A plastic sphere floats in water with 50.0% of its volume submerged. This same sphere floats in glycerin with 40.0% of its volume submerged. Determine the densities of:a. The glycerin b. The sphere.

Answers

Answer 1

Explanation:

weight of water displaced=weight of sphere,

Since,  plastic sphere floats in water with 50.0% of its volume submerged

so, water=2 sphere,

so sphere's density = 1/2 of water's  density

Now,  weight of glycerin displaced=weight of sphere,

Also given This same sphere floats in glycerin with 40.0% of its volume submerged.

so glycerin =2.5 sphere,

so sphere's density = .4 of glycerin's = 1/2 of water's.

So glycerin = 1.25 water

Answer 2

Density of glycerin is  5/ 4 times of water density.

Density of sphere is 1/2 times of water density.

Density is defined as ratio of mass to volume , that is density is the amount of mass per unit of volume.

Since,  plastic sphere floats in water with 50% of its volume submerged.

So, Density of sphere = [tex]\frac{1}{2} *water density[/tex]

Since, same sphere floats in glycerin with 40% of its volume submerged.

So, Density of sphere = [tex]\frac{40}{100}*Glycerin density=\frac{2}{5}*glycerindensity[/tex]

Density of Glycerin =  5/2  of sphere density

Density of glycerin =  [tex]\frac{5}{2}*\frac{1}{2}*waterdensity[/tex]

Density of glycerin = [tex]\frac{5}{4} *waterdensity[/tex]

Learn more:

https://brainly.com/question/13427880


Related Questions

A charge of 0.51 C is spread uniformly throughout a 33 cm rod of radius 4 mm. What are the volume and linear charge densities

Answers

The definition of volumetric charge density is given as the ratio between the load per unit volume, while the linear load is the same ratio of the load but per unit length. Applying these concepts then we have that the volumetric density of charge is,

Here,

q = Charge

V = Volume

Replacing we have,

[tex]\gamma = \frac{0.51}{\pi r^2 l}[/tex]

[tex]\gamma = \frac{0.51}{\pi (4*10^{-3})^2(0.33)}[/tex]

[tex]\gamma =30475.84C/m^3[/tex]

And the linear charge density is

[tex]\rho = \frac{q}{l}[/tex]

[tex]\rho = \frac{0.51}{0.33}[/tex]

[tex]\rho = 1.54C/m[/tex]

Final answer:

To determine the volume and linear charge densities, divide the total charge by the rod's volume and length, respectively, after calculating the volume using the formula for a cylinder.

Explanation:

The volume charge density (ρ) and the linear charge density (λ) are physical quantities that represent the distribution of electric charge in a material. To find the volume charge density, we divide the total charge (Q) by the volume (V) of the rod. The formula is ρ = Q/V. The linear charge density is found by dividing the charge by the length (L) of the rod, using the formula λ = Q/L.

Given that the charge Q is 0.51 C, distributed uniformly along a cylindrical rod with a length of 33 cm (or 0.33 m) and a radius of 4 mm (or 0.004 m), we first need to calculate the volume of the cylinder using the formula V = πr²h, where r is the radius and h is the height (length) of the cylinder. The volume V is then π ×(0.004 m)² ×0.33 m.

After computing the volume, we calculate ρ as ρ = 0.51 C / V. To find λ, we simply divide the charge by the length, λ = 0.51 C / 0.33 m. These computations will yield the volume and linear charge densities for the rod.

The normal force equals the magnitude of the gravitational force as a roller coaster car crosses the top of a 33-mm-diameter loop-the-loop. Part A What is the car's speed at the top? Express your answer to two significant figures and include the appropriate units.

Answers

The car's speed at the top of the loop is approximately 0.41 m/s.

At the top of the loop-the-loop, the normal force equals the magnitude of the gravitational force, which means the net force acting on the roller coaster car is zero.

This condition occurs when the car is just about to lose contact with the track due to insufficient normal force.

Using the centripetal force formula, [tex]\( F_{\text{net}} = \frac{mv^2}{r} \)[/tex], where \( m \) is the mass of the car, v is its speed, and \( r \) is the radius of the loop.

At the top of the loop, the net force is zero, so we equate the gravitational force and the centripetal force:

[tex]\[ mg = \frac{mv^2}{r} \][/tex]

Solving for v, we get:

[tex]\[ v = \sqrt{gr} \][/tex]

Substituting the given radius [tex]\( r = \frac{33 \, \text{mm}}{2} = 0.0165 \, \text{m} \)[/tex] and the acceleration due to gravity [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex], we find:

[tex]\[ v = \sqrt{(9.8 \, \text{m/s}^2)(0.0165 \, \text{m})} \approx 0.41 \, \text{m/s} \][/tex]

Therefore, the car's speed at the top of the loop is approximately 0.41 m/s.

A uniform, solid metal disk of mass 6.10 kgkg and diameter 30.0 cmcm hangs in a horizontal plane, supported at its center by a vertical metal wire. You find that it requires a horizontal force of 4.29 NN tangent to the rim of the disk to turn it by 3.40 ∘∘, thus twisting the wire. You now remove this force and release the disk from rest.

Answers

Answer:

10.84406 Nm/rad

0.068625 kgm²

2.00066 rad/s

0.49983 s

Explanation:

F = Force = 4.29 N

R = Radius = [tex]\dfrac{30}{2}=15\ cm[/tex]

[tex]\theta[/tex] = Angle = [tex]3.4\ ^{\circ}[/tex]

m = Mass of disk = 6.1 kg

Torsional constant is given by

[tex]J=\dfrac{\tau}{\theta}\\\Rightarrow J=\dfrac{FR}{\theta}\\\Rightarrow J=\dfrac{4.29\times 0.15}{3.4\times \dfrac{\pi}{180}}\\\Rightarrow J=10.84406\ Nm/rad[/tex]

The torsion constant is 10.84406 Nm/rad

Moment of inertia is given by

[tex]I=\dfrac{1}{2}mr^2\\\Rightarrow I=\dfrac{1}{2}6.1\times 0.15^2\\\Rightarrow I=0.068625\ kgm^2[/tex]

The moment of inertia is 0.068625 kgm²

Frequency is given by

[tex]f=\dfrac{1}{2\pi}\sqrt{\dfrac{J}{I}}\\\Rightarrow f=\dfrac{1}{2\pi}\sqrt{\dfrac{10.84406}{0.068625}}\\\Rightarrow f=2.00066\ rad/s[/tex]

The frequency is 2.00066 rad/s

Time period is given by

[tex]T=\dfrac{1}{f}\\\Rightarrow T=\dfrac{1}{2.00066}\\\Rightarrow T=0.49983\ s[/tex]

The time period is 0.49983 s

A human hair has a thickness of about 60 um. What is this in millimeters

Answers

Answer:

0.06

Explanation:

Final answer:

The thickness of a human hair is about 60 micrometers. When converted to millimeters, this measures to 0.06 millimeters.

Explanation:

The thickness of a human hair is about 60 micrometers (um). To convert this to millimeters (mm), you need to understand that 1 millimeter is equal to 1000 micrometers. Therefore, you can convert 60 um to mm by dividing 60 by 1000.

This gives an answer of 0.06 mm. So, the thickness of a human hair is 0.06 millimeters.

Learn more about Conversion here:

https://brainly.com/question/34235911

#SPJ3

An attacker at the base of a castle wall 3.95 m high throws a rock straight up with speed 5.00 m/s from a height of 1.60 m above the ground.
(a) Will the rock reach the top of the wall?
(b) If so, what is its speed at the top? If not, what initial speed must it have to reach the top?

Answers

Answer:

a) No

b) the rock must have a minimum initial speed of 6.79m/s for it to reach the top of the building.

Explanation:

Given:

Height of the wall = 3.95m

Initial height = 1.60m

Initial speed = 5.00m/s

distance between the initial height and wall top = 3.95 - 1.60 = 2.35m

Using the formula;

v^2 = u^2 + 2as ....1

Where v = final velocity, u = initial velocity, a = acceleration, s = distance travelled

From equation 1

s = (v^2 - u^2)/2a ...2

Since the rock t moving up,

the acceleration = -g = -9.8m/s2

s = maximum height travelled

v = 0 (at maximum height velocity is zero)

Substituting into equation 2

s = (0 - 5^2)/(2×-9.8) = 1.28m

Therefore, the maximum height is 1.28 from his initial height Which is less than the 2.35m of the wall from his initial height. So the rock will not reach the top of the wall

b) Using equation 1:

u^2 = v^2 - 2as

v = 0

a = -9.8m/s

s = 2.35m. (distance between the initial height and wall top)

u^2 = 0 - 2(-9.8 × 2.35)

u^2 = 46.06

u = √46.06

u = 6.79m/s

Therefore, the rock must have a minimum initial speed of 6.79m/s

Calculate the energy, in electron volts, of a photon whose frequency is the following.

(a) 585 THz
(b) 3.50 GHz
(c) 40.0 MHz

Planck's equation for the energy of a photon is E = hf, where f is the frequency and h is Planck's constant. We use 1 eV = 1.60 ✕ 10−19 J for units of energy.

(a) For the energy of the photon at a frequency of 585 THz, we have E = hf

Answers

Answer:

(a) [tex]E=2.42eV[/tex]

(b) [tex]E=1.45*10^{-5}eV[/tex]

(c) [tex]E=1.66*10^{-7}eV[/tex]

Explanation:

The Planck-Einstein relation allows us to know the energy (E) of a photon, knowing its frequency (f). According to this relation, the energy of the photon is defined as:

[tex]E=hf[/tex]

Here h is the Planck constant.

(a)

[tex]E=(4.14*10^{-15}eV\cdot s)(585*10^{12}Hz)\\E=2.42eV[/tex]

(b)

[tex]E=(4.14*10^{-15}eV\cdot s)(3.50*10^{9}Hz)\\E=1.45*10^{-5}eV[/tex]

(c)

[tex]E=(4.14*10^{-15}eV\cdot s)(40.0*10^{6}Hz)\\E=1.66*10^{-7}eV[/tex]

The graph shows the force on an object of mass M as a function of time. For the time interval 0 to 4 s, the total change in the momentum of the object is?( in kg.m/s)

40
20
-20
0Graph:Square wave from -10 to 10

Answers

Answer:

The answer is zero. The total change in momentum is equal to the sum of the areas within the time interview 0-4s. The area under the graph is Force x time (F being the breadth and time the length)

The sun of the areas is zero.

Explanation:

See the attachment below for the full solution.

Thank you for reading this post. I hope it is helpful to you.

If the plaque buildup (modeled as a cylinder as well) completely blocks the artery, a pressure difference of P between each side of the clot builds up. What is the force on the clot

Answers

Answer: Pπr2

Explanation: Force is any interaction that affects an object,that if not opposed or treated will cause some changes in the object. Pressure is directly proportional to force,which means an increase in force will create a corresponding increase in the pressure of a system.

The force on the cloth will be The PRESSURE EXERTED ON THE CLOT (P) *THE PI( which is the RATIO of the circumference of the cylinder i.e3.14159) *the square of the ratio. Which is Pπr2.

Final answer:

The force exerted on the artery clot can be determined by the formula F = P x A, where F is the force, P is the pressure and A is the area. In the case of a cylindrical clot, A = πr². Therefore, the force F = P x πr².

Explanation:

The force exerted on the clot by the pressure in the artery can be determined by using the formula for the force exerted by a pressure on a surface, which is Force (F)= pressure (P) x Area (A). The pressure is given as P. The area of the surface the pressure is exerted upon can be found by considering the cross-sectional area of the cylinder (clot), that can be expressed as the product of pi and the square of the radius (r), or πr².

Therefore, the force on the clot can be calculated by substituting the cross-sectional area (A = πr²) into the equation F = P x A, giving us F = P x πr². In this way, we can understand how the pressure in the artery results in a force on the clot.

Learn more about Force on Artery Clot here:

https://brainly.com/question/32400280

#SPJ3

Consider a cloudless day on which the sun shines down across the United States. If 2073 kJ of energy reaches a square meter ( m 2 ) of the United States in one hour, how much total solar energy reaches the entire United States per hour

Answers

The total amount of energy per hour is [tex]2.039\cdot 10^{16} kJ[/tex]

Explanation:

In this problem we are told that the amount of energy reaching a square meter in the United States per hour is

[tex]E_1 = 2073 kJ[/tex]

The total surface area of the United States is

[tex]A=9.834\cdot 10^6 km^2[/tex]

And converting into squared metres,

[tex]A=9.834\cdot 10^6 \cdot 10^6 = 9.834\cdot 10^{12} m^2[/tex]

Therefore, the total energy reaching the entire United States per hour is given by:

[tex]E=AE_1 = (9.834\cdot 10^{12})(2073)=2.039\cdot 10^{16} kJ[/tex]

Learn more about energy and power:

brainly.com/question/7956557

#LearnwithBrainly

Using simple rearrangement of Newton's second law, show that a net force of 77 N exerted on a 11-kg package is needed to produce an acceleration of 7.0 m/s2 .

Answers

Answer:

A net force of 11 kg is needed to produce an acceleration of 7.0 m/s²

Explanation:

Newton's Second Law: It states that the the rate of change of momentum of a body, is directly proportional to the applied force, and takes place along the direction of the the force.

From Newton's second law of motion, we can deduced that,

F = ma ......................... Equation 1.

Where F = Net force acting on the package, m = mass of the package, a = acceleration of the page.

From the question, when

F = 77 N, m = 11 kg.

a = F/m

a = 77/11

a = 7 m/s².

From the above, a net force of 11 kg is needed to produce an acceleration of 7.0 m/s²

Final answer:

To determine the net force needed to accelerate an 11-kg package at 7.0 m/s², apply Newton's second law using the formula Fnet = ma, which yields a net force of 77 N.

Explanation:

The student is asking how to use Newton's second law to calculate the net force required to produce a certain acceleration for an object of known mass. This is a physics problem that involves using the formula Fnet = ma (where Fnet is the net force, m is the mass, and a is the acceleration).

In this case, the mass m of the package is 11 kg, and the desired acceleration a is 7.0 m/s². To find the net force Fnet, we rearrange the formula as it is already in the form solving for the net force and simply substitute the known values:

Fnet = (11 kg) × (7.0 m/s²)

Now, we multiply:

Fnet = 77 N

Therefore, a net force of 77 N is indeed needed to accelerate an 11-kg package at 7.0 m/s².

Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.9537 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0756 N.
What were the initial charges on the spheres?

Answers

Answer:

The initial charges on the spheres are  [tex]6.796\ 10^{-6}\ c[/tex] and [tex]-3.898\ 10^{-6}\ c[/tex]

Explanation:

Electrostatic Force

Two charges q1 and q2 separated a distance d exert a force on each other which magnitude is computed by the known Coulomb's formula

[tex]\displaystyle F=\frac{K\ q_1\ q_2}{d^2}[/tex]

We are given the distance between two unknown charges d=50 cm = 0.5 m and the attractive force of -0.9537 N. This means both charges are opposite signs.

With these conditions we set the equation

[tex]\displaystyle F_1=\frac{K\ q_1\ q_2}{0.5^2}=-0.9537[/tex]

Rearranging

[tex]\displaystyle q_1\ q_2=\frac{-0.9537(0.5)^2}{k}[/tex]

Solving for q1.q2

[tex]\displaystyle q_1\ q_2=-2.6492.10^{-11}\ c^2\ \ ......[1][/tex]

The second part of the problem states the spheres are later connected by a conducting wire which is removed, and then, the spheres repel each other with an electrostatic force of 0.0756 N.

The conducting wire makes the charges on both spheres to balance, i.e. free electrons of the negative charge pass to the positive charge and they finally have the same charge:

[tex]\displaystyle q=\frac{q_1+q_2}{2}[/tex]

Using this second condition:

[tex]\displaystyle F_2=\frac{K\ q^2}{0.5^2}=\frac{K(q_1+q_2)^2}{(4)0.5^2}=0.0756[/tex]

[tex]\displaystyle q_1+q_2=2.8983\ 10^{-6}\ C[/tex]

Solving for q2

[tex]\displaystyle q_2=2.8983\ 10^{-6}\ C-q_1[/tex]

Replacing in [1]

[tex]\displaystyle q_1(2.8983\ 10^{-6}-q_1)=-2.64917.10^{-11}[/tex]

Rearranging, we have a second-degree equation for q1.  

[tex]\displaystyle q_1^2-2.8983.10^{-6}q_1-2.64917.10^{-11}=0[/tex]

Solving, we have two possible solutions

[tex]\displaystyle q_1=6,796.10^{-6}\ c[/tex]

[tex]\displaystyle q_1=-3.898.10^{-6}\ c[/tex]

Which yields to two solutions for q2

[tex]\displaystyle q_2=-3.898.10^{-6}\ c[/tex]

[tex]\displaystyle q_2=6.796.10^{-6}\ c[/tex]

Regardless of their order, the initial charges on the spheres are [tex]6.796\ 10^{-6}\ c[/tex] and [tex]-3.898\ 10^{-6}\ c[/tex]

If the energy stored in the fully charged battery is used to lift the battery with 100-percent efficiency, what height is attained? Assume that the acceleration due to gravity is 9.8 m/s2m/s2 and is constant with height

Answers

Answer:

h= 32059.37 m

Explanation:

Assuming the missing in formation as

A certain lead-acid storage battery has a mass of 33 kg . Starting from a fully charged state, it can supply 6 A for 20 hours with a terminal voltage of 24 V before it is totally discharged.

Now, Applying energy conservation ( Electrical to potential)

Electrical Energy E= I×V×t

I = correct , V= voltage , t= time of flow of current

E = 6×24×20×60×60.

E= 10368 KJ

Now this energy is used to lift the battery with 100% efficiency

Hence,

electrical energy E= potential energy P

P= mgh

m=mass of the battery , g= the acceleration due to gravity is 9.8 m/s^2

h= height

mgh = 10368 kJ

33×9.8×h= 10368×1000

h = 10368×1000/(33×9.8)

h= 32059.37 m

Find the kinetic energy K of a satellite with mass m in a circular orbit with radius R. Express your answer in terms of m, M, G, and R.

Answers

Answer:

[tex]K=\frac{GmM}{2R}[/tex]

Explanation:

The kinetic energy is defined as:

[tex]K=\frac{mv^2}{2}(1)[/tex]

Here, m is the object's mass and v its speed. In this case the speed of the satellite is the orbital speed, which is given by:

[tex]v_{orb}=\sqrt\frac{GM}{R}(2)[/tex]

Here, G is the gravitational constant, M is the mass of the object that the satellite is orbiting and R is the radius of its circular orbit. Replacing (2) in (1):

[tex]K=\frac{mv_{orb}^2}{2}\\K=\frac{m(\sqrt\frac{GM}{R})^2}{2}\\K=\frac{GmM}{2R}[/tex]

Final answer:

The kinetic energy of a satellite in a circular orbit can be found using the equation K=GMm/2r, involving the gravitational constant, mass of the satellite, mass of the body being orbited, and the radius of the orbit. This kinetic energy is half the potential energy and equal to the total energy of the satellite.

Explanation:

The kinetic energy K of a satellite with mass m in a circular orbit with radius R can be defined using the equation of the kinetic energy K = 1/2 * mv², where m is the mass of the satellite and v is its speed. However, in the context of gravitational forces, we must consider that the gravitational force provides the centripetal force necessary for the satellite to maintain its orbit with speed v. Therefore, we have GMm/r² = mv²/r where G is the gravitational constant and M is the mass of the body the satellite is orbiting.

When we solve for the speed v, we find that v=sqrt(GM/R), which leads us to an equation for the kinetic energy of K = GMm/2r. These equations demonstrate that the kinetic energy of the satellite is dependent not only on its own mass and speed, but also on the mass of the body it is orbiting and the radius of its orbit.

The concept that the kinetic energy of a satellite in circular orbit is half the magnitude of the potential energy, and the same as the magnitude of the total energy, is an important aspect of understanding these calculations. We also note that the gravitational constant G is by far the least well determined of all fundamental constants in physics.

Learn more about Kinetic Energy here:

https://brainly.com/question/26472013

#SPJ3

What is the potential difference between the terminals of an ordinary AA or AAA battery? (If you’re not sure, find one and look at the label.)

Answers

Final answer:

The potential difference between the terminals of an ordinary AA or AAA battery is usually 1.5 volts. Voltage is the work required to move a charge, while current is the charge flow rate. Batteries can provide considerable energy for their size, analogous to lifting a significant mass against gravity.

Explanation:

The potential difference between the terminals of an ordinary AA or AAA battery is the electromotive force (emf) when the battery is not part of a complete circuit, and is typically about 1.5 volts (V). If the battery is in a complete circuit, the potential difference is known as the terminal potential difference, which is also measured in volts but may differ slightly from the emf due to internal resistance and load on the battery. Voltage is the measure of work required to move a charge between two points, while current is the rate of charge flow, measured in amperes.

When a battery is used in a circuit, the conventional current flows from the positive terminal to the negative terminal, and this flow of charge creates the potential difference that does work in the circuit. An ammeter, which must be connected in series, is used to measure current. The common AA battery not only has a voltage of 1.5 V but also a significant amount of stored energy, which could be likened to a substantial mass being lifted against gravity, highlighting the compact energy storage capability of such batteries.

Learn more about Battery Potential Difference here:

https://brainly.com/question/43006728

#SPJ12

a. How much work is done when a 185g tomato is lifted 15.0m? b. The tomato is dropped. What is the velocity, v, of the tomato when it hits the ground? Assume 82.1 % of the work done in Part A is transferred to kinetic energy, E, by the time the tomato hits the ground.

Answers

Final answer:

The work done when a 185g tomato is lifted 15.0m is 27.261 J. If 82.1% of this work is converted to kinetic energy, the velocity of the tomato when it hits the ground is approximately 15.54 m/s.

Explanation:

To determine the work done when lifting a 185g tomato 15.0m, we use the formula for gravitational potential energy (GPE), which is equivalent to the work done against gravity.

Work (W) = mass (m) × gravitational acceleration (g) × height (h)
m = 185 g = 0.185 kg (since 1g = 0.001 kg)
g = 9.8 m/s²
h = 15.0 m

W = 0.185 kg × 9.8 m/s² × 15.0 m
W = 27.261 J

To determine the velocity (v) when the tomato hits the ground, assuming 82.1% of the work done is converted to kinetic energy (KE), we calculate:

KE = 0.821 × W
KE = 0.821 × 27.261 J
KE = 22.379 J

The formula for KE is:

KE = 1/2 m v²
Solving for v gives:

v = √(2 × KE / m)
v = √(2 × 22.379 J / 0.185 kg)
v ≈ 15.54 m/s

Thus, the velocity of the tomato when it hits the ground, assuming 82.1% conversion of energy, is approximately 15.54 m/s.

A typical cell phone charger is rated to transfer a maximum of 1.0 Coulomb of charge per second. Calculate the maximum number of electrons that can be transferred by this charger in 1.0 hour

Answers

Answer:

The maximum no. of electrons- [tex]2.25\times 10^{22}[/tex]

Solution:

As per the question:

Maximum rate of transfer of charge, I = 1.0 C/s

Time, t = 1.0 h = 3600 s

Rate of transfer of charge is current, I

Also,

[tex]I = \frac{Q}{t}[/tex]

Q = ne

where

n = no. of electrons

Q = charge in coulomb

I = current

Thus

Q = It

Thus the charge flow in 1. 0 h:

[tex]Q = 1.0\times 3600 = 3600\ C[/tex]

Maximum number of electrons, n is given by:

[tex]n = \frac{Q}{e}[/tex]

where

e = charge on an electron = [tex]1.6\times 10^{- 19}\ C[/tex]

Thus

[tex]n = \frac{3600}{1.6\times 10^{- 19}} = 2.25\times 10^{22}[/tex]

A bullet of mass 0.01 kg moving horizontally strikes a block of wood of mass 1.5 kg which is suspended as a pendulum. The bullet lodges in the wood, and together they swing upwards a distance of 0.40 m. What was the velocity of the bullet just before it struck the wooden block

Answers

Answer:

423m/s

Explanation:

Suppose after the impact, the bullet-block system swings upward a vertical distance of 0.4 m. That's means their kinetic energy is converted to potential energy:

[tex]E_p = E_k[/tex]

[tex]mgh = mv^2/2[/tex]

where m is the total mass and h is the vertical distance traveled, v is the velocity right after the impact at, which we can solve by divide both sides my m

Let g = 9.81 m/s2

[tex]gh = v^2/2[/tex]

[tex]v^2 = 2gh = 2 * 9.81* 0.4 = 7.848[/tex]

[tex]v = \sqrt{7.848} = 2.8m/s[/tex]

According the law of momentum conservation, momentum before and after the impact must be the same

[tex]m_uv_u + m_ov_o = (m_u + m_o)v[/tex]

where [tex]m_u = 0.01, v_u[/tex] are the mass and velocity of the bullet before the impact, respectively.[tex]m_ov_o[/tex] are the mass and velocity of the block before the impact, respectively, which is 0 because the block was stationary before the impact

[tex]0.01v_u + 0 = (0.01 + 1.5)*2.8[/tex]

[tex]0.01v_u = 4.23[/tex]

[tex]v_u = 4.23 / 0.01 = 423 m/s[/tex]

The initial velocity of the bullet just before it struck the block was 422 m/s.


To determine the velocity of a bullet just before it strikes a block of wood and causes a ballistic pendulum motion, we follow these steps:

First, identify the masses: the bullet (0.01 kg) and the wooden block (1.5 kg). Together, they have a combined mass of (1.51 kg) after the bullet lodges in the wood.Next, use the height they rise to find the velocity after collision. The potential energy at the highest point (0.40 m) is converted from kinetic energy:
PE = KE
mgh = 0.5m[tex]v^{2}[/tex]
where g is the acceleration due to gravity (9.8 m/s²), h is height (0.40m), and m is the total mass.Plug in the values:
(1.51 kg)(9.8 m/s²)(0.4 m) = 0.5(1.51 kg)[tex]v^{2}[/tex]
Solving this gives:5.912 J = 0.755[tex]v^{2}[/tex]
V² = 7.828
V = 2.8 m/sNow use the conservation of momentum to find the initial velocity of the bullet. Initially, only the bullet has momentum:

[tex]p_{initial}[/tex] = [tex]P_{final}[/tex]
(0.01 kg)u = (1.51 kg)(2.8 m/s)
Simplifying this:
u = 1.51 kg * 2.8 m/s / 0.01 kg
u = 422 m/s

Thus, the initial velocity of the bullet just before it struck the block was 422 m/s.

A typical adult human lung contains about 330 million tiny cavities called alveoli. Estimate the average diameter of a single alveolus. Assume the alveoli are spherical and a typical human lung is about 1.9 liters.

Answers

Answer:

The average diameter of a single alveolus is 0.0222 cm.

Explanation:

Volume of the lung ,V= 1.9 L

[tex]1 L = 1000 cm^3[/tex]

[tex]1.9 L=1.9\times 1000 cm^3=1900 cm^3[/tex]

Number of alveoli in a human lung = [tex]330\times 10^6[/tex]

Volume of single alveoli =v

[tex]v\times 330\times 10^6=V[/tex]

[tex]v=\frac{1900 cm^3}{330\times 10^6}[/tex]

[tex]v=5.7575\times 10^{-6} cm^3[/tex]

The alveoli are spherical.

Radius of an alveolus = r

Volume of the sphere = [tex]\frac{4}{3}\pi r^3[/tex]

[tex]v=\frac{4}{3}\pi r^3[/tex]

[tex]5.7575\times 10^{-6} cm^3=\frac{4}{3}\times 3.14\times r^3[/tex]

[tex]r=0.0111 cm[/tex]

Diameter of the alveolus =d

d = 2r = 2 × 0.0111 cm = 0.0222 cm

The average diameter of a single alveolus is 0.0222 cm.

Final answer:

The question seeks to find the average diameter of a single alveolus in the human lung, using information about the total volume of the lung and the number of alveoli. By using the formula for the volume of a sphere, one can calculate the volume of a single alveolus and derive its radius and thereby its diameter.

Explanation:

The problem is essentially asking to find the average diameter of a single alveolus, given we know the total volume of the lung and the number of alveoli. Using the formula for the volume of a sphere, V=4/3πr³, where V is the volume and r is the radius, we can find the volume of a single alveolus by dividing the total volume of the lungs (1.9 liters, which equals to 1.9 x 10^9 cubic millimeters) by the number of alveoli (approximately 330 million). We can then calculate the radius by rearranging the sphere volume formula to r = ((3*V)/4π)^1/3. The diameter would be double the radius.

Learn more about Alveolus diameter here:

https://brainly.com/question/31711784

#SPJ3

An average human weighs about 650 N. If each of two average humans could carry 1.0 C of excess charge, one positive and one negative, how far apart would they have to be for the electric attraction between them to equal their 650-N weight?

Answers

Answer:

r = 3721.04 m          

Explanation:

Given that,

Weight of human, F = 650 N

Charge on two humans, [tex]q_1=q_2=1\ C[/tex]

We need to find the distance between charges if the electric attraction between them to equal their 650 N weight. It is given by :

[tex]F=\dfrac{kq^2}{r^2}[/tex]

[tex]r=\sqrt{\dfrac{kq^2}{F}}[/tex]

[tex]r=\sqrt{\dfrac{9\times 10^9\times 1^2}{650}}[/tex]

r = 3721.04 m

So, the distance between charges is 3721.04 m if the electric attraction between them to equal their 650 N weight. Hence, this is the required solution.

The unit weight of a soil is 96 lb/ft3 . The moisture content if this soil is 17% when the degree of saturation is 60%. Determine: a. Void ratio b. Specific gravity of solids c. Saturated unit weight.

Answers

Final answer:

The void ratio of the soil is 1.2045, the specific gravity of solids is 2.6329, and the saturated unit weight is 82.7586 lb/ft3.

Explanation:

The void ratio of the soil can be determined using the formula:

e = (1 + w) / (1 - w)

where e is the void ratio and w is the moisture content. Plugging in the values, we get:

e = (1 + 0.17) / (1 - 0.17) = 1.2045

To calculate the specific gravity of solids, we can use the formula:

Gs = (1 + e) * (1 - S) / (1 - e * S)

where Gs is the specific gravity of solids and S is the degree of saturation. Substituting the given values:

Gs = (1 + 1.2045) * (1 - 0.6) / (1 - 1.2045 * 0.6) = 2.6329

The saturated unit weight can be found using the equation:

Gamma_sat = Gamma_dry / (1 + w)

where Gamma_sat is the saturated unit weight and Gamma_dry is the dry unit weight. Given that the unit weight of the soil is 96 lb/ft3, we have:

Gamma_sat = 96 / (1 + 0.17) = 82.7586 lb/ft3

Learn more about Soil properties here:

https://brainly.com/question/33181986

#SPJ3

the equitorial diameter of the moon is 3476 kilometers. if a kilometer equals 0.6214 miles, what is the moon's diameter in miles?

Answers

To convert the equatorial diameter of the Moon from kilometers to miles, you can use the given conversion factor:

Equatorial diameter in miles = Equatorial diameter in kilometers × Conversion factor

Given:

Equatorial diameter of the Moon = 3476 kilometers

Conversion factor = 0.6214 miles/kilometer

Now, plug in the values:

Equatorial diameter in miles = 3476 km × 0.6214 miles/km

[tex]\[ \text{Equatorial diameter in miles} \approx 2160.9264 \, \text{miles} \][/tex]

So, the Moon's equatorial diameter is approximately 2160.93 miles.

Final answer:

To convert the Moon's diameter from 3476 kilometers to miles, multiply by the conversion factor of 0.6214 miles per kilometer, resulting in approximately 2160.6344 miles.

Explanation:

The question asks for the conversion of the Moon's diameter from kilometers to miles. The given diameter of the Moon is 3476 kilometers. To convert kilometers to miles, we use the provided conversion factor where 1 kilometer equals 0.6214 miles.

Here's how you can calculate the Moon's diameter in miles:

1. Multiply the Moon's diameter in kilometers by the conversion factor:
3476 kilometers × 0.6214 miles/kilometer

2. Calculating this gives:

2160.6344 miles
So, the Moon's diameter in miles is approximately 2160.6344.

A fly sits on a potter's wheel 0.30 m from its axle. The wheel's rotational speed decreases from 4.0 rad/s to 2.0 rad/s in 5.0 s. Determine the wheel's average rotational acceleration.

Answers

Answer:

0.4rad/s²

Explanation:

Angular acceleration is the time rate of change of angular velocity . In SI units, it is measured in radians per second squared (rad/s²)

w1 = 4rad/s, w2 =2rad/s, t = 5sec, r = 0.30m

a = ∆w/t

a = (w2 - w1)/t

a = (2 - 4)/5 = -2/5 =

a = - 0.4rad/s²

The -ve sign indicates a deceleration in the motion

Good luck

When it rises, air has more weight above it, and the higher pressure allows the air to expand.A.TrueB.False

Answers

Answer:

False

Explanation:

There is less pressure higher in the atmosphere, which means that air will expand, and thus cool

Tamsen is interested in history, and read that because of its regular period, the pendulum constituted the basis of the most accurate clocks for nearly 300 years. Christian Huygens (1629-1695), the greatest clockmaker in history, suggested that an international unit of length could be defined as the length of a simple pendulum having a period of exactly 1 s.
Vera and Tamsen discuss how much shorter the SI unit of length, the meter, would have had to be had Huygens' suggestion been followed.
Which of their conclusions is correct?

a) 0.025 m b) 0.752 m c) 0.248 m d) 1.56 m

Answers

Final answer:

The correct conclusion would be 0.248 meters for the length of a pendulum with a period of 1 second. Therefore, the SI unit of length, the meter, would have had to be 0.752 m shorter had Huygens' suggestion to define it as the length of such a pendulum been followed.

Explanation:

The question proposes a discussion between Tamsen and Vera about how much shorter the SI unit of length, the meter, would have had to be if Christian Huygens' suggestion to define an international unit of length as the length of a simple pendulum with a period of 1 s, had been followed. Huygens' suggestion corresponds to the second pendulum or gravitational pendulum, which was an arrangement constituted by a simple pendulum adjusted so that its time of oscillation is exactly 2 seconds, meaning 'going and coming back'.

Mathematically, the formula to calculate the length of a pendulum with a given periodic time is given by L = g×(T/2×pi)² where g is the acceleration due to gravity and T is the period of the pendulum. For T = 1 second and g approximated to 9.81 m/s², the length derived would be approximately 0.248 meters. Therefore, among the given options, Vera and Tamsen's correct conclusion would be c) 0.248 m.

This means the SI unit of length, the meter, would have had to be 1 meter - 0.248 m = 0.752 m shorter had Huygens' suggestion been followed.

Learn more about Pendulum here:

https://brainly.com/question/29702798

#SPJ11

An 8.0 cm diameter, 400 g sphere is released from rest ta the tip of a 2.1 m long, 25 degree incline. It rolls, without slipping, to the bottom.a) What is the sphere's angular velocity at the bottom of the incline?b) What fraction of its kinetic energy is rotational?

Answers

Answer:

a) 88.1 rad/s

b) 0.286

Explanation:

given information:

diameter, d = 8 cm = 0.08 m

sphere's mass, m = 400 g = 0.4 kg

the distance from rest to the tip, h = 2.1 m

incline angle, θ = 25°

a) What is the sphere's angular velocity at the bottom of the incline?

mg(h sinθ) = 1/2 Iω² + 1/2mv²

I of solid sphere = 2/5 mr², thus

mg(h sinθ) = 1/2 (2/5 mr²) ω² + 1/2 mv², now we can remove the mass

g h sin θ = 1/5 r² ω² + 1/2 v²

ω = v/r, v = ωr

so,

g h sin θ = 1/5 r² ω² + 1/2 (ωr)²

g h sin θ = (7/10) r² ω²

ω² = 10 g h sin θ/7 r²

ω = √10 g h sin θ/7 r²

   = √10 (9.8) (2.1) sin 25° / 7 (0.04)²

   = 88.1 rad/s

b) What fraction of its kinetic energy(KE) is rotational?

fraction of its kinetic energy = rotational KE / total KE

total KE = total potential energy

             = m g h sin θ

             = 0.4 x 9.8 x 2.1 sin 25°

             = 3.48 J

rotational KE = 1/2 Iω²

                      = 1/5 mr²ω²

                      = 1/5 0.4 (0.04)²(88.1)²

                      = 0.99

fraction of its KE = 0.99/3.48

                            = 0.286

A) The sphere's angular velocity at the bottom of the incline is; ω = 88.1 rad/s

B) Fraction of its kinetic energy that is rotational is; 0.286

What is the angular velocity?

We are given;

Diameter; d = 8 cm = 0.08 m

Mass of sphere; m = 400 g = 0.4 kg

Distance from rest to the tip; h = 2.1 m

Angle of inclination; θ = 25°

a) To get the sphere's angular velocity at the bottom of the incline, we will use the expression;

mg(h*sinθ) = ¹/₂Iω² + ¹/₂mv²

where;

I of solid sphere = ²/₅mr²

Thus;

mg(h*sinθ) = ¹/₂(²/₅mr²)ω² + ¹/₂mv²

The mass m will cancel out to give;

gh*sin θ = ¹/₅r²ω² + ¹/₂v²

where v = ωr

Thus;

gh*sin θ = ¹/₅r²ω² + ¹/₂r²ω²

gh*sin θ = ⁷/₁₀r²ω²

ω = √[(¹⁰/₇)*g*h*(sin θ)/r²]

ω = √[(¹⁰/₇)*9.8*2.1*(sin 25)/(0.04)²]

ω = 88.1 rad/s

b) Fraction of its kinetic energy that is rotational = rotational KE/total KE

But, total KE = total potential energy

Thus;

KE_tot = mgh*sin θ

KE_tot = 0.4 * 9.8 * 2.1 sin 25°

KE_tot = 3.48 J

KE_rot = ¹/₂Iω²

I of solid sphere = ²/₅mr². Thus;

KE_rot = ¹/₅mr²ω²

KE_rot = ¹/₅ * 0.4 * 0.04² * 88.1²

KE_rot = 0.99 J

Fraction of its kinetic energy that is rotational = 0.99/3.48 = 0.286

Read more about Angular velocity at; https://brainly.com/question/9408577

Oil and water don’t mix, and the mass density of oil is smaller than that of water. Suppose water is poured into a U-shaped tube that is open at both ends until the water surface is halfway up each leg of the tube, and then some oil is poured on top of the water in the right leg. Once the system comes to equilibrium, are the top of the oil column in the right leg and the top of the water column in the left leg at the same height? If not, which is higher?
The right leg (oil on top) is higher
The left leg (no oil) is higher
The two legs are the same height

Answers

Answer:

The right leg (oil on top) is higher

Explanation:

Given:

The mass density of oil is lesser than the mass density of water.

When we pour water in a u-tube that is open at both the ends then the water on both the sides of the tube will rise up to the same height because the algebraic sum of the pressure exerted by the water column and the pressure of atmosphere on both the openings is equal.When we pour oil in the right side of the u-tube we observe that the column of liquid on the right side rises more than the column of the liquid on the left side. However we observe that there is rise on both sides of the u-tube.

This is justified by the equation:

[tex]P=\rho.g.h[/tex]

where:

[tex]\rho =[/tex] density of the liquid

[tex]g=[/tex] acceleration due to gravity

[tex]h=[/tex] height of the liquid column

polybius believed that rome's successes stemmed from select one: a. its constitution and mixed government. b. conservative roman values. c. its geographical diversity. d. roman worship of greek deities. e. all these answers are correct.

Answers

Answer:

a. its constitution and mixed government.

Explanation:

Polybius tell us about the Roman mixed constitution as a fundamental in the Roman victory and the Carthaginian defeat in the Punic war, conceiving the mixed constitution as the best, since this constitution was at its peak, which implies that among the elements of the constitution, the aristocratic component was the dominant one.

Two car horns are sounded creating two sound waves with frequencies that differ by a factor of three. How does the speed of the higher frequency sound wave compare to the lower frequency sound wave?

Answers

Answer:

Remains the same

Explanation:

The speed of waves of higher and lower frequency both will be same.

the speed of sound in a medium is constant  and independent of it's frequency. Moreover, when the frequency changes wavelength changes accordingly, such that their product remains constant.

we know that

υ×λ = constant = velocity

υ= frequency

λ= wavelength.

Imagine that two charged objects are the system of interest. When the objects are infinitely far from each other, the electric potential energy of the system is zero. When the objects are close to each other, the electric potential energy is positive. Which of the following statements is(are) incorrect

(a) Both objects are positively charged.
(b) Both objects are negatively charged.
(c) One object is negatively charged and the other one is positively charged.

Answers

Final answer:

Statement (c) is incorrect because if one object is negatively charged and the other is positively charged, they would attract each other, resulting in a negative potential energy as they come closer, not a positive one.

Explanation:

The question is addressing the concept of electric potential energy between two charged objects. When the electric potential energy of the system is positive as the two objects come close, we can infer that the objects have like charges, either both positive or both negative. This is due to the fact that work needs to be done against the electrical repulsion to bring like charges together, increasing the system's potential energy.

This makes statements (a) Both objects are positively charged and (b) Both objects are negatively charged possibly correct scenarios, as they would lead to a positive potential energy when the objects are brought together. Statement (c) One object is negatively charged and the other one is positively charged would be incorrect in this context, because a positive and a negative charge would attract each other, and the system would do work on the surroundings as they come closer to each other making the potential energy negative. Therefore, the incorrect statement, given that the electric potential energy is positive when they are near each other, is (c).

Stretched 1 cm beyond its natural length, a rubber band exerts a restoring force of magnitude 2 newtons. Assuming that Hooke's Law applies, answer the following questions:(a) How far (in units of meters) will a force of 3 newtons stretch the rubber band?

Answers

The extension in the rubber band for the restoring force of 3 newtons is 1.5 cm.

The force according to Hooke's law is given as:

[tex]F=kx[/tex]

Here F is the restoring force, k is the proportionality constant and x is the stretch or compression.

Given:

Restoring force, [tex]F= 2\ N[/tex]

Stretch in the band, [tex]x=1\ cm[/tex]

The value of the k is computed as:

[tex]F=kx\\2=k \times 1cm\\k= 2\ N/cm[/tex]

The stretch in the band for a restoring force of 3 N is computed as:

[tex]F=kx\\x=\frac{F}{k}\\x= \fract{3}{2}\\x = 1.5 cm[/tex]

Therefore, the extension in the rubber band for the restoring force of 3 newtons is 1.5 cm.

To know more about Hooke's law, click here:

https://brainly.com/question/30379950

#SPJ12

Final answer:

According to Hooke's Law, a force of 3 newtons will stretch the rubber band 1.5 centimeters.

Explanation:

To answer this question, we can use Hooke's Law, which states that the force exerted by a spring is directly proportional to the displacement of the spring from its equilibrium position. In this case, we are given that when a rubber band is stretched 1 cm beyond its natural length, it exerts a restoring force of 2 newtons. This means that the force constant of the rubber band is 2 newtons per centimeter (N/cm).

To find out how far a force of 3 newtons will stretch the rubber band, we can use the formula for Hooke's Law: F = kx, where F is the force, k is the force constant, and x is the displacement. Rearranging the formula, we have x = F/k. Plugging in the values, we get:

x = 3 N / (2 N/cm) = 1.5 cm

Therefore, a force of 3 newtons will stretch the rubber band 1.5 centimeters.

Other Questions
How did the Virginia Declaration of Rights influence the Declaration of Independence?A. It was the first document that was openly critical of the king.B. It was the document Jefferson referred to when writing the Declaration of Independence.C. It suggested that the colonies should be independent from Britain.D. It was published as a pamphlet and built support for the Declaration. Julian needs to create an ad for his company that manufactures mobile phones. He has come up with an idea for the ad, but he needs a quality check before the actual product development begins. Julian is using the method of advertising testing. a) Find the value of x. Show algebraic support.hint: (n - 2)180 Imagine you are a geneticist interested in studying a newly discovered species of very colorful birds. You have found that a single gene is responsible for their beautiful colors and that yellow birds are homozygous for the yellow allele, green birds are homozygous for the green allele and blue birds are heterozygous for these alleles. You focused your efforts on studying one specific population and counted 9% yellow, 49% green and 42% blue birds. What are the allele frequencies in this population?a) yellow = 0.09, green = 0.49b) yellow = 0.9, green = 4.9c) yellow = 0.3, green = 0.7d) yellow = 0.5, green = 0.5e) proportion of alleles cannot be determined because the population is evolving Water is able to maintain the temperature of living organisms, keeping them from freezing or overheating. This is because water has a:____________ Pinewood Company purchased two buildings on four acres of land. The lump-sum purchase price was $1,200,000. According to independent appraisals, the fair values were $585,000 (building A) and $325,000 (building B) for the buildings and $390,000 for the land. Required: Determine the initial valuation of the buildings and the land. what type of reaction is2A1Br3 +3K2SO4+6KBr +Al2(SO4)3Synthesis/CombinationDecompositionSingle ReplacementDouble Displacement or Combustion? What is 2/6 times 3 in its simplest form The Insurance Institute for Highway Safety publishes data on the total damage caused by compact automobiles in a series of controlled, low-speed collisions. The following costs are for a sample of six cars: $800, $750, $900, $950, $1100, $1050. 1. What is the five-number summary of the total damage suffered for this sample of cars? A production possibilities curve shows: A. that resources are unlimited. B. that people prefer one of the goods more than the other. C. the maximum amounts of two goods that can be produced assuming the full use of available resources. D. combinations of capital and labor necessary to produce specific levels of output. As you develop a Java program, you can use an IDE to Select one: a. enter and edit the source code b. compile the source code c. run the application d. all of the above e. both B and C Research using animals must demonstrate a(n) ____.a. clear benefit to other animals. physical or financial benefit to humansc. absence of discomfort or invasive procedures. clear scientific purpose 1. What is the Kinetic energy of a 1500 kg car going at a speed of 14 meters/second?Show your work below2. What is the KE if m = 2 and v = 5?3. What is the KE if m = 4 and v = 5?4. What is the KE if m = 2 and v = 10? If you were federick Douglas would you risk everything to speak out against slavery a 0.311 kg tennis racket moving 30.3 m/s east makes an elastic collision with a 0.0570 kg ball moving 19.2 m/s west. find the velocity of the tennis ball after the collision. John just opened a savings account and wants to maximize the amount of interest he ears. Which of the following actionswould enable him to earn MORE interest?Selecting an account with a highinterest rate.Leaving his money in the account for longperiod of time.Transferring money into his checking accounteach month.BothA & what is 10 groups of 15 can somebody please help. Which of the following is NOT a recommended characteristic for incident objectives?A. Stated in broad terms to allow for flexibilityB. In accordance with the Incident Commander's authoritiesC. Includes a standard and timeframeD. Measurable and attainable Asteroid 1 moving 8km/s right asteroid 2 moving 16 km/s left before the crash. After the crash asteroid 1 is moving 4 km/s left and changed speed bu 12km/s. Asteroid 2 moving 2km/s left and changed speed by 14km/sTwo asteroids crashed. The crashed caused both asteroids to change speed. Scientist want to use the change in speed and motion to figure out which asteroid has more mass. Based on the information in the diagram. which statement is correct? In your answer explain what the forces were like and why the asteroids changed motionsAsteroid 1 has more mass than asteroid 2Asteroid 1 and asteroid 2 are the same massOr asteroid 1 has lees mass than asteroid 2 A hypothetical square shrinks at a rate of 49 squared meters per minute. At what rate are the sides of the square changing when the sides are 13m each? Steam Workshop Downloader