A major league baseball pitcher throws a pitch that follows these parametric equations: x(t) = 142t y(t) = –16t2 + 5t + 5. The time units are seconds and the distance units are feet. The distance between the location of the pitcher and homeplate (where the batter stands) is 60.5 feet. Give EXACT answers, unless instructed otherwise. (a) Calculate the horizontal velocity of the baseball at time t; this is the function x'(t)= 142 Correct: Your answer is correct. ft/sec. (b) What is the horizontal velocity of the baseball when it passes over homeplate? 142 Correct: Your answer is correct. ft/sec (c) What is the vertical velocity of the baseball at time t; this is the function y'(t)= $$−32t+5 Correct: Your answer is correct. -32t +5 ft/sec. (d) Recall that the speed of the baseball at time t is s(t)=√ [x '(t)]2 + [y ' (t)]2 ft/sec. What is the speed of the baseball (in mph) when it passes over homeplate? $$1 Incorrect: Your answer is incorrect. (sqrt(142*142 +((-1936/142) + 5)**2)*(360/528)) mph. (e) At what time does the baseball hit the ground, assuming the batter and catcher miss the ball? $$1.1 Incorrect: Your answer is incorrect. (5+sqrt(5**2 + 320))/32 sec. (f) What is the magnitude of the angle at which the baseball hits the ground? 0.12 Incorrect: Your answer is incorrect. rad. (This is the absolute value of the angle between the tangential line to the path of the ball and the ground. Give your answer in radians to three decima

Answers

Answer 1
Final answer:

The question involves calculations using the principles of projectile motion and 2D kinematics to understand the trajectory of a baseball pitch. Values include horizontal and vertical velocity changes over time, the exact speed of the baseball and the angle at which baseball hits the ground.

Explanation:

The question involves the physics of projectile motion, specifically applied to the trajectory of a pitch in baseball. The parameters of this problem can be solved using the kinematic equations and principles that govern 2D motion.

(1) To solve part (a), one must understand that for such problems involving gravity, the x (horizontal) component of the object's velocity remains constant throughout the motion, in this case 142 ft/sec. This fact is obtained from the equation x(t) = v_xt, where v_x is the constant x-component (horizontal) of velocity.

(2) For part (b), similarly, the x-component of the velocity remains same at any point in trajectory, including when it passes over home plate, so it is again 142 ft/sec.

(3) For part (c), the derivative of y(t) -16t^2 + 5t + 5 needs to be found to get the y-component (vertical) of velocity which is -32t + 5. This is because as the object moves under the effect of gravity, vertical velocity changes with time.

(4) For part (d), the magnitude of the speed at any time can be found by taking the square root of the sum of squares of x and y-components of velocity. (5) Part (e), seeks the time when the baseball hits the ground. The equation of vertical motion -16t^2 + 5t + 5 = 0 should be used, as the height of the object from ground is 0 when it hits the ground. Solving for t would give that time.

End of the problem involves understanding some trigonometric relationships to calculate the angle (in radians).

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ12


Related Questions

In an experiment to measure the acceleration due to gravity g, two independent equally reliable measurements gave 9.67 m/s2 and 9.88 m/s2. Determine (i) the percent difference of the measurements (ii) the percent error of their mean. [Take the theoretical value of g to be 9.81 m/s

Answers

Answer:

i. +/- 1.43% and +/- 0.71% ii. +/- 0.33%

Explanation:

[tex]% Error = \frac{Error}{Measurement}* 100%\\[/tex]

A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts "Help." When she has fallen for 3.0 s, she hears the echo of her shout from the valley floor below. The speed of sound is 340 m/s. (a) How tall is the cliff? (b) If we ignore air resistance, how fast will she be moving just before she hits the ground? (Her actual speed will be less than this, due to air resistance.)

Answers

Answer:

532.0725 m

102.17270893 m/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s² = g

H = Height of cliff

Distance traveled in 3 seconds

[tex]s=ut+\dfrac{1}{2}at^2\\\Rightarrow s=0\times t+\dfrac{1}{2}\times 9.81\times 3^2\\\Rightarrow s=44.145\ m[/tex]

Distance traveled by sound = 2H-44.145 m

[tex]2H-44.145=ut+\dfrac{1}{2}at^2\\\Rightarrow 2H-44.145=340\times 3\\\Rightarrow H=\dfrac{340\times 3+44.145}{2}\\\Rightarrow H=532.0725\ m[/tex]

The height of the cliff is 532.0725 m

[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 532.0725+0^2}\\\Rightarrow v=102.17270893\ m/s[/tex]

Her speed just before she hits the ground is 102.17270893 m/s

A dripping water faucet steadily releases drops 1.0 s apart. As these drops fall, does the distance between them increase, decrease, or remain the same? Prove your answer.

Answers

Answer:

Distance between them increase

Explanation:

The position S of the water droplet can be determined  using equation of motion

[tex]S=ut+\frac{1}{2} at^2[/tex]

where [tex]u[/tex] is the initial velocity which is zero here

[tex]t[/tex] is time taken, [tex]a[/tex] is acceleration due to gravity

the position of  first drop after time [tex]t[/tex] is given by

[tex]S_{1} =0 \times t+ \frac{1}{2} at^2=\frac{1}{2} at^2............(1)[/tex]

the position of  next drop at same time is

[tex]S_{2} =\frac{1}{2} a(t-1)^2 = \frac{1}{2} a(t^2+1-2t)............(2)[/tex]

distance between them is [tex]S_{1} -S_{2}[/tex]  is [tex]a(t-1)[/tex]

from the above the difference will increase with the time

Final answer:

As the water drops fall, their velocity increases due to the force of gravity, which causes the distance between each subsequent drop to increase.

Explanation:

The response to the student's question deals with the notion of acceleration due to gravity. As the water drops fall, they are accelerated by gravity, which means their velocity (speed) increases over time. If we consider two subsequent droplets, the second drop begins its descent 1.0 seconds after the first. Therefore, when the second drop begins to fall, the first drop has already accelerated for 1.0 seconds. This causes the distance between the two drops to increase as they fall.

Learn more about acceleration due to gravity here:

https://brainly.com/question/33911719

#SPJ3

A straight wire 0.280 m in length carries a current of 3.40 A. What are the two angles between the direction of the current and the direction of a uniform 0.0400 T magnetic field for which the magnetic force on the wire has magnitude 0.0250 N?

Answers

Answer:

The angle θ between the direction of the current and the direction of the uniform magnetic field is 41° or 139°.

Explanation:

The force on a current carrying wire is given by the following equation:

[tex]\vec{F} = I\vec{L}\times \vec{B}[/tex]

The cross-product can be written with a sine term:

[tex]F = ILB\sin(\theta)\\0.025 = (3.4)(0.28)(0.04)\sin(\theta)\\\sin(\theta) = 0.6565[/tex]

Therefore, the angle θ is 41.03° and 138.97°

The angles can be calculated using the formula sin(θ) = F / (I L B), giving two symmetrical values about 90° in the first and second quadrants because the sine function is periodic.

The question is asking for the angles at which the force on a current-carrying wire in a magnetic field is a specific magnitude. The magnitude of the force exerted on a current-carrying wire placed in a magnetic field is given by the formula F = I L B sin(θ), where F is the force, I is the current, L is the length of the wire, B is the magnetic field strength, and θ is the angle between the direction of the current and the direction of the magnetic field.

By rearranging for θ, we get the equation sin(θ) = F / (I L B). Plugging in the values from the question, we find sin(θ) = 0.0250 N / (3.40 A  imes 0.280 m  imes 0.0400 T). This gives us θ values that correspond to the sine of this ratio.

There are two angles that will produce the same sine value because sine is a periodic function, which are θ and 180°-θ. Therefore, the two angles between the direction of the current and the direction of the uniform magnetic field for which the force on the wire has a magnitude of 0.0250 N will be symmetrical about 90° in the first and second quadrants.

Arctic sea ice has declined over the past few decades causing water levels to increase. This is an interaction of which two spheres?

Biosphere and geosphere

Cryosphere and hydrosphere

Geosphere and atmosphere H

ydrosphere and geosphere

Answers

Answer:

Option (2)

Explanation:

The Cryosphere refers to the frozen water bodies on earth. This includes the glaciers, icebergs, ice sheets and the frozen water surrounding the Arctic as well as Antarctica.

The Hydrosphere refers to all the water bodies on earth including the rivers, streams, lakes, and ponds.

The given condition is based on the interaction between the cryosphere and the hydrosphere.

The frozen ice in the Antarctic and Arctic is melting rapidly due to the increase in the global warming effect. This declining ice in the polar region results in the rise in the global sea level. This can be catastrophic as many of the big cities will be flooded because of this increasing height of sea level.

Thus, the correct answer is option (2).

The decline of Arctic sea ice and its impact on water levels is an interaction between two Earth system spheres: the cryosphere and hydrosphere.

The interaction of Arctic sea ice decline and increasing water levels involves the cryosphere and hydrosphere spheres. The cryosphere refers to the frozen components of the Earth system, including ice caps, glaciers, and sea ice. The hydrosphere encompasses all the water on Earth, including oceans, lakes, and rivers.

Learn more about Interactions between Earth system spheres here:

https://brainly.com/question/33404282

#SPJ3

A projectile is fired with an initial speed of 40 m/s at an angle of elevation of 30∘. Find the following: (Assume air resistance is negligible. Your answer should contain the gravitational constant ????.)

a. The time at which the maximum height is achieved is functionsequation editor s.
b. The maximum height achieved by the projectile is functionsequation editor m.
c. The time when the projectile hits the ground is functionsequation editor s.
d. The range of the projectile is functionsequation editor m.
e. The speed of the projectile on impact with the ground is functionsequation editor m/s.

Answers

Answer:

a. 2.0secs

b. 20.4m

c. 4.0secs

d. 141.2m

e. 40m/s, ∅= -30°

Explanation:

The following Data are giving

Initial speed U=40m/s

angle of elevation,∅=30°

a. the expression for the time to attain the maximum height is expressed as

[tex]t=\frac{usin\alpha }{g}[/tex]

where g is the acceleration due to gravity, and the value is 9.81m/s if we substitute values we arrive at

[tex]t=40sin30/9.81\\t=2.0secs[/tex]

b. the expression for the maximum height is expressed as

[tex]H=\frac{u^{2}sin^{2}\alpha }{2g} \\H=\frac{40^{2}0.25 }{2*9.81} \\H=20.4m[/tex]

c. The time to hit the ground is the total time of flight which is twice the time to reach the maximum height ,

Hence T=2t

T=2*2.0

T=4.0secs

d. The range of the projectile is expressed as

[tex]R=\frac{U^{2}sin2\alpha}{g}\\R=\frac{40^{2}sin60}{9.81}\\R=141.2m[/tex]

e. The landing speed is the same as the initial projected speed but in opposite direction

Hence the landing speed is 40m/s at angle of -30°

A ball is tossed with a velocity of 10 m/s directed vertically upward from a window located 20 m above the ground. Determine the following: (a) The velocity v and elevation y of the ball above the ground at any time t. (b) The highest elevation reached by the ball and its corresponding time t. (c) The time when the ball will hit the ground and the impact velocity.

Answers

Answer:

Explanation:

Given

Initial velocity of ball [tex]u=10\ m/s[/tex]

height of window [tex]h=20\ m[/tex]

Using Equation of motion

[tex]y=ut+\frac{1}{2}at^2[/tex]

where u=initial velocity

t=time

a=acceleration

As ball is already is at a height of 20 m so

[tex]Y=ut+\frac{1}{2}at^2+20[/tex]

[tex]Y=10\times t+0.5\times (-9.8)t^2+20[/tex]

[tex]Y=-4.9t^2+10t+20[/tex]

(b)highest point is obtained at v=0

[tex]v^2-u^2=2as[/tex]

where

v=final velocity

u=initial velocity

a=acceleration

s=displacement

[tex](0)-10^2=2\times (-9.8)\times s[/tex]

[tex]s=\frac{100}{19.6}[/tex]

[tex]s=5.102\ m[/tex]

Highest Point will be [tex]s+20=25.102\ m[/tex]

(c)Time taken when the ball hit the ground i.e. at Y=0

[tex]-4.9t^2+10t+20=0[/tex]

[tex]t=3.28\ s[/tex]

impact velocity [tex]v=\sqrt{2\times 9.8\times 25.102}[/tex]

[tex]v=22.181\ m/s[/tex]

(a) The equation be "Y = -4.9t² + 10t + 20".

(b) The highest point be "25.102 m".

(c) The impact velocity be "22.181 m/s"

Equation of motion

According to the question,

Ball's initial velocity, u = 10 m/s

Window's height, h = 20 m

(a) By using equation of motion,

Y = ut + [tex]\frac{1}{2}[/tex]at²

By substituting the values,

  = ut + [tex]\frac{1}{2}[/tex]at² + 20

  = 10 × t + 0.5 × (9.8)t² + 20

  = -4.9t² + 10t + 20

(b) We know that,

→ v² - u² = 2as

here, Final velocity, v = 0

0 - (10)² = 2 × (-9.8) × s

          s = [tex]\frac{100}{19.6}[/tex]

             = 5.102 m

(c) Time taken will be:

→ -4.9t² + 10t + 20 = 0

                            t = 3.28 s

hence,

The impact velocity,

v = [tex]\sqrt{2\times 9.8\times 25.102}[/tex]

  = 22.181 m/s

Thus the above response is correct.

Find out more information about velocity here:

https://brainly.com/question/6504879

A phonograph record has an initial angular speed of 37 rev/min. The record slows to 14 rev/min in 1.6 s. What is the record’s average angular acceleration during this time interval? Answer in units of rad/s 2

Answers

Answer:

Acceleration will be [tex]\alpha =-1.50rad/sec^2[/tex]

Explanation:

We have given initial angular velocity [tex]\omega _i=37rpm[/tex]

In radian/sec initial angular velocity will be [tex]\omega _i=\frac{2\times \pi 37}{60}=3.873rad/sec[/tex]

Angular velocity after 1.6 sec is 14 rpm

So final angular velocity [tex]\omega _f=\frac{2\times \pi\times 14}{60}=1.465rad/sec[/tex]

Time t = 1.6 sec

We have to find the angular angular acceleration

From first equation of motion we know that

[tex]\omega _f=\omega _+\alpha t[/tex]

[tex]1.465=3.873+\alpha \times 1.6[/tex]

[tex]\alpha =-1.50rad/sec^2[/tex] here negative sign indicates that motion is deaccelerative in nature

A used car is pushed off an 87-ft-high sheer seaside cliff with a speed of 8 ft/s. Find the speed at which the car hits the water.

Answers

Final Answer:

The speed at which the car hits the water is approximately 75.2 feet per second.

Explanation:

To find the speed at which the car hits the water, we can use one of the kinematic equations that relates the initial velocity, acceleration due to gravity, the height it fell from, and the final velocity. The kinematic equation that we need is:


[tex]\[ v^2 = u^2 + 2gh \][/tex]


Where:
-  v  is the final velocity,
-  u  is the initial velocity,
-  g  is the acceleration due to gravity (which we will use  [tex]\( 32.174 \, \text{ft/s}^2 \)[/tex] for since we are dealing with feet),
-  h  is the height.

Here, we are given:
-  [tex]\( u = 8 \, \text{ft/s} \)[/tex] (initial velocity)
- [tex]\( h = 87 \, \text{ft} \)[/tex] (height)
- [tex]\( g = 32.174 \, \text{ft/s}^2 \)[/tex] (acceleration due to gravity)

Let's find the final velocity \( v \) using these values.

[tex]\[ v^2 = u^2 + 2gh \][/tex]

[tex]\[ v^2 = (8 \, \text{ft/s})^2 + 2 \cdot 32.174 \, \text{ft/s}^2 \cdot 87 \, \text{ft} \][/tex]

[tex]\[ v^2 = 64 \, \text{ft}^2/\text{s}^2 + 2 \cdot 32.174 \, \text{ft/s}^2 \cdot 87 \, \text{ft} \][/tex]
[tex]\[ v^2 = 64 \, \text{ft}^2/\text{s}^2 + 5591.148 \, \text{ft}^2/\text{s}^2 \][/tex]
[tex]\[ v^2 = 5655.148 \, \text{ft}^2/\text{s}^2 \][/tex]



Now we take the square root of both sides to solve for the final velocity \( v \):

[tex]\[ v = \sqrt{5655.148} \, \text{ft/s} \][/tex]

Performing the square root calculation, we get:

[tex]\[ v \approx 75.2 \, \text{ft/s} \][/tex]

So, the speed at which the car hits the water is approximately 75.2 feet per second.

The falling object in Example 2 satisfies the initial value problem dv/dt =9.8−(v/5), v(0) =0. (a) Find the time that must elapse for the object to reach 98% of its limiting velocity. (b) How far does the object fall in the time found in part (a)?

Answers

Answer:

a. [tex]t=19.56 s[/tex]

b.[tex]d=718.34[/tex]

Explanation:

The solution to the differential equation

[tex]\dfrac{dv}{dt}=9.8-\dfrac{v}{5}[/tex]

is the exponential function

[tex]v(t)=ce^{-0.2t}+49[/tex]

and we find [tex]c[/tex] from the initial condition [tex]v(0)=0:[/tex]

[tex]0=ce^{-0.2*0}+49\\\\0=c+49\\\\c=-49[/tex]

Therefore, we have

[tex]v(t)=-49e^{-0.2t}+49[/tex]

[tex]\boxed{ v(t)=49(1-e^{-0.2t})}[/tex]

Part A:

The maximum velocity that the object can reach is 49 (which the maximum value [tex]v(t)[/tex] can have).

Now, 98% of 49 is 48.02; therefore,

[tex]48.02=49(1-e^{-0.2t})[/tex]

[tex]0.98=1-e^{-0.2t}[/tex]

[tex]e^{-0.2t}=0.02[/tex]

[tex]\boxed{t=19.56 s}[/tex]

Part B:

The distance traveled is the integral of the speed:

[tex]d=\int_0^{19.56}v(t)*dt[/tex]

[tex]d=\int^{19.56}_0 {49(1-e^{-0.2t})} \, dt[/tex]

[tex]d=49[t+5e^{-0.2t}]_0^{19.56}[/tex]

[tex]\boxed{d=718.34}[/tex]

Final answer:

To find the time that must elapse for the object to reach 98% of its limiting velocity, we need to solve the differential equation. We can then find the distance the object falls by integrating the velocity function with respect to time.

Explanation:(a) Finding the time to reach 98% of the limiting velocity

To find the time it takes for the object to reach 98% of its limiting velocity, we need to solve the differential equation. First, we separate the variables by writing it as:

dv / (9.8 - (v/5)) = dt

Next, we integrate both sides:

∫ (1 / (9.8 - (v/5))) dv = ∫ dt

After evaluating the integrals, we can solve for v:

v = 49 - 49e^(-t/5)

Substituting v with 0.98 times the limiting velocity (which is 49), we can solve for t:

49 - 49e^(-t/5) = 0.98 * 49

Solving this equation will give us the time it takes for the object to reach 98% of its limiting velocity.

(b) Finding the distance the object falls

To find the distance the object falls, we need to integrate the velocity function, v, with respect to time:

∫ v dt

By evaluating the integral, we can calculate the distance the object falls in the time found in part (a).

Learn more about Differential equations here:

https://brainly.com/question/33814182

#SPJ3

Henrietta is jogging on the side-walk at 3.05 m/s on the way to her physics class. Bruce realizes that she forgot her bag of bagels, so he runs to the window, which is 38.0 m above the street level and directly above the sidewalk, to throw the bag to her. He throws it horizontally 9.00 s after she has passed below the window, and she catches it on the run. Ignore air resistance. (a) With what initial speed must Bruce throw the bagels so that Henrietta can catch the bag just before it hits the ground? (b) Where is Henrietta when she catches the bagels?

Answers

Answer:

12.9121148614 m/s

35.9393048982 m

Explanation:

t = Time taken

u = Initial velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s² = a

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 38=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{38\times 2}{9.81}}\\\Rightarrow t=2.78337865516\ s[/tex]

Time taken for the bag to fall is 2.78337865516 seconds

Time she has been jogging for

9+2.78337865516 = 11.78337865516 seconds

Total distance traveled by her

[tex]s=vt\\\Rightarrow s=3.05\times 11.78337865516=35.9393048982\ m[/tex]

Henrietta is 35.9393048982 m away

Velocity of throwing

[tex]\dfrac{35.9393048982}{2.78337865516}=12.9121148614\ m/s[/tex]

The velocity of throwing is 12.9121148614 m/s

Final answer:

Bruce must throw the bagels at an initial speed of 12.92 m/s for Henrietta to catch them, and Henrietta will be 35.93 m from the point directly below Bruce's window when she catches the bagels.

Explanation:

Projectile Motion and Kinematics Problem

To find the initial speed Bruce must throw the bagels, we need to consider two aspects of projectile motion: the horizontal motion, which is constant because air resistance is neglected, and the vertical motion, which is influenced by gravity.

Firstly, we need to calculate the time it takes for the bagels to fall from the window to the ground. Using the equation for free fall h =
1/2 g t², where h is the height (38.0 m), and g is the acceleration due to gravity (9.81 m/s²), we can solve for t, the time to fall:

38.0 m = 1/2 * 9.81 m/s² * t²

t = sqrt(2 * 38.0 m / 9.81 m/s²) = sqrt(7.74) ≈ 2.78 s

Bruce throws the bagels 9.00 s after Henrietta has passed below the window. In this time, Henrietta has jogged a distance of d = speed * time = 3.05 m/s * 9.00 s = 27.45 m horizontally.

Since Henrietta is already past the point directly below the window, we need to add the distance she will cover in the time it takes for the bagels to fall. This distance is additional distance = jogging speed * fall time = 3.05 m/s * 2.78 s ≈ 8.48 m.

Overall, Henrietta will be approximately 27.45 m + 8.48 m = 35.93 m from the point directly below the window when she catches the bagels.

To find the initial speed with which Bruce throws the bagels, we use the horizontal motion formula initial speed = distance / time, which gives us an initial speed of approximately 35.93 m / 2.78 s ≈ 12.92 m/s.

Bruce must throw the bagels horizontally at an initial speed of approximately 12.92 m/s for Henrietta to catch them just before they hit the ground, at a distance of approximately 35.93 m from the point directly below Bruce's window.

A rock is thrown straight up into the air with an initial speed of 55 m/s at time t = 0. Ignore air resistance in this problem. At what times does it move with a speed of 36 m/s? Note: There are two answers to this problem.

Answers

Answer:

After 1.938 sec velocity of rock will be 36 m/sec

Explanation:

We have given initial velocity at which rock is thrown u = 55 m/sec

Final velocity v = 36 m/sec

Acceleration due to gravity [tex]g=9.8m/sec^2[/tex]

According to first equation of motion we know that [tex]v=u+gt[/tex], here v is final velocity, u is initial velocity, g is acceleration due to gravity and t is time

So [tex]36=55-9.8t[/tex] ( Negative sign is due to rock is thrown upward )

So [tex]9.8t=19[/tex]

t = 1.938 sec

So after 1.938 sec velocity of rock will be 36 m/sec

How many kWh of energy does a 550-W toaster use in the morning if it is in operation for a total of 5.0 min? At a cost of 9.0 cents/k Wh, estimate how much this would add to your monthly electric energy bill if you made toast four mornings per week.

Answers

Answer:

0.0458 kWh

6.5736 cents

Explanation:

The formula for electric energy is given as

E = Pt................. Equation 1

Where E = Electric energy, P = Electric power, t = time.

Given; P = 550 W, t = 5 min = (5/60) h = 0.083 h.

Substituting into equation 1

E = 550(0.083)

E = 45.83 Wh

E = (45.83/1000) kWh

E = 0.0458 kWh.

Hence the kWh = 0.0458 kWh.

If the makes a toast four morning per week, and the are Four weeks in a month.

Total number days he makes toast in a month = 4×4 = 16 days.

t = 16×0.083 h = 1.328 h.

Total energy used in a month = 550(1.328)

E = 730.4 Wh

E = 0.7304 kWh.

If the cost of energy is 9.0 cents per kWh,

Then for 0.7304 kWh  the cost will be 9.0(0.7304) = 6.5736 cents.

Hence this would add 6.5736 cents to his monthly electric bill

Final answer:

A 550-W toaster in operation for 5.0 minutes uses 2.75 kWh of energy. If you make toast four mornings per week, it would add an estimated cost of $4.30 to your monthly electric energy bill.

Explanation:

To calculate the energy used by the toaster, we can use the formula E = Pt, where P is the power and t is the time. In this case, the power of the toaster is 550 watts and the time it is in operation is 5.0 minutes. Plugging these values into the formula, we get E = (550 W)(5.0 min) = 2750 W.min. To convert this to kilowatt-hours (kWh), we need to divide by 1000, so the energy used by the toaster is 2.75 kWh.

To estimate how much this would add to your monthly electric energy bill, we need to know how many times you use the toaster in a month. If you use it four mornings per week, that would be 4 days x 52 weeks / 12 months = 17.33 days per month. Multiplying the energy used by the toaster (2.75 kWh) by the number of days in a month (17.33), we get an estimate of 47.75 kWh per month. Finally, to find the cost, we multiply the energy (47.75 kWh) by the cost per kilowatt-hour (9.0 cents/kWh) and convert it to dollars, giving us an estimated cost of $4.30 per month.

Learn more about Calculating energy consumption of a toaster here:

https://brainly.com/question/15569623

#SPJ3

A certain carbon monoxide molecule consists of a carbon atom mc = 12 u and an oxygen atom mo = 17 u that are separated by a distance of d = 128 pm, where "u" is an atomic unit of mass.

Part (a) write a symbolic equation for the location of the center of mass of the carbon monoxide molecule relative to the position of the oxygen atom. This expression should be in terms of the masses of the atoms and the distance between them. 50%

Part (b) Calculate the numeric value for the center of mass of carbon monoxide in units of pm. Grade Summary Deductions Potential 0% 100%

Answers

Answer:

a)  x_{cm} = m₂/ (m₁ + m₂)   d , b)   x_{cm} = 52.97 pm

Explanation:

The expression for the center of mass is

                [tex]x_{cm}[/tex] = 1 / M  ∑ [tex]x_{i}[/tex] [tex]m_{i}[/tex]

Where M is the total masses, mI and xi are the mass and position of each element of the system.

Let's fix our reference system on the oxygen atom and the molecule aligned on the x-axis, let's use index 1 for oxygen and index 2 for carbon

              x_{cm} = 1 / (m₁ + m₂)   (0+ m₂ x₂)

Let's reduce the magnitudes to the SI system

             m₁ = 17 u = 17 1,661 10⁻²⁷ kg = 28,237 10⁻²⁷ kg

             m₂ = 12 u = 12 1,661 10⁻²⁷ kg = 19,932 10⁻²⁷ kg

             d = 128 pm = 128 10⁻¹² m

The equation for the center of mass is

               x_{cm} = m₂/ (m₁ + m₂)   d

b) let's calculate the value

            x_{cm} = 19.932 10⁻²⁷ /(19.932+ 28.237) 10⁻²⁷    128 10-12

            x_{cm} = 52.97 10⁻¹² m

            x_{cm} = 52.97 pm

(a) The expression for the center mass of these two atoms relative to oxygen atom is  [tex]X_{cm} = \frac{m_1 d_0 \ +\ m_2d}{m_1 + m_2}[/tex]

(b) The numeric value for the center of mass of carbon monoxide is 53 pm.

The given parameters;

mass of the carbon atom = 12umass of the oxygen atom, = 17 udistance between the atoms, = 128 pm

The center mass of these two atoms relative to oxygen atom is calculated as follows;

[tex]X_{cm} = \frac{m_1 d_0 \ +\ m_2d}{m_1 + m_2}[/tex]

where;

[tex]d_0[/tex] is distance of the atom in the fixed reference point (oxygen atom)

(b)

The numeric value for the center of mass of carbon monoxide in units of pm is calculated as follows;

[tex]X_{cm} = \frac{17u(0) \ +\ 12u(128 \ pm)}{(12u + 17u)}\\\\X_{cm} = \frac{(12 \times 128u) \ pm}{29u} \\\\X_{cm} = 53 \ pm[/tex]

Learn more here:https://brainly.com/question/13981379

If the car has the same initial velocity, and if the driver slams on the brakes at the same distance from the tree, then what would the acceleration need to be (in m/s2) so that the car narrowly avoids a collision?

Answers

Final answer:

Using the physics equation of motion and the given initial velocity, reaction time, and deceleration, one can determine whether a truck can stop in time to avoid a collision.

Explanation:

The question focuses on stopping distance and acceleration required to avoid a collision, indicating its base in Physics. If we have a truck moving at a constant velocity and it brakes at a certain distance from an obstacle, the minimum acceleration needed to avoid a collision can be calculated using the equation of motion v^2 = u^2 + 2as. Here, 'v' is the final velocity (0 m/s as the truck needs to stop), 'u' is the initial velocity, 'a' is the acceleration, and 's' is the distance over which the truck needs to stop.

To determine if the truck will hit the child, we must account for the driver's reaction time as well. During this reaction time, the truck continues to travel at its initial speed. After the reaction time, the truck will begin decelerating until it comes to a stop. The total stopping distance is the distance covered during the reaction time plus the distance covered during deceleration. The latter can be found using the deceleration rate and the formula mentioned above.

For the given scenario of the truck with an initial velocity of 10 m/s, a braking distance of 50 m, reaction time of 0.5 seconds, and deceleration of -1.25 m/s^2, we can calculate whether or not the truck will be able to stop in time to avoid hitting the child.

What length of tube would be required to produce a second tone under the same experimental conditions? Explain your answer.

Answers

To produce a second tone or the first overtone in a tube closed at one end, the length of the tube required is three times the length used for the fundamental frequency, resulting in a length of 1.008 m.

To understand the length required to produce a second tone or the first overtone in a tube closed at one end, it's essential to grasp the concept of harmonics in sound resonance. In such a tube, the resonant frequencies occur in odd multiples of the fundamental frequency. The first resonance the students observed, with the fundamental frequency of 256 Hz at a length of 0.336 m, corresponds to a quarter wavelength of the sound wave in the tube.

For the first overtone (second resonance), the air column in the tube must accommodate three-quarters of a wavelength, meaning the effective length will be three times larger than that of the fundamental. Thus, if the fundamental resonance occurs at a length of 0.336 m, the length for the second resonance will be:

0.336 m x 3 = 1.008 m.

This calculation is based on the understanding that the second tone or first overtone in a closed tube happens at three times the length necessary for the fundamental frequency, leading to the described increase in the length of the air column.

Final answer:

To find the length of tube for the second resonance, halve the initial length where the first resonance occurred at a fundamental frequency of 256 Hz.

Explanation:

The length required to produce a second tone under the same experimental conditions can be calculated based on the concept of resonance in a closed tube.

To find the length for the second resonance (first overtone), we know that the first resonance occurs at 0.336m for a fundamental frequency of 256 Hz. The second resonance, in this case, would occur at half the wavelength of the fundamental frequency, so the length would be half of the initial length: 0.168m.

The front of an aircraft hanger is being built in the shape of a parabola, which is 48 ft. wide, and has a maximum height of 18 ft., AND must have a rectangular doorway that is 8 ft. tall. What is the maximum width of the doorway? (Round your answer to one decimal place.)

Answers

Answer:

maximum width of the doorway = 35.77ft

Explanation:

The detailed calculation and derivation from first principle is as shown in the attachment

Answer:

the maximum width is x= 4√2 ft = 5.656 ft

Explanation:

for the parabola

y= a*x² + b*x + c

where y= height and x= width

an aircraft hangar should be symmetric with respect to the y axis , then

y(-x)=y(x) → a*x² + b*x + c = a*x² - b*x + c →-2*b*x =0 → b=0

it also should be pointing downwards → a is negative

, then the parabola would be

y= c- a*x²

since c= maximum height = 18 ft

then for y=0 , x= 48 ft/2 = 24 ft  →  0 = 18 ft - a*(24 ft)² → a= 1/32 ft⁻¹

then

y= 18 ft- 1/32 ft⁻¹ *x²

since the doorway cannot go beyond the parabola , the maximum possible doorway is obtained when the doorway touches the parabola.

then for a height y= 8 ft

8 ft = 18 ft- 1/32 ft⁻¹ *x²

x= 4√2 ft = 5.656 ft

Asteroids, meteoroids, and comets are remnants of the early solar system. (T/F)

Answers

Answer: Asteroids, meteoroids, and comets are remnants of the early solar system. This Statement is TRUE.

Explanation:

METEOROID: these are small rocky or metallic objects found in outer space.

ASTEROIDS: these are also known as minor planets of the inner solar system. They are irregularly shaped object in space that orbits the Sun.

COMETS: these are dusty chunk of ice, that moves in a highly elliptical orbit about the sun.

Asteroids, meteoroids, and comets as remnants of the early solar system was further proved in nebular hypothesis

initially proposed in the eighteenth century by German philosopher Immanuel Kant and French mathematician Pierre-Simon Laplace. (The word nebula means a gaseous cloud.) According to the modern version of the theory, about 4.5 to 5 billion years ago the solar system developed out of a huge cloud of gases and dust floating through space. These materials were at first very thin and highly dispersed.

An orange loses 1.2 kJ of heat as it cools per °C drop in its temperature. What is the amount of heat loss from the orange per °F drop in its temperature?

Answers

To solve this problem we will apply the conversion rate between Celcius and Fahrenheit degrees. We will use the direct relationship clearly and not the added degrees of scale conversion. We know from the statement that the orange loses heat at the rate of

[tex]Q = 1.2kJ/\°C[/tex]

We have the conversion to °F is given as

[tex]T (\°F) = 1.8T+32[/tex]

Calculate the amount of heat loss from orange per °F

[tex]Q = \frac{1.2}{1.8}[/tex]

[tex]Q = 0.667kJ/\°F[/tex]

Therefore the amount of heat loss from the orange per °F drop in its temperature is 0.667kJ/°F

Final answer:

The heat loss from an orange per °F drop is 0.67 kJ, calculated by taking 1.2 kJ per °C drop and dividing it by 1.8 to convert it to Fahrenheit,

Explanation:

The heat loss from the orange per °F drop in its temperature can be found by converting 1.2 kJ lost per 1 °C drop in temperature to kJ lost per 1 °F drop. This can be achieved using the formula that 1 °C equals 1.8 °F.

Therefore, the heat loss per degree Fahrenheit will be less than the heat loss per degree Celsius. We calculate this as follows:
(1.2 kJ / °C) / 1.8 = 0.67 kJ per °F.

So for every degree Fahrenheit that the orange cools, it will lose 0.67 kilojoules of heat.

Learn more about Heat loss here:

https://brainly.com/question/31857421

#SPJ3

If Earth were completely blanketed with clouds and we couldn’t see the sky, could we learn about the realm beyond the clouds? What forms of radiation might penetrate the clouds and reach the ground?

Answers

The definition of waves that propagate through electric fields is called electromagnetic waves. The earth, despite being covered with clouds, can be 'affected' because waves such as sunlight or the moon have the ability to penetrate and be visible to the inhabitants of the earth. Microwaves and radio waves would be less affected by the clouds that cover the Earth.

Through these waves, you can know that there is beyond the clouds.

Ultraviolet light, microwaves and radio waves are the radiations that penetrate through the clouds and reach the Earth's surface.

Therefore, the answer is Yes, ultraviolet light, microwaves and radio waves are the forms of radiation that penetrate and reach the ground.

Final answer:

It is indeed possible to learn about the universe beyond the clouds due to other non-visual forms of radiation, mainly radio waves and gamma rays, which can penetrate through the clouds and reach the earth's surface.

Explanation:

Yes, even if Earth were completely blanketed with clouds and we could not see the sky, we could still learn about the universe beyond the clouds. This is because, in addition to visible light which would be blocked by the clouds, the universe also emits various other forms of radiation that can penetrate the clouds and reach the ground.

Two major types of radiation that could penetrate the dense clouds are radio waves and gamma rays. Radio waves are a form of electromagnetic radiation used in many areas of science and technology, while gamma rays are highly energetic forms of radiation and are used in fields such as astronomy to get valuable information about distant celestial bodies.

Learn more about radiation here:

https://brainly.com/question/4075566

#SPJ3

The information on a one-gallon paint can is that the coverage, when properly applied, is 440 ft2. One gallon is 231 in3. What is the average thickness of the paint in such an application

Answers

Answer:

t= 0.00364 in

Explanation:

Given that

The volume of the paint ,V= 231 in³

The surface area ,A = 440 ft²

We know that

1 ft  = 12 in

That is why

A= 440 x 12 x 12 in²

A= 63360 in²

Lets take the thickness of the paint = t in

We know that

V= A t

[tex]t=\dfrac{V}{A}[/tex]

[tex]t=\dfrac{231}{63360}\ in[/tex]

t= 0.00364 in

Therefore the thickness ,t= 0.00364 in

Final answer:

To find the average thickness of the paint, divide the volume of paint by the area covered. This results in an average thickness of approximately 0.003645 inches, or about 0.000304 feet when the paint is applied as per the can's instructions.

Explanation:

To find the average thickness of the paint applied, we need to calculate the volume of paint used per unit of area covered. The volume of one gallon of paint is 231 cubic inches, and the coverage is 440 square feet. To convert the coverage to square inches, we multiply by the number of square inches in a square foot, which is 144 (12 inches × 12 inches).

The total coverage in square inches is 440 ft2 × 144 in2/ft2 = 63,360 in2. We can then find the average thickness by dividing the volume of paint by the area covered: Thickness (in inches) = Volume (in cubic inches) / Area (in square inches).

This gives us an average thickness of 231 in3 / 63,360 in2, which simplifies to approximately 0.003645 inches. This can also be converted to feet by knowing that 1 inch is equal to 1/12 of a foot, so the average paint thickness is roughly 0.003645/12 feet when applied as instructed on the paint can.

Which of the following statement(s) about energy and phase is/are correct? Select all that apply. Choose one or more: A. While only one phase is present, adding or removing energy changes PE but not KE. B. While only one phase is present, adding or removing energy changes KE but not PE. C. During a phase change, adding or removing energy changes KE but not PE. D. During a phase change, adding or removing energy changes PE but not KE.

Answers

Final answer:

In a single phase, the addition or removal of energy changes Kinetic Energy not Potential Energy. However, during a phase change, this energy addition or subtraction results in a change in Potential Energy, not Kinetic Energy.

Explanation:

The subject of this question is energy and phase, particularly in the context of Potential Energy (PE) and Kinetic Energy (KE). When only one phase is present, adding or removing energy will mainly change the KE, not the PE. This is because the energy is utilized to speed up or slow down the particles, thus changing their kinetic energy. However, during a phase change, adding or removing energy changes PE but not KE as it alters the state rather than the speed of the particles. Statement B is the one that is accurate while only one phase is present, whereas the correct option for the phase change scenario is option D.

Learn more about Energy and Phase Changes here:

https://brainly.com/question/32144084

#SPJ3

You are observing a spacecraft moving in a circular orbit of radius 100,000 km around a distant planet. You happen to be located in the plane of the spacecraft’s orbit. You find that the spacecraft’s radio signal varies periodically in wavelength between 2.99964 m and 3.00036 m. Assuming that the radio is broadcasting at a constant wavelength, what is the mass of the planet?

Answers

To solve this problem we will apply the concepts related to centripetal acceleration, which will be the same - by balance - to the force of gravity on the body. To find this acceleration we must first find the orbital velocity through the Doppler formulas for the given periodic signals. In this way:

[tex]v_{o} = c (\frac{\lambda_{max}-\bar{\lambda}}{\bar{\lambda}}})[/tex]

Here,

[tex]v_{o} =[/tex]  Orbital Velocity

[tex]\lambda_{max} =[/tex] Maximal Wavelength

[tex]\bar{\lambda}} =[/tex] Average Wavelength

c = Speed of light

Replacing with our values we have that,

[tex]v_{o} = (3*10^5) (\frac{3.00036-3}{3})[/tex]

Note that the average signal is 3.000000m

[tex]v_o = 36 km/s[/tex]

Now using the definition about centripetal acceleration we have,

[tex]a_c = \frac{v^2}{r}[/tex]

Here,

v = Orbit Velocity

r = Radius of Orbit

Replacing with our values,

[tex]a = \frac{(36km/s)^2}{100000km}[/tex]

[tex]a= 0.01296km/s^2[/tex]

[tex]a = 12.96m/s^2[/tex]

Applying Newton's equation for acceleration due to gravity,

[tex]a =\frac{GM}{r^2}[/tex]

Here,

G = Universal gravitational constant

M = Mass of the planet

r = Orbit

The acceleration due to gravity is the same as the previous centripetal acceleration by equilibrium, then rearranging to find the mass we have,

[tex]M = \frac{ar^2}{G}[/tex]

[tex]M = \frac{(12.96)(100000000)^2}{ 6.67*10^{-11}}[/tex]

[tex]M = 1.943028*10^{27}kg[/tex]

Therefore the mass of the planet is [tex]1.943028*10^{27}kg[/tex]

A load consists of a 70-Ω resistor in parallel with a 90-μF capacitor. If the load is connected to a voltage source vs(t) = 160cos 2000t, find the average power delivered to the load.

Answers

Answer:

Power delivered by the source will be 182.912 watt

Explanation:

We have given a load is consist of a resistor of 70 ohm in parallel with [tex]90\mu F[/tex] capacitance

Voltage source is given [tex]v_s(t)=160cos(2000t)[/tex]

So maximum value of voltage source is 160 volt

So rms value [tex]v_{r}=\frac{v_m}{\sqrt{2}}=\frac{160}{1.414}=113.154volt[/tex]

We know that average power delivered by the source will be equal to average power absorbed by the resistor

So power absorbed by the resistor [tex]P=\frac{v_r^2}{R}=\frac{113.154^2}{70}=182.912watt[/tex]

So power delivered by the source will be 182.912 watt

By standard convention, both the electric potential and the the electric potential energy between two charges is taken to be zero in what configuration?

Answers

Answer: at when distance r = infinity.

Explanation: The formulae for the electric potential of an electric charge to an arbitrary point is given by the formulae below

V = q/4πεr

V = electric potential (volts)

q = magnitude of electric charge

ε = permittivity of free space

r = distance between arbitrary point and charge.

In the equation above, it can be seen that only electric potential (v) and distance (r) is a variable, and there is an inverse relationship between them (an increase in one leads to a decrease in the other)

Thus to have zero value of electric potential (v= 0) we have to have the largest value of r ( r = infinity).

Same goes for electric potential energy between two charges, the formulae is given below as

W = q1 *q2/4πεr

W= electric potential energy

q1 = magnitude of first charge.

q2 = magnitude of second charge

ε = permittivity of free space

r = distance between arbitrary point and charge.

Also, all values are constant aside from electric potential energy (w) and distance (r) which have an inverse relationship.

Thus to have zero value of electric potential energy (w =0), we have to get an infinite value of distance ( r =infinity)

If instead the distance between the moon and the planet were 7 times as large (no change in mass), what would the magnitude of the force be?

Answers

Answer:

Reduced by 49 times

Explanation:

We have Newton formula for attraction force between 2 objects with mass and a distance between them:

[tex]F_G = G\frac{M_1M_2}{R^2}[/tex]

where G is the gravitational constant. [tex]M = M_1 = M_2[/tex] are the masses of the 2 objects. and R is the distance between them.

Since R squared is in the denominator of the formula, if we make it 7 times as large with no change in mass, gravitational force would be dropped by 7*7 = 49 times

To solve the problem we should know about Newton's Law of gravity.

What is Newton's Law of gravity?

According to Newton's law of gravity, there is an attractive force between any two-particle carrying mass, such that the force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

[tex]F \propto m_1m_2\\\\F \propto \dfrac{1}{R^2}[/tex]

[tex]F = G\dfrac{m_1m_2}{R^2}[/tex]

Where G is the proportionality constant and the value of G is 6.67 x 10-11 N m² / kg².

The force between the two will be [tex]\dfrac{1}{49}[/tex] time of the force before.

Given to us,

Mass of the planet = [tex]m_1[/tex]Mass of the earth = [tex]m_2[/tex]distance between the moon and the planet is 7 times

Assumption

Let's assume that the distance between the moon and the planet is d.

Values

As it is given that there is no change in the mass of the moon or the planet, therefore,

Mass of the planet = [tex]m_1[/tex]Mass of the earth = [tex]m_2[/tex]

Also, it is given that the distance between them changes to 7 times, therefore,

distance between the moon and the planet =7d

Newton's Law of gravity

Substitute the value Newton's Law of gravity,

[tex]F = G\dfrac{m_1m_2}{(7d)^2}\\\\\\F = G\dfrac{m_1m_2}{49d^2}[/tex]

Thus, the force between the two will be [tex]\dfrac{1}{49}[/tex] time of the force before.

Learn more about Newton's Law of gravity:

https://brainly.com/question/1017661

Calculate the molecular weight of a polyethylene molecule with n=750. Express your answer to three significant figures.

Answers

Final answer:

To calculate the molecular weight of a polyethylene molecule with n=750, multiply the molecular weight of the ethylene unit by n.

Explanation:

To calculate the molecular weight of a polyethylene molecule with n=750, we need to know the molecular formula and the atomic weights of the elements present in the molecule. Polyethylene is made up of repeating ethylene (C2H4) units, so we can calculate the molecular weight of the polyethylene molecule by multiplying the molecular weight of the ethylene unit (28.05 g/mol) by the value of n (750).

Calculation:
Molecular weight of polyethylene = Molecular weight of ethylene unit × n = 28.05 g/mol × 750 = 21,037.5 g/mol

Therefore, the molecular weight of the polyethylene molecule with n=750 is 21,037.5 g/mol, rounded to three significant figures.

Learn more about Calculating Molecular Weight of Polyethylene here:

https://brainly.com/question/32556274

#SPJ3

Suppose electrons in a TV tube are accelerated through a potential difference of 2.00 104 V from the heated cathode (negative electrode), where they are produced, toward the screen, which also serves as the anode (positive electrode), 25.0 cm away.At what speed would the electrons impact the phosphors on the screen? Assume they accelerate from rest, and ignore relativistic effects?

Answers

Answer:

83816746.4254 m/s

Explanation:

m = Mass of electron = [tex]9.11\times 10^{-31}\ kg[/tex]

q = Charge of electron = [tex]1.6\times 10^{-19}\ C[/tex]

V = Voltage = [tex]2\times 10^4\ V[/tex]

The kinetic energy of the electron is

[tex]K=\dfrac{1}{2}mv^2[/tex]

Energy is given by

[tex]E=qV[/tex]

Balancing the energy

[tex]qV=\dfrac{1}{2}mv^2\\\Rightarrow v=\sqrt{\dfrac{2qV}{m}}\\\Rightarrow v=\sqrt{\dfrac{2\times 1.6\times 10^{-19}\times 2\times 10^4}{9.11\times 10^{-31}}}\\\Rightarrow v=83816746.4254\ m/s[/tex]

The velocity of the electrons is 83816746.4254 m/s

What is a constellation as astronomers define it today? What does it mean when an astronomer says, "I saw a comet in Capricorn last night?"

Answers

A constellation, in astronomy, is a conventional grouping of stars, whose position in the night sky is apparently invariable. The peoples, generally of ancient civilizations, decided to link them through imaginary strokes, thus creating virtual silhouettes on the celestial sphere. From 1928, the International Astronomical Union (UAI) decided to officially regroup the celestial sphere into 88 constellations with precise limits, such that every point in the sky would be within the limits of a figure. When an astronomer says he saw a comet in Capricorn last night, it means that he saw a comet in the direction of the constellation of Capricorn.

A sly 1.5-kg monkey and a jungle veterinarian with a blow-gun loaded with a tranquilizer dart are 25 m above the ground in trees 70 m apart. Just as the veterinarian shoots horizontally at the monkey, the monkey drops from the tree in a vain attempt to escape being hit. What must the minimum muzzle velocity of the dart be for the dart to hit the monkey before the monkey reaches the ground?

Answers

Answer:

31 m/s

Explanation:

As both the monkey and the darts are subjected to constant gravitational acceleration g = 9.8 m/s2 and both start from rest (vertically speaking). Their vertical position will always be the same. For the dart to hit the monkey, its horizontal position must be the same as the monkey's, which is unchanged before reaching the ground. Therefore, the time it takes for the dart to travel across 70 m must be less than the time it takes for the monkey to drop 25m to the ground. We can find it out using the following equation of motion

[tex]s_m = gt_m^2/2[/tex]

[tex]25 = 9.8t_m^2/2[/tex]

[tex]t_m^2 = 50/9.8 = 5.1[/tex]

[tex]t_m = \sqrt{5.1} = 2.26 s[/tex]

For the dart to takes less that 2.26 s to travel 70m, its horizontal speed must at least be 70 / 2.26 = 31 m/s

Other Questions
In the 1960s, a population of squirrels was being studied in Alabama and the coat color of the squirrels was found to range from the more common gray color (dominant) to the less common red color (recessive). When they sampled an area, they found 536 gray squirrels and 64 red squirrels. Assuming the population is at Hardy Weinberg's equilibrium, answer the following questions:1. What is the frequency of the homozygous recessive individuals? Duration would NOT be an appropriate measure for: A Treasury bonds B Corporate bonds C Corporate common stock D Corporate preferred stock How much energy is required to heat a frozen can of juice (360 grams- mostly water) from 0 degrees Celsius ( the temperature of an overcooled refrigerator) to 110 degrees ( the highest practical temperature within a microwave oven)? What is Boczkowski saying about the influences of fake news on our current informational climate? What are the three effects that he sees as most damaging to our society, and is he optimistic or pessimistic about the near future of journalism? Assume that a clay model of a lion has a mass of 0.225 kg and travels on the ice at a speed of 0.85 m/s. It hits another clay model, which is initially motionless and has a mass of 0.37 kg. Both being soft clay, they naturally stick together. What is their final velocity? What properties should the head of a carpenters hammer possess? How would you manufacture a hammer head? y and z are whole numbers. y If, in equilibrium, the cross-price elasticity between airline tickets and gasoline is 2.2; when the price of the gasoline increases by 4%, the quantity demanded of airline tickets increases by nothing% (enter your response rounded to two decimal places). Consider Koskooshs memory of the bull moose. What meaning does this memory contribute to the storys central themes? Select all that apply.The goal of Chinese nationalism was to free China from During which era did the common man make the most gains toward achieving the american dream of individual rights The Immigration Restriction League, while having a large membership, failed to have any impact on legislation in Congress limiting the influx of immigrants to the United States.a) trueb) false The process of _____________ is modeled in the plant cell diagrams seen here. Joe, owner of ABC Electronics, just discovered that his trusted friend Paul, his accountant for over 30 years, has been mishandling the company books and stealing from the company bank account. Joe must decide whether to publicly ignore his friend's actions and avoid bad publicity for the firm, an example of ____. An airplane departs from LA and flies to NY every 30 minutes. The trip takes 3 hours and 5 minutes. An airplane takes off from NY at the same time that one takes of from LA and flies to LA at the same speed. How many planes does it pass going in the opposite direction? Scura makes sun block and their annual revenues depend on how much they sell. Let x be the quantity of 5 oz. bottles of sun block that they make and sell each year measured in 1000 's of bottles. Thus if x=10 then they make and sell 10000 bottles of sun block each year. If x=25 then they make and sell 25000 bottles of sun block each year.a. If x=50 how many bottles of sun block does Scura make and sell?b. What is x equal to if Scura produces and sells 45000 bottles of sunblock? Anything that stands for or represents something else William has 24 24 cans of fruit and 60 60 cans of vegetables that he will be putting into bags for a food drive. He wants each bag to have the same number of cans of each type of food. He uses all the cans.how much of each of this bigs will have and how much cans of fruitwill they have and how much cans of vegetables will they have Predict what the cross section of a four-year-old tree trunk would look like if there were drought conditions for the first two years of the tree's life and wet conditions for the most recent two years. Using more than one measure of a variable, such as using a survey and observation, is known as ______. Steam Workshop Downloader