding outwards. Despite what might feel like an outward pull, this sensation is actually a fictitious force arising from our inertia; the real force at work is still friction, directed towards the center of the circle the car is navigating (centripetal force). This explains why in slippery conditions, like ice, a car may struggle to stay on course, as the coefficient of friction is significantly reduced, making it harder to generate the necessary centripetal force to keep the vehicle following the curve of the road.
Which substance is a mixture of organic matter and weathered rock?
Soil is a mixture of organic matter and weathered rock, comprising the weathering of bedrock, as well as organic materials, making it a heterogeneous mixture.
The substance that is a mixture of organic matter and weathered rock is known as soil. Soil is created from the weathering of bedrock, which is the solid rock lying beneath the soil, as well as from organic materials. The lower layer of the soil, which includes the regolith and the saprolite, contains a mix of weathered bedrock, leeched materials, and organic matter. Soil also includes fragments of rocks, like sand, silt, or clay, and chemical precipitates. Since soil is composed of various materials, it is classified as a heterogeneous mixture.