A physician prescribes alprazolam for a patient on an as needed basis. The patient can take up to 2.25mg per day in divided does. If alprazolam comes in .25 mg tablets, how many tablets can the patient take throughout the day?

Answers

Answer 1

Answer:

9

Step-by-step explanation:

If n is the number of tablets, the maximum value it can have is given by ...

0.25n = 2.25

Dividing by the coefficient of n gives ...

n = 2.25/0.25 = 9

The patient can take a total of 9 tablets through the day.

Answer 2

Answer:

The answer is 2:9

Step-by-step explanation:

On plato


Related Questions

A mining company has two mines. One day's operation at mine #1 produces ore that contains 30 metric tons of copper and 600 kilograms of silver, while one day's operation at mine #2 produces ore that contains 40 metric tons of copper and 380 kilograms of silver. Let v1 = (30, 600) [vector] and v2 = (40, 380) [vector]. Then v1 and v2 represent the "output per day" of mine #1 and mine #2, respectively.a) What physical interpretation can be given to the vector 5v1?b) Suppose the company operates mine #1 for x1 days and mine #2 for x2 days. Write a vector equation whose solution gives the number of days each mine should operate in order to produce 240 tons of copper and 2824 kilograms of silver. Do not solve the equation.c) [M] Solve the equation in (b).

Answers

Answer:

a) the output of mine #1 in 5 days

b) x1·v1 +x2·v2 = (240, 2824)

c) x1 = 544/315 ≈ 1.727; x2 = 1482/315 ≈ 4.705

Step-by-step explanation:

a) If v1 represents the production of mine #1 for 1 day, then 5v1 represents that mine's production for 5 days.

__

b) The production of each mine, multiplied by the number of days of production, adds together to give the total desired production:

x1·v1 + x2·v2 = (240, 2824)

__

c) Treating the vector components separately, the vector equation gives rise to two linear equations:

30x1 +40x2 = 240

600x1 + 380x2 = 2824

These can be solved by any of the usual methods. My favorite for numbers that are large or relatively prime is Cramer's rule and/or a graphing calculator. The above equations can be reduced to standard form to make the numbers slightly more manageable:

3x1 +4x2 = 24

150x1 +95x2 = 706

By Cramer's rule, ...

x1 = (4·706 -95·24)/(4·150 -95·3) = 544/315

x2 = (24·150 -706·3)/315 = 1482/315

Final answer:

The vector 5v1 represents the output of 5 days of operation at mine #1. The vector equation x1v1 + x2v2 = (240, 2824) gives the number of days each mine should operate to hit certain production targets. The specific solution is not given.

Explanation:

a) 5v1 would represent the output of 5 days of operation at mine #1. Specifically, it would mean that in 5 days, mine #1 produces 150 metric tons of copper and 3000 kilograms of silver.


b) The vector equation we need to represent the situation could look something like this: x1v1 + x2v2 = (240, 2824). Here, x1 and x2 represent the number of days each mine should operate and v1 and v2 are the vectors that represent the daily output of each mine. The solution to this vector equation would give the number of days each mine needs to operate in order to fit these production targets.


c) Since we are not supposed to solve the equation, we will simply write it again here for reference: x1v1 + x2v2 = (240, 2824).

Learn more about Vector here:

https://brainly.com/question/33923402

#SPJ3

A sphere has a surface area of 36π ft2. Find the volume of the sphere.


36π ft3


42π ft3


48π ft3


28π ft3

Answers

The surface area of the sphere is given by the equation

[tex]A=4\pi * r^{2}[/tex],

where A is the surface area and r is the radius.

We want to find the volume of the sphere, which is given by the equation

[tex]V = \frac{4}{3} * \pi * r^{3}[/tex],

where V is the volume and r is the radius.

Looking at these equations, we see that they both involve the sphere's radius. If we know what r is, we can calculate the volume.

We know that the sphere's surface area is [tex]36 \pi[/tex]. Plugging that in for A in the surface area equation, we get

[tex]36 \pi=4\pi * r^{2}[/tex], then divide by [tex]\pi[/tex]

[tex]36 = 4 * r^{2}[/tex], then divide by 4

[tex]r^{2} = 9[/tex], then take the square root of both sides

[tex]r = 3[/tex]

So the radius of the sphere is 3. Plugging this into the volume equation,

[tex]V = \frac{4}{3} * \pi * 3^{3}[/tex], simplify terms

[tex]V = \frac{4}{3} * \pi * 27[/tex], multiply [tex]\frac{4}{3}[/tex] by 27

[tex]V = 36 * \pi[/tex]

So the volume of the sphere is [tex]36\pi[/tex].

Answer:

36π ft^3

Step-by-step explanation:

The surface area (S) of a sphere can be defined as:

S = 4×π×r^2 = 36×π

Solve for r to get the radius of the sphere:

r = ([tex]\sqrt{36/4}[/tex] = 3

The voluem (V) of a sphere can be defined as:

V= (4/3)×π×r^3

The volume of the sphere is:

V = (4/3)×π×(3^3) = 36π ft^3

The volume of the sphere can be calculated from the surface area given.

2x+4y=–3 in standard form

Answers

Standard form for linear equations is in the form ax + by = c. Thus, 2x + 4y = -3 is already in standard form.

Answer:

It is already in standard form

Step-by-step explanation:

Standard form is ax+by=c

2x=ax

4y=by

-3=c

Nothing needs to be changed

there are 96 marbles in a box. There are 5 times as many blue marbles as red marbles. How many red marbles are there?

Answers

Answer:

16

Step-by-step explanation:

96 marbles = Box

Let's call blue marbles " 5 x " and red marbles " x "

So now an equation is setup ⇒

→ 5 x + x = 96

( Simplify )

→ 6 x = 96

( Divide by 6 from both sides to isolate x )

→ x = 16

red marbles " x " so x = 16

You would use the following equation:

96 = 5x + x

There is a total of 96 marbles. The right side of the equation represents how many blue marbles are in the box. X is red marbles in the box, since we know that red marbles is 5 times x

Add the common variables:

96 = 5x + x

96 = 6x

To solve for red marbles isolate x. To do this divide 6 to both sides. Division is the opposite of multiplication and will cancel 6 from the right side and bring it to the left

96 ÷ 6 = 6x ÷ 6

16 = x

You have 16 marbles in the box

Hope this helped!

~Just a girl in love with Shawn Mendes

Does the midpoint BC lie on line AG? Why or why not?

Answers

Answer:

  see below

Step-by-step explanation:

Put the (x, y) values of point F into the equation for line AG and see if they work:

  y = (b/(a+c))x

For (x, y) = (a+c, b), this is ...

  b = (b/(a+c))(a+c) = b·(a+c)/(a+c) = b·1 = b . . . . . a true statement

Yes, F lies on line AG.

Answer:

D

Step-by-step explanation:

help quickly please!!!

Answers

Answer:

Problem 12 is 112° and problem 13 is 68°

Step-by-step explanation:

Angles EPF and DPG are vertical angles; therefore, they are congruent.  That means, algebraically, that

4x + 48 = 7x

Solving for x:

48 = 3x  and  x = 16

Now that we know the value of x we can sub it back into the expression for the angle:

4(16) + 48 = 112.

For problem 13, angles DPE and EPF are supplementary, so that means that they add up to equal 180 degrees.  Therefore, 180 - 112 = 68 degrees.

g = 15 - (m/32)If Vera stars with a full tank of gas, the number of gallons of gas g, left in the tank after driving m miles is given by the equation above. When full, how many gallons of gas does Vera's tank hold?15 gallons.17 gallons.32 gallons.480 gallons

Answers

ANSWER

15 gallons

EXPLANATION

The equation that models the situation is

[tex]g(m) = 15 - \frac{m}{32} [/tex]

When the tank was full the man did not cover any mile.

To find the the number of gallons of gases Vera's tank holds, we substitute m=0 into the equation to get,

[tex]g(0) = 15 - \frac{0}{32} = 15[/tex]

Therefore the correct answer is is option A 15 gallons

Final answer:

When Vera's tank is full, it holds 15 gallons of gas. This is found by setting the miles driven to zero in the equation g = 15 - (m/32).

Explanation:

To determine how many gallons of gas Vera's tank holds when full, we need to set m, the number of miles driven, to zero in the given equation g = 15 - (m/32). This is because we are interested in the initial amount of gas before any driving occurs.

Plugging m = 0 into the equation gives us:

g = 15 - (0/32)

g = 15

Therefore, when full, Vera's tank holds 15 gallons of gas. Among the provided options, the correct answer is 15 gallons.

Suppose ABCD is a rhombus and that the bisector of ∠ABD meets
AD
at point K. Prove that m∠AKB = 3m∠ABK.
m∠AKB = m∠KBD + m∠
by reason
Find the angle that missing angle so that angle kbd and that angle will equal angle akb.
explain

Answers

Answer:

missing angle: ∠DBC

Step-by-step explanation:

Proof:

m∠ABK ≅ m∠KBD — given that BK bisects ∠ABDm∠ABD = m∠ABK + m∠KBD = 2·m∠ABKm∠ABD ≅ m∠DBC — properties of a rhombus: a diagonal bisects the anglesm∠DBC = 2·m∠ABK — transitive property (both equal to m∠ABD)m∠KBC = m∠KBD + m∠DBC — adjacent anglesm∠KBC = m∠ABK + 2·m∠ABK = 3·m∠ABK — substitute for m∠KBD and m∠DBCm∠AKB = m∠KBC — alternate interior angles of parallel lines AD, BCm∠AKB = 3·m∠ABK — substitute for m∠KBC

_____

Proof is always in the eye of the beholder, and the details depend on the supporting theorems and postulates you're allowed to invoke. The basic idea is that you have cut a vertex angle in half twice, and you're trying to show that the smallest part to the rest of it has the ratio 1 : 3.

find the area of the following figure​

Answers

Answer:

C. 531 would be your answer.

Answer: 531

Step-by-step explanation: 21 • 18 = 378 and 17 • 9 = 153. And those together and you get 531 as yours answer!

what is an equation of the line containing the points (-1,5) and (3,9)​

Answers

Answer:

  y = x+6

Step-by-step explanation:

You can find an equation by using the 2-point form of the equation for a line:

  y = (y2 -y1)/(x2 -x1)·(x -x1) +y1

Filling in the given values, we have ...

  y = (9 -5)/(3 -(-1))·(x -(-1)) +5

  y = (4/4)(x +1) +5 . . . . simplifying a bit

  y = x +6

The coordinates of point A on a coordinate grid are (−2, −3). Point A is reflected across the y-axis to obtain point B and across the x-axis to obtain point C. What are the coordinates of points B and C?

A) B(2, 3) and, C(−2, −3)
B) B(−2, −3) and C(2, 3)
C)B(2, −3) and C(−2, 3)
D) B(−2, 3) and C(2, −3)

Answers

Answer:

B) B(2,-3) and C(-2,3)

Step-by-step explanation:

The given point A, has coordinates (-2,-3).

When point A(-2,-3) is reflected over the y-axis to obtain point B, then the coordinates of B is obtained by negating the x-coordinate of A.

Therefore B will have coordinates (2,-3).

 When point A(-2,-3) is reflected over the x-axis to obtain point C, then the coordinates of C is obtained by negating the y-coordinate of A.

Hence the coordinates of C are (-2,3)

REFER TO THE PICTURE BELOW. PLEASE SHOW WORK.

Answers

Answer:

  (c) 16/9·π²·r⁶

Step-by-step explanation:

The water displaced is equivalent to the volume of the sphere, given as

  V = (4/3)π·r³

The product of two identical displaced volumes will be ...

  V² = ((4/3)π·r³)² = (4/3)²·π²·r⁶

  = 16/9·π²·r⁶ . . . . . . matches choice (c)

A company issues auto insurance policies. There are 900 insured individuals. Fifty-four percent of them are male. If a female is randomly selected from the 900, the probability she is over 25 years old is 0.43. There are 395 total insured individuals over 25 years old. A person under 25 years old is randomly selected. Calculate the probability that the person selected is male.

Answers

Answer:

  about 0.53

Step-by-step explanation:

54% of the insured, or .54×900 = 486 individuals are males. That leaves 900-486 = 414 that are females. 43% of those, or .43×414 = 178 are over 25, so the remainder of the 395 who are over 25 are male.

Since 395 -178 = 217 of the males are over 25, there are 486 -217 = 269 who are under 25. Then the fraction of insureds who are under 25 that are male is ...

  269/(900 -395) = 269/505 ≈ 0.53

_____

It can be useful to make a 2-way table from the given information.

Final answer:

Using the provided data, the probability that a person under 25 years old selected randomly is male is calculated by dividing the number of males under 25 (found by subtraction from total males and males over 25) by the total number of individuals under 25.

Explanation:

The question asks us to calculate the probability that a person under 25 years old, selected randomly from a group of insured individuals, is male. To find this, we need to use the given data:

Total insured individuals: 900

Percentage of males: 54%

Individuals over 25 years old: 395

Probability that a randomly selected female is over 25: 0.43

To calculate the number of males and females, we take 54% of 900 to get the total males, which is 486. Since there are 900 insured individuals in total, the number of females would be 900 - 486 = 414. The number of females over 25 years old is 414 * 0.43 = 178.02, which we can round to 178.

Since there are 395 individuals over 25 years old in total and 178 of them are female, 395 - 178 gives us 217 males over 25 years old. Now, we need to find the number of individuals under 25 years old. There are 900 - 395 = 505 individuals under 25.

The probability that a randomly selected person under 25 is male can be found by dividing the number of males under 25 by the total number of people under 25. The number of males under 25 is the total number of males minus males over 25, which is 486 - 217 = 269. Therefore, the probability is 269 / 505.

Evaluate (2-5i)(p+q)(i) when p=2 and q=5i.

Answers

Answer:

[tex](2-5i)(p+q)(i)=29i[/tex]

Step-by-step explanation:

We have the product of 2 complex numbers

[tex](2-5i)(p+q)(i)[/tex]

We know that:

[tex]p=2\\\\q=5i[/tex]

Then we substitute these values in the expression

[tex](2-5i)((2)+(5i))(i)[/tex]

[tex](2-5i)(2+5i)(i)[/tex]

The product of a complex number [tex]a + bi[/tex] by its conjugate [tex]a-bi[/tex] is always equal to:

[tex]a ^ 2 - (bi) ^ 2[/tex]

Then

[tex](2-5i)(2+5i)(i)=(2^2-5^2i^2)(i)[/tex]

Remember that:

[tex]i=\sqrt{-1}\\\\i^2 = -1[/tex]

So

[tex](2^2-5^2i^2)(i)= (4 - 25(-1))(i)\\\\(4 - 25(-1))(i) = (4+25)i=29i[/tex]

Finally

[tex](2-5i)(p+q)(i)=29i[/tex]

Answer:

29i

Step-by-step explanation:

Edge Verified

Cole walked 2 1/2 kilometers on Monday. Isabella walked twice as many kilometers as coke. How many meters did cole and Isabella walk alotogether?

Answers

Answer:

  7500 meters

Step-by-step explanation:

Isabella walked 2 × 2.5 km = 5 km. Together, they walked ...

  2.5 km + 5 km = 7.5 km = 7.5×1000 m = 7500 m

Cole and Isabella walked 7500 meters altogether.

_____

"kilo-" is a prefix meaning "one thousand". So one kilometer is 1000 meters. Then 7.5 kilometers is 7.5 times 1000 meters, or 7500 meters.

A farmer wants to build a new grain silo. The shape of the silo is to be a cylinder with a hemisphere on top, where the radius of the hemisphere is to be the same length as the radius of the base of the cylinder. The farmer would like the height of the silo’s cylinder portion to be 3 times the diameter of the base of the cylinder. What should the radius of the silo be if the silo is to hold 22,500 cubic feet of grain?

Answers

Answer:

  about 10.24 ft

Step-by-step explanation:

The formula for the volume of a cylinder is ...

  V = πr²h . . . . where h is the height and r is the radius

The formula for the volume of a sphere is ...

  V = (4/3)πr³ = πr²·(4/3r) . . . . equivalent to a cylinder of height 4/3r

__

We have a cylinder of height 3d = 3(2r) = 6r. It has half a sphere on top, so the equivalent height of that is (1/2)·(4/3r) = 2/3r.

Then our total volume is equivalent to a cylinder with radius r and height (6 2/3)r = (20/3)r. That is, ...

  22,500 ft³ = πr²·(20/3)r = (20π/3)r³

Multiplying by the inverse of the coefficient of r³, then taking the cube root, we have ...

  r = ∛(22,500·3/(20π)) ft ≈ 10.24 ft

The radius of the silo should be about 10.24 feet.

Answer:

10.24  ft

Step-by-step explanation:

Find the radius of a circle with circumference of 45.84 meters. Use 3.14

Answers

Answer:

3.8 meters

Step-by-step explanation:

In order to find the circumference for a circle, we use the formula π(radius)²

The circumference give is 45.84 and the π given is 3.14

All we have to do is to just substitute them.

45.84 = 3.14(radius)²

45.84 / 3.14 = radius²

14.6 = radius²

radius = √14.6

radius = 3.82 ≅ 3.8

Answer:

approx. 7.3 m

Step-by-step explanation:

The formula for the circumference of a circle is  s = r·Ф, where r is the radius and Ф is the central angle in radians.

Here C = 45.84 m = 2π·r.  Solving for the radius, r, we get:

       45.84 m

r = --------------- = 7.299 m, or approx. 7.3 m.

          2(3.14)

Choose the equation and the inequality needed to answer this question.

Trevor tutors French for $15 and hour and scoops ice cream for $10 an hour. He is going to work 15 hours this week. At least how many hours does he need to tutor to make more than $180? Let x equal the number of hours he tutors and y be the number of hours he scoops ice cream.

Options (you can pick more than one):

x + y = 15
x + y > 15
x + y < 15
15x + 10y = 180
15x + 10y > 180
15x + 10y < 180


So far all I have it the fourth option (15x + 10y = 180).

Answers

Answer:

Actually, what you said you have so far is not correct.  The 2 correct answers are the 1st one (x + y = 15) and the 5th one (15x + 10y > 180)

Step-by-step explanation:

If tutoring French is x hours and scooping ice cream is y hours and he is going to work 15 hours for sure doing both, then we can add them together to get that x hours + y hours = 15 hours, or put simply:  x + y = 15.

Now we are going to throw in the added fun of the money he makes doing each.  The thing to realize here is that we can only add like terms.  So looking at the equation above, we have x hours of tutoring and y hours of scooping, so if we want to add them, we will add those number of hours together to get the total number of hours he worked, which we know to be 15.  The same goes for money.  If we add money earned from tutoring to money earned from scooping, we need that to be greater than the money he wants to earn which is 180 at least.  Because he wants to earn MORE than $180. we use the ">" sign.  Since he earns $15 an hour tutoring, that expression is $15x; since he earns $10 an hour scooping, that expression is $10y.  Now add them together (and you CAN because they are both expressions relating dollars to dollars) and set the sum > $180:

$15x + $10y > $180.  That's why your answer is not correct.  Use mine (with the understanding that you care about why yours is wrong and mine is correct) and you'll be fine.

13. 2 – (–8) + (–3) =

A. 1
B. 12
C. 7
D. 14

Answers

ANSWER

C. 7

EXPLANATION

We want to evaluate

[tex]2 - ( - 8) + ( - 3) [/tex]

We use the order of operations PEDMAS.

Dealing with the parenthesis first,we have

[tex]2 - - 8+- 3[/tex]

Note that:

[tex] - - = + [/tex]

and

[tex] - + = - [/tex]

Our expression now becomes:

[tex]2 + 8 - 3[/tex]

Next, we add to get:

[tex]10 - 3[/tex]

We finally subtract to get,

[tex]7[/tex]

The correct answer is C

Hello!

The answer is: C. 7

Why?

To solve the problem, first, we need to consider the signs out and inside of the parenthesis.

We must remember the following rule:

[tex]--=+\\+-=-[/tex]

We are given the following expression:

[tex]2-(-8)+(-3)[/tex]

Then, we can rewrite it using the rule of the signs, we have:

[tex]2--8+-3=2+8-3=2+8-3[/tex]

[tex]2+8-3=10-3=7[/tex]

Hence, the correct option is C. 7.

Have a nice day!

RST and XYZ are equilateral triangles. The ratio of the perimeter of RST to the perimeter of XYZ is 1 to 2. the area of RST is 10.825 square inches. what is the area of XYZ

Answers

Answer:

The CORRECT answer is 97.4 in ^2

Step-by-step explanation:

Usatestprep , the other answer is wrong trust me.

The function f(x) = x2 - 6x + 9 is shifted 5 units to the left to create g(x). What is
g(x)?

Answers

Answer:

g(x) = x^2 + 4x + 4

Step-by-step explanation:

In translation of functions, adding a constant to the domain values (x) of a function will move the graph to the left, while subtracting from the input of the function will move the graph to the right.

Given the function;

f(x) = x2 - 6x + 9

a shift 5 units to the left implies that we shall be adding the constant 5 to the x values of the function;

g(x) = f(x+5)

g(x) = (x+5)^2 - 6(x+5) + 9

g(x) = x^2 + 10x + 25 - 6x -30 + 9

g(x) = x^2 + 4x + 4

3) Solve each equation using the quadratic formula. Show
a. x2 – 3x – 10 = 0

Answers

Answer:

x = -2 or x = 5

Step-by-step explanation:

The quadratic formula of a quadratic equation

[tex]ax^2+bx+c=0\\\\\text{If}\ b^2-4ac>0\ \text{then the equation has two solutions}\ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]\text{If}\ b^2-4ac=0\ \text{then the equation has one solution}\ x=\dfrac{-b}{2a}[/tex]

[tex]\text{If}\ b^2-4ac<0\ \text{then the equation has no solution}[/tex]

We have:

[tex]x^2-3x-10=0\to a=1,\ b=-3,\ c=-10\\\\b^2-4ac=(-3)^2-4(1)(-10)=9+40=49>0\\\\x=\dfrac{-(-3)\pm\sqrt{49}}{2(1)}=\dfrac{3\pm7}{2}\\\\x=\dfrac{3-7}{2}=\dfrac{-4}{2}=-2\\or\\x=\dfrac{3+7}{2}=\dfrac{10}{2}=5[/tex]

State the maximum/minimum of the function H(x)=−1/2x^2+4x−5.

Answers

is noteworthy that the leading term has a negative coefficient, meaning this parabola is opening downwards like a "camel hump", so it reaches a maximum point and then goes back down, and of course the maximum point is at its vertex.

[tex]\bf \textit{vertex of a vertical parabola, using coefficients} \\\\ H(x)=\stackrel{\stackrel{a}{\downarrow }}{-\frac{1}{2}}x^2\stackrel{\stackrel{b}{\downarrow }}{+4}x\stackrel{\stackrel{c}{\downarrow }}{-5} \qquad \qquad \left(-\cfrac{ b}{2 a}~~~~ ,~~~~ c-\cfrac{ b^2}{4 a}\right) \\\\\\ \left(-\cfrac{4}{2\left( -\frac{1}{2} \right)}~~,~~-5-\cfrac{4^2}{4\left( -\frac{1}{2} \right)} \right)\implies \left( 4~,~-5+\cfrac{16}{2} \right)\implies (4~~,~~3)[/tex]

Answer:

(4, -3)

Step-by-step explanation:

I'm assuming that you meant  H(x) = -(1/2)x^2 + 4x - 5.  Here, the coefficients of this quadratic are a = -1/2, b = 4 and c = -5.

The axis of symmetry is x = -b/(2a).  This axis goes through the vertex.  Here the axis of symmetry is  x = -(4) / [ 2(-1/2) ], or x = 4.

Evaluating H(x) at x = 4 gives us the y value of the vertex.  It is:

H(4) = (-1/2)(4)^2 + 4(4) - 5, or H(4) = -8 + 16 - 5, or 3.

We know that this function must have a max because a is - and therefore the graph opens down.

The vertex and the maximum is (4, 3).

This image shows a square pyramid. What is the surface area of this square pyramid?
25 ft²
100 ft²
125 ft²
200 ft²
Note: Image not drawn to scale. The figure shows a square pyramid. The slant height is shown as a dashed line perpendicular to the base edge. The length of the base edge is 10 feet. The lateral edge makes a 45 degree angle with the base edge.

Answers

Answer:

  200 ft²

Step-by-step explanation:

Each face is an isosceles right triangle with a hypotenuse of length 10 ft. The area of each of those triangles is

  A = 1/4·h² . . . . where the h in this formula is the hypotenuse length

So, the area of the four faces (the lateral area of the pyramid is 4 times this, or ...

  A = 4·1/4·(10 ft)² = 100 ft²

Of course, the base area is simply the area of the square base, the square of its side length:

  A = (10 ft)² = 100 ft²

So, the total area is the sum of the lateral area and the base area:

  total area = 100 ft² +100 ft² = 200 ft²

_____

If you think about this for a little bit, you will realize the pyramid must have zero height. That is, the slant height of a face is exactly the same as the distance from the center of an edge to the center of the base. "Not drawn to scale" is a good description.

Answer:

200 [tex]ft^{2}[/tex]

Step-by-step explanation:

Please help meeeeeeee

Answers

For this case we must simplify the following expression:

[tex]3-2y-1 + 5x ^ 2-7y + 7 + 4x ^ 2[/tex]

We combine similar terms, taking into account that equal signs are added and the same sign is placed, while different signs are subtracted and the sign of the major is placed.

[tex]3-1 + 7-2y-7y + 5x ^ 2 + 4x ^ 2 =\\9-9y + 9x ^ 2[/tex]

Answer:

[tex]9-9y + 9x ^ 2[/tex]

Dan buys a car for £2700.
It depreciates at a rate of 1.4% per year.
How much will it be worth in 5 years?
Give your answer to the nearest penny where appropriate.

Answers

Final answer:

The car, which depreciates at an annual rate of 1.4%, will be worth approximately £2590.34 in 5 years.

Explanation:

This is a problem related to depreciation, which is a concept in finance and economics. In this case, the car depreciates at a rate of 1.4% per year. This means that each year, the value of the car decreases by 1.4% of its value at the start of that year. This is an example of exponential decay.

To calculate the car's value after 5 years, we raise the depreciation rate (99.6%, or 0.996 in decimal form because the value decreases) to the power of 5, and then multiply it by the initial price of the car, £2700.

That is, Car Value = £2700 * (0.996)^5 = £2590.34

So, the car will be worth approximately £2590.34 in 5 years to the nearest penny.

Learn more about Depreciation here:

https://brainly.com/question/17827672

#SPJ

The first term of a geometric sequence is 2 and the common ratio is 4. What is the 6th term of the sequence?

Answers

Answer: 2048

Step-by-step explanation:

Tn = arⁿ⁻¹

T6 = ar⁶⁻¹

T6 = ar⁵

T6 = 2*4⁵

T6= 2048

ANSWER

[tex]a_{6} = 2048[/tex]

EXPLANATION

The general term of a geometric sequence is given by,

[tex] a_{n} = a_{1} ( {r})^{n - 1} [/tex]

The first term of the geometric sequence is 2

[tex]a_{1} =2[/tex]

The common ratio is 4. This means r=5.

The nth term of the sequence is

[tex]a_{n} = 2 ( {4})^{n - 1} [/tex]

The 6th term is

[tex]a_{6} = 2 ( {4})^{6 - 1} [/tex]

[tex]a_{6} = 2 ( {4})^{5} [/tex]

[tex]a_{6} = 2048[/tex]

If f(x)= 15x+7x and g(x)= x^2-5x, find (f+g)(x)

Answers

Answer:

(f+g)(x) = x^2 +10x +7

Step-by-step explanation:

(f+g)(x) = f(x) +g(x) = (15x +7) +(x^2 -5x)

= x^2 +x(15 -5) +7

= x^2 +10x +7

What is the greatest common factor of 8x and 40?

Answers

For this case we have that by definition, the Greatest Common Factor or GFC, of two or more integers is the largest integer that divides them without leaving a residue.

So:

We look for the factors of both numbers:

8: 1, 2, 4, 8

40: 1, 2, 4, 5, 8, 10, 20

It is observed that 8 is common.

So, the GFC of 8x and 40 is 8

Answer:

8

A marketing firm tracks data on grocery store visits. In one study, it finds that the probability that a shopper buys bread during a visit to the grocery store is 0.70, and the probability that a shopper buys cheese is 0.20.Event A = A shopper buys bread.Event B = A shopper buys cheese.A and B are independent events if _____.

Answers

Answer:

Option B.

Step-by-step explanation:

Two events are said to be independent of each other, if the probability of one event ocurrin in not way affects the probability of the other event occurring.

The interception of two independent events P(A ∩ B) = P(A) × P(B), where:

P(A) = 0.70

P(B) = 0.20

P(A ∩ B) = P(A) × P(B) = 0.70x0.20 = 0.14

The two events are independent if the probability of buying Bread AND cheese equals: 0.14, which is Option B.

Answer:

B

Step-by-step explanation:

Other Questions
david and muriel listed these items. what is their net worth? How do the electrical patterns in electronics convey information? With analog and electric signalsWith analog and digital signals With electric and thermal signals With electric and digital signal Linda is filling the mold above with water and freezing it for an ice project. If a = 10 cm and b = 9 cm, what will be the volume of the frozen figure? A. 1,045 cm3 B. 1,450 cm3 C. 1,000 cm3 D. 1,900 cm3 Adolescence causes physical changes to the body. True or False Tony planned to spend $35 for food this week. On Monday he spent $22. How much was left ? WILL GIVE BRAINLIEST! GIVING 20 POINTS!!!I need a real life example of a quadratic model, IT NEEDS TO BE THE QUESTION AND THE ANSWER!! It can be any example of quadratic models. What is the volume of the triangular prism shown below ? Can someone please help me Jacob mixes the letters J, K , L, J, K, M, N, and P thoroughly without looking terry draws one letter expressed as a fraction, decimal., and percentage what is the probability that K will not be the letter Terry selects an orifice tube is located Plz help!!! Questions are in the attachment!!!!! Thank you in Advance PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!What are the vertical asymptotes of R(x) = which sentence best describes a difference between the two historical posters? differences between a pyramid and a Cube Graph f(x)=x2 +2x-3 label x and y intercept and vertex with their coordinates and draw axis of symmetry at a high school movie night, the refreshment stand sells popcorm and soft drinks. Of the 100 students who came to the movie, 62 bought popcorn and 47 bought a drink. 38 students bought both popcorn and a drink. What is the probability that a student buys a drink? which type of music is monophonic Which equation is y = 6x2 + 12x 10 rewritten in vertex form? Eva uses fresh basil leaves, garlic, pine nuts, pepper, salt, and olive oil to prepare sauce at home. Which type of sauce is Eva preparing? Steam Workshop Downloader