A helicopter, initially hovering 40 feet above the ground, begins to gain altitude at a rate of 21 feet per second. Which of the following functions represents the helicopter’s altitude above the ground y, in feet, t seconds after the helicopter begins to gain altitude?

Answers

Answer 1

Answer: y = 40 + 21t

Explanation:

Apply the equation of distance covered.

d = vt + C

Where d is the distance covered

v = velocity , t = time

C = constant = initial distance covered

For the case above....

d = y

y(t) = vt + C

But y(0) =40 = C

C = 40ft

velocity v = 21 ft/s

Therefore, the equation of the altitude is given by;

y(t) = 21t +40

y = 40 + 21t

Answer 2
Final answer:

The function representing the helicopter's altitude as it gains height is y = 21t + 40. The helicopter gains altitude at a rate of 21 feet per second and it starts at 40 feet above the ground.

Explanation:

The function that represents this situation is a linear function because the change in the helicopter's altitude is constant over time.

The formula for a linear function is y = mx + b, where m is the slope (rate of change), b is the y-intercept (initial value), y is the dependent variable (altitude in this case), and x is the independent variable (time in this case).

In this scenario, we're given that the helicopter starts 40 feet above the ground (our y-intercept, b) and it's gaining altitude at 21 feet per second (our slope, m).

Therefore, the function to represent the helicopter’s altitude, y, after t seconds can be written as y = 21t + 40.

Learn more about Linear Functions here:

https://brainly.com/question/31353350

#SPJ3


Related Questions

When transiting a great distance a Navigator prepares a __________ track so the ship can steady courses while driving the shortest distance.

Answers

Answer:

composite track

Explanation:

To travel an incredible circular track, the guide must constantly change course because the extraordinary circular track is a turn when plotted on a Mercator map. It is ridiculous to try to navigate an incredible circular route. All things considered, to make the best use of the shorter cruise separation from the extraordinary circular runway, pilots generally divide an incredible hover runway between the underlying position and the target into many much smaller sections ( for trajectory purposes) of approximately one to several days of cruising time (based clearly on the specialty and conditions) and making course changes every day simultaneously, generally in the early afternoon. Absolute separation is thus the set of separations of these fragments determined by the methods of Mercator Sailing. A potential problem with the incredible circular track, however, is the most limited route between two areas, similarly for most tracks closer to the well (or at a higher range) than the two points, starting point or goal. The high areas are often in danger due to the terrible climate and icing. A protected thought of a veteran sailor is to set a range limit for the long voyage plan. This arrangement is called an extraordinary composite circle course arrangement, terminated with way points. This minicomputer soothes the monotonous procedure for deciding these way points for travel.

Answer:

The answer is composite track.

Explanation:

For ships to cover the shortest distance between two points on the surface of the earth, navigators base their calculations using great circles. A great circle is circular line drawn on a globe that follows the circumference of the earth ( thereby dividing the globe into equal halves ).  As the ship moves from one point to the other, the navigator adjusts its course because the earth is on a constant rotation. Great circles, because they usually cover distances of about 40,000km are broken down into smaller lines called Rhumb so as to provide a steady course. The one common great circle is the equator and the ship's heading does not change on this line.

At standard temperature and pressure, a 0.50 mol sample of H2 gas and a separate 1.0 mol sample of O2 gas have the same A. average molecular knetic energyB. average molecular speedC. volumeD. effusion rateE. density

Answers

Answer:

The correct answer is option A.

Explanation:

The average kinetic energy of the gas particle only depends upon the temperature of the gas.

The formula for average kinetic energy is:

[tex]K.E=\frac{3}{2}kT[/tex]

where,

k = Boltzmann’s constant = [tex]1.38\times 10^{-23}J/K[/tex]

T = temperature

So, at standard temperature and pressure 0.50 moles of hydrogen and 1.0 mole of oxygen sample will have same value of average kinetic energy.

Where as in other option enlisted in question , molar masses of both gases will be involved which will give different answers for both the gases.

This question involves the concepts of the average kinetic energy of the molecules of a gas and temperature.

The gases will have the same "A. average molecular kinetic energy".

The average kinetic energy of gas molecules is given by the following formula:

[tex]K.E = \frac{3}{2}KT[/tex]

where,

K.E = average kinetic energy

K = Boltzmann constant

T = absolute temperature

Hence, the average kinetic energy depends upon the absolute temperature only. Since the temperature is the same for both gases. Hence, their average kinetic energy will also be the same.

Learn more about average kinetic energy of gas molecules here:

https://brainly.com/question/24031197?referrer=searchResults

Dr. Wolski does research on the potential relationship between neurotransmitter deficiencies and mood states. Which psychological specialty does Dr. Wolski's research best represent

Answers

Answer:

Bio psychology

Explanation:

Since, Dr. Wolski does research on the potential relationship between neurotransmitter deficiencies and mood states. His psychological specialty must be biological psychology.

Biological psychology, or bio psychology, is a discipline in which scientific investigation and clinical practice investigates the relation between brain and body. In this area scholars evaluate the biological basis of feelings, impulses and behaviors.

You are given a vector in the xy plane that has a magnitude of 84.0 units and a y-component of -67.0 units.

(a) What are the two possibilities for its x-component?

(b) Assuming the x-component is known to be positive, specify the magnitude of the vector which, if you add it to the original one, would give a resultant vector that is 80.0 units long and points entirely in the negative x-direction.

(c) Specify the direction of the vector.

Answers

Answer:

Explanation:

a)Magnitude = [tex]\sqrt{(x1-y2)^{2} + (x1-x2)^{2} }[/tex]

84=[tex]\sqrt{(0- (-67))^{2} + (x-0)^{2} }[/tex]

x= +50.67 or -50.67 units

b) We are given that the resultant is entirely in the -ve x direction which means that the y-component of the resultant is 0; It means that the y-component of the next vector = -ve of the y component of the initial vector i.e 67.

To make the magnitude 80 units in the negative x direction where the y component is 0, the x component must be -130.67(-50.67 - 80) as the x component is + 50.67units.

Magnitude = [tex]\sqrt{(0- (67))^{2} + (-130.67)^{2} }[/tex] = 146.85 units

c) The direction vector = 67/146.85 i  - 130.67/146.85 j where i corresponds to the vector in y direction and j corresponds to the vector in x direction. Or this vector is at an angle of 180 - [tex]Tan^{-1}(67/130.67)degrees[/tex] i.e 152.85 degrees from the +ve x-axis.

A) The two possibilities for the x-component are; +50.67 units or -50.67 units

B) The magnitude of the vector added to the original one is; 146.85 units

C) The direction of the vector is; θ = 207.15°

A) We are given;

Magnitude of vector = 84 units

Y-component of the vector = -67 units

We know that the formula for for 2 vectors like this in x and y direction is;

A = xi^ + yj^

Where A is the magnitude of the resultant

x is the value of the x-component

y is the value of the y-component

Thus;

A = √(x² + y²)

84 = √(x² + (-67)²)

84² = x² + 4489

7056 = x² + 4489

x = ±√(7056 - 4489)

x = ±50.67 units

B) From A above, let us take the positive value of the x-component and as such our original vector will be;

A = 50.67i^ - 67j^

We want to add another vector to this that would make the resultant to be -80 units in the x direction. Thus, A = -80i and if the new additional vector is V^, then we have;

-80i^ = (50.67i^ - 67j^) + V^

V^ = -(80 + 50.67)i^ + 67j^

V = -130.67i^ + 67j^

The magnitude of vector V is;

V = √(x² + y²)

V = √(-130.67)² + 67²)

V = 146.85 units

C) The direction of the vector V is;

θ = tan^(-1) (y/x)

θ = tan^(-1) (67/-130.67)

θ = -27.15°

Since it points entirely in the negative x axis, then the angle is;

180 - (-27.15) = 207.15°

Read more at; https://brainly.com/question/1550219

the volume of an iron sphere is 3.00cm cubed after being heated from 20.0c to 600.0 c what was the initial volume of the iron sphere at 20.0c

Answers

Answer:

V = 2.94cm³

The initial volume at 20°C is 2.94cm³

Explanation:

As the temperature of the iron sphere increases the volume of the sphere also increase.

Using the equation for volumetric expansion:

∆V = VαΔT

where ;

V is the initial volume

α is the volumetric expansion coefficient

∆V is the change in Volume

∆T is the change in temperature

After Expansion the final volume can be written as:

Vf = V + ∆V

Vf = V + VαΔT

Vf = V(1 + αΔT)

making V the subject of formula;

V = Vf/(1+αΔT) .....1

Given:

Vf = 3.00cm³

ΔT= 600-20 = 580

And from the test book.

α = 35.5 × 10⁻⁶K⁻¹

Substituting the values into eqn 1

V = 3.00/(1+580× 35.5×10^-6)

V = 3.00/(1+0.021) = 3.00/1.021

V = 2.94cm³

The initial volume at 20°C is 2.94cm³

Answer: 1cm3

Explanation:

V1 =?

V2 = 3cm3

T1 = 20°C = 20 + 273 = 293K

T2 = 600°C = 600 + 273 = 873K

V1 /T1 = V2 /T2

V1 / 293 = 3 / 873

V1 = 293 x ( 3 / 873)

V1 = 1 cm3

An unknown solid with a mass of 2.00 kilograms remains in the solid state while it absorbs 32.0 kilojoules of heat. Its temperature rises 4.00 degrees Celsius. What is the specific heat of the unknown solid?

Answers

Answer: The specific heat of the unknown solid is [tex]4.00J/g^0C[/tex]

Explanation:

As we know that,  

[tex]q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]    (1)

where,

q = heat absorbed  = 32.0 kJ = [tex]32.0\times 10^3J[/tex] J      (1kg=1000g)

[tex]m[/tex] = mass of unknown solid= 2.00 kg  = [tex]2.00\times 10^3g[/tex] (1kg=1000g)

[tex]T_{final}[/tex] = final temperature

[tex]T_{initial}[/tex] = initial temperature

[tex]\Delta T[/tex] =[tex]4.00^0C[/tex]

[tex]c[/tex] = specific heat of unknown solid = ?

Now put all the given values in equation (1), we get

[tex]32.0\times 10^3J=2.00\times 10^3g\times c\times (4.00^0C)][/tex]

[tex]c=4.00J/g^0C[/tex]

Therefore, the specific heat of the unknown solid is [tex]4.00J/g^0C[/tex]

The scientific heat of the unknown solid will be "4.00 J/g°C".

Specific heat:

Given values are:

Heat absorbed, q = 32.0 kJ or, [tex]32.0\times 10^3[/tex] J

Mass, m = 2.00 kg or, [tex]2.00\times 10^3[/tex] g

Rise in temperature, ΔT = 4.00°C

We know the relation,

→ q = m×c×ΔT

or,

→    = m×c×([tex]T_{final} - T_{initial}[/tex])

By substituting the values,

[tex]32.0\times 10^3=2.00\times 10^3\times c\times 4.00[/tex]

             [tex]c = 4.00[/tex] J/g°C    

Thus the above answer is appropriate.

Find out more information about specific heat here:

https://brainly.com/question/1768769

A simple pendulum is swinging back and forth through a small angle, its motion repeating every 1.06 s. How much longer should the pendulum be made in order to increase its period by 0.32 s?

Answers

Answer:

The pendulum should be made longer by 0.194m in order to increase its period by 0.32s

Explanation:

using the formula T= 2π[tex]\sqrt{\frac{L}{g} }[/tex]

rearranging the equation and making L subject of formula we have;

L=T²g/4π²

lets calculate the length when T=1.06s

g=9.8m/s² , π=3.124

[tex]L=\frac{1.06^{2}*9.8 }{4*3.142^{2} }[/tex]

L=0.279m

the new period after its increased by  0.32s = 1.06+0.32 =1.38s

[tex]L_{2}=\frac{1.38^{2}*9.8 }{4 *3.142^{2} }[/tex]

[tex]L_{2}=0.473m[/tex]

increase in length = 0.473 -0.279

               =0.194m

The pendulum should be "0.194 m" longer.

According to the question,

Time,

[tex]T = 1.06 \ s[/tex]

We know,

[tex]g = 9.8 \ m/s^2[/tex][tex]\pi = 3.124[/tex]

By using the formula,

→ [tex]T = 2 \pi \sqrt{\frac{L}{g} }[/tex]

or,

→ [tex]L = \frac{T^2g}{4 \pi^2}[/tex]

By substituting the values, we get

→     [tex]= \frac{1.06^2\times 9.8}{4\times 3.142^2}[/tex]

→     [tex]= 0.279 \ m[/tex]

Now,

The new period after it increased by 0.32 s, we get

= [tex]1.06+0.32[/tex]

= [tex]1.38 \ s[/tex]

then,

→ [tex]L_2 = \frac{1.38^2\times 9.8}{4\times 3.142^2}[/tex]

        [tex]= 0.473 \ m[/tex]

hence,

The increase in length will be:

= [tex]L_2-L[/tex]

= [tex]0.473-0.279[/tex]

= [tex]0.194 \ m[/tex]

Thus the answer above is right.

Learn more:

https://brainly.com/question/14951393

Wo baseballs are fired into a pile of hay. If one has twice the speed of the other, how much farther does the faster baseball penetrate?

Answers

Answer:

Explanation:

Given

Two baseballs are fired into a pile of hay such that one has twice the speed of the other.

suppose u is the velocity of first baseball

so velocity of second ball is 2u

suppose [tex]d_1[/tex] and [tex]d_2[/tex] are the penetration by first and second ball

using [tex]v^2-u^2=2 ad[/tex]

where v=final velocity

u=initial velocity

a=acceleration

d=displacement

here v=0 because ball finally stops

[tex]0-u^2=2ad_1----1[/tex]

for second ball

[tex]0-(2u)^2=2ad_2----2[/tex]

divide 1 and 2 we get

[tex]\frac{u^2}{4u^2}=\frac{d_1}{d_2}[/tex]

as deceleration provided by pile will be same

[tex]\frac{1}{4}=\frac{d_1}{d_2}[/tex]

[tex]d_2=4d_1[/tex]

thus faster ball penetrates 4 times of first ball

Final answer:

The faster baseball will penetrate farther into the pile of hay due to the greater change in kinetic energy caused by its higher speed.

Explanation:

In this scenario, we can analyze the problem using the concept of work and energy. When the slower baseball and the faster baseball are both fired into the pile of hay, the work done by air resistance on each baseball will be different. The work done by air resistance is equal to the change in kinetic energy of the baseball. Since the faster baseball has twice the speed of the slower baseball, it will experience a greater change in kinetic energy and therefore penetrate farther into the pile of hay.

What is the difference between a continuous spectrum and a line spectrum

Answers

Answer:

Explanation:

The continuous spectrum is a band of visible colors of light. The continuous spectrum contains all the colors of all the visible wavelengths. Usually, most of the light is emitted from a single source. Whereas a line spectrum contains only a few colors and wavelengths of the visible spectrum with gaps of the discontinuity between them. The line spectrum is usually emitted by an excited electron of an atom that is going back to its ground state.
Final answer:

A continuous spectrum shows all colors of the rainbow with no gaps, produced by a solid or very dense gas emitting radiation. In contrast, a line spectrum consists of only certain discrete wavelengths - either as an absorption spectrum with dark lines representing absorbed wavelengths, or as an emission spectrum showing bright lines for emitted wavelengths from excited gas atoms.

Explanation:

The difference between a continuous spectrum and a line spectrum mainly lies in the type of light they represent. A continuous spectrum is formed when a solid or a very dense gas gives off radiation, showing an array of all wavelengths or colors of the rainbow. This can be seen when white light is passed through a prism as represented in Figure 5.10. It's like viewing a rainbow where all the colours blend into each other without any gaps.

On the other hand, a line spectrum, which could either be an absorption or an emission spectrum, consists of light in which only certain discrete wavelengths are present. Absorption spectrum appears as a pattern of dark lines or missing colors superimposed on the continuous spectrum, created when a cloud of gas absorbs certain wavelengths from the continuous spectrum behind it. Meanwhile, an emission spectrum appears as a series of bright lines when we examine an excited gas cloud, demonstrating that the gas is emitting light at only certain wavelengths, as showcased in Figure 5.12.

Learn more about Continuous and Line Spectrums here:

https://brainly.com/question/14488593

#SPJ12

Each of the following diagrams shows a spaceship somewhere along the way between Earth and the Moon (not to scale); the midpoint of the distance is marked to make it easier to see how the locations compare. Assume the spaceship has the same mass throughout the trip (that is, it is not burning any fuel). Rank the five positions of the spaceship from left to right based on the strength of the gravitational force that Earth exerts on the spaceship, from strongest to weakest.

Answers

The five positions of the spaceship from left to right are based on the strength of the gravitational force that Earth exerts on the spaceship, from strongest to weakest is [tex]5, 1, 2, 4, 3[/tex]

Gravity, or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are brought toward one another.

The gravitation force that Earth exerts on the spaceship will be:[tex]F_{ES}=(Gm_1m_E)/r^2[/tex]

Where [tex]F_{ES}[/tex] the force exerted on the spaceship by Earth [tex]m_1\\\\[/tex] is the mass of the spaceship and r is the distance between the.

[tex]F_{ES}\ \alpha\ 1/r^2[/tex]

This indicates larger the distance smaller will be the force. The correct order is [tex]5, 1, 2, 4, 3[/tex].

To know more about the gravitational force:

https://brainly.com/question/32609171

#SPJ12

Final answer:

The strength of the gravitational force that Earth exerts on a spaceship varies depending on the distance between them. The force is strongest when the spaceship is closest to Earth and weakest when it is closest to the Moon.

Explanation:

Position 1: The spaceship is closest to Earth, so the gravitational force is strongest here. Position 2: The spaceship is moving away from Earth, so the gravitational force is slightly weaker than at Position 1 but stronger than at the other positions. Position 3: The spaceship is at the midpoint between Earth and the Moon, so the gravitational force is weaker than at Positions 1 and 2 but still stronger than at Positions 4 and 5. Position 4: The spaceship is closer to the Moon than to Earth, so the gravitational force from the Moon is stronger than the force from Earth. Position 5: The spaceship is closest to the Moon, so the gravitational force from the Moon is strongest here, and the force from Earth is weakest.

Learn more about Gravitational force here:

https://brainly.com/question/18961003

#SPJ3

What conclusion can be derived by comparing the central tendencies of the two data sets?

A: {7, 6, 3, 1, 6, 2, 4, 6, 3, 5}

B: {2, 2, 2, 3, 4, 5, 2, 8, 7, 6}

A.
The mean of set A is smaller than the mean of set B.

B.
The median of set A is greater than the median of set B.

C.
The median and the mean of set B are greater than those of set A.

D.
The mode of set B is greater than the mode of set A.

Answers

The answer is B. I don’t think I need to explain this,
Mean is average, Mode is the most common number, and Median is the middle number when you put the numbers is numerical order from least to greatest

What is the length of the shadow cast on the vertical screen by your 10.0 cm hand if it is held at an angle of θ=30.0∘ above horizontal?

Answers

Answer:

Length of shadow cast by hand= 5.0 cm

Explanation:

With the hand inclined at an angle θ=30.0∘ above horizontal, it can be imagined to form part of a right angled triangle that has the following parts

vertical screen=vertical part of the triangle where we cast the shadow of the hand

The hand=the hypotenuse side

The horizontal = side to which the hand makes the 30.0° angle

By trigonometric relationship

Sin θ°= Opposite/hypotenuse

Sin θ° = (Shadow cast by hand)/(Length of hand)

Sin 30° = ( length of shadow cast by hand)/10cm

or 0.5 = (length of shadow cast by hand)/10cm

Length of shadow cast by hand= 0.5 × 10cm = 5.0 cm

A 2.0 kg, 20-cm-diameter turntable rotates at 100 rpm ons tionless bearings. Two 500 g blocks fall from above, hit the tum ble simultaneously at opposite ends of a diameter, and stick. W is the turntable's angular velocity, in rpm, just after this event

Answers

There are mistakes in the question.The correct question is here

A 2.0 kg, 20-cm-diameter turntable rotates at 100 rpm on frictionless bearings. Two 500 g blocks fall from above, hit the turntable simultaneously at opposite ends of a diameter, and stick. What is the turntable’s angular velocity, in rpm, just after this event?

Answer:

w=50 rpm

Explanation:

Given data

The mass turntable M=2kg

Diameter of the turntable d=20 cm=0.2 m

Angular velocity ω=100 rpm= 100×(2π/60) =10.47 rad/s

Two blocks Mass m=500 g=0.5 kg

To find

Turntable angular velocity

Solution

We can find the angular velocity of the turntable as follow

Lets consider turntable to be disk shape and the blocks to be small as compared to turntable

[tex]I_{turntable}w=I_{block1}w^{i}+I_{turntable}w^{i}+I_{block2}w^{i}[/tex]

where I is moment of inertia

[tex]w^{i}=\frac{I_{turntable}w}{I_{block1}w^{i}+I_{block2}w^{i}+I_{turntable}w^{i}}\\ So\\I_{turntable}=M\frac{r^{2} }{2}\\I_{turntable}=2*(\frac{(0.2/2)}{2} )\\ I_{turntable}=0.01 \\And\\I_{block1}=I_{block2}=mr^{2}\\I_{block1}=I_{block2}=(0.5)*(0.2/2)^{2} \\ I_{block1}=I_{block2}==0.005\\so\\w^{i}=\frac{I_{turntable}w}{I_{block1}w^{i}+I_{block2}w^{i}+I_{turntable}w^{i}}\\w^{i}=\frac{0.01*(10.47)}{0.005+0.005+0.01} \\w^{i}=5.235 rad/s\\w^{i}=5.235*(60/2\pi )\\w^{i}=50 rpm[/tex]

Final answer:

The problem is a case of angular momentum conservation within the domain of rotational dynamics in physics. The turntable's initial angular momentum remains conserved despite the addition of the blocks. By accounting for the added moment of inertia from the blocks, the final angular velocity of the system can be calculated.

Explanation:

The subject we're discussing here comes under the physics concept of rotational dynamics particularly focusing on the conservation of angular momentum.

Before the blocks hit the turntable, we know that the turntable is rotating with an angular velocity given in RPM (revolutions per minute), which we can convert to rad/s for our calculations. So, the initial angular momentum can be represented as Lim = (moment of inertia of the system) * (initial angular velocity).

Once the blocks fall onto the turntable, they contribute to the moment of inertia of the system, while the angular momentum of the system remains conserved. Thus resulting in a decreased angular velocity. The final angular momentum can be represented as Lfm = (moment of inertia including the blocks) * (final angular velocity).

Since the initial and final angular momenta need to be equal (Lfm = Lim), we can solve the resulting equation for the final angular velocity.

Learn more about Rotational Dynamics here:

https://brainly.com/question/967455

#SPJ11

A ball has a speed of 15 m/s. Only one external force acts on the ball. After this force acts, the speed of the ball is 7 m/s. Has the force done positive, zero, or negative work on the ball?

Answers

Answer:

Negative work

Explanation:

The work-energy theorem states that the work of the resultant forces acting on a particle modifies its kinetic energy:

[tex]W=\Delta K\\W=\frac{mv_f^2}{2}-\frac{mv_0^2}{2}\\W=\frac{m}{2}(v_f^2-v_0^2)\\W=\frac{m}{2}((7\frac{m}{s})^2-(15\frac{m}{s})^2)\\W=\frac{m}{2}(-178\frac{m^2}{s^2})[/tex]

Since the mass of the ball has to be positive, the work is negative.

Final answer:

The external force did negative work on the ball because the ball's speed decreased from 15 m/s to 7 m/s, indicating a decrease in kinetic energy.

Explanation:

To determine whether the force has done positive, negative, or zero work on the ball, we must consider the change in the ball's kinetic energy. Work done by a force is defined as the change in kinetic energy of an object. The formula for work done (W) is given by the change in kinetic energy:

W = ΔKE = ½mv2final - ½mv2initial

Since the speed of the ball decreased from 15 m/s to 7 m/s, the kinetic energy of the ball also decreased. A decrease in kinetic energy means that negative work was done on the ball by the external force.

A factory has a solid copper sphere that needs to be drawn into a wire. The mass of the copper sphere is 76.5 kg. The copper needs to be drawn into a wire with a diameter of 9.50 mm. What length of wire, in meters, can be produced?

Answers

Answer:

120.125 m

Explanation:

Density = Mass/volume

D = m/v .............................. Equation 1.

Where D = Density of the solid copper sphere, m = mass of the solid copper sphere, v = volume of the solid copper sphere.

Making v the subject of the equation,

v = m/D............................... Equation 2

Given: m = 76.5 kg,

Constant: D = 8960 kg/m .

Substituting into equation 2

v = 76.5/8960

v = 0.0085379 m³

Since the copper sphere is to be drawn into wire,

Volume of the copper sphere = volume of the wire

v = volume of the wire

Volume of wire = πd²L/4

Where d = diameter of the wire, L = length of the wire.

Note: A wire takes the shape of a cylinder.

v = πd²L/4 ........................ equation 3.

making L the subject of the equation,

L = 4v/πd²..................... Equation 4

Given: v = 0.0085379 m³, d = 9.50 mm = 0.0095  and π = 3.14

Substitute into equation 4

L = 4×0.0085379/(3.15×0.0095²)

L = 0.0341516/0.0002843

L = 120.125 m.

L = 120.125 m

Thus the length of the wire produced = 120.125 m

The removal, installation, and repair of landing gear tires by the holder of a private pilot certificate on an aircraft owned or operated is considered to be

Answers

Answer:

Preventive Maintenance.

Explanation:

Preventive maintenance is nothing but The removal, installation, and repair of landing gear tires by the holder of a private pilot certificate on an aircraft owned or operated. Preventive maintenance in an aircraft is performed by any person with holding at least a private pilot certificate. Only he/she can approve an aircraft to return to service after performing Preventive maintenance tests.

A person has been exposed to a particular antigen and now experiences a repeat exposure. What stimulates a quicker immune response?a) Memory T cellsb) immunityc) antibodiesd) macrophages

Answers

Answer:

a. Memory T cells

Explanation:

Memory T cells are actually the antigen-specific T cells that remain long-term after an infection has been eliminated. These memory T cells are quickly converted into large numbers of effector T cells upon reexposure to the specific invading antigen, thus providing a rapid response to past infection that has been experienced before

A rigid tank contains nitrogen gas at 227 °C and 100 kPa gage. The gas is heated until the gage pressure reads 250 kPa. If the atmospheric pressure is 100 kPa, determine the final temperature of the gas in °C.

Answers

Answer:

 T₂ =602  °C

Explanation:

Given that

T₁ = 227°C =227+273 K

T₁ =500 k

Gauge pressure at condition 1 given = 100 KPa

The absolute pressure at condition 1 will be

P₁ = 100 + 100 KPa

P₁ =200 KPa

Gauge pressure at condition 2 given = 250 KPa

The absolute pressure at condition 2 will be

P₂ = 250 + 100 KPa

P₂ =350 KPa

The temperature at condition 2 = T₂

We know that

[tex]\dfrac{T_2}{T_1}=\dfrac{P_2}{P_1}\\T_2=T_1\times \dfrac{P_2}{P_1}\\T_2=500\times \dfrac{350}{200}\ K\\[/tex]

T₂ = 875 K

T₂ =875- 273 °C

T₂ =602  °C

Final answer:

The problem involves using Charles's Law, a form of the ideal gas law, to find the final temperature of nitrogen after heating, by converting all pressures to absolute pressures and applying the law to relate initial and final states.

Explanation:

The student's question involves determining the final temperature of nitrogen gas in a rigid tank after heating, given initial temperature and pressures, using the ideal gas law. To solve this problem, we assume the nitrogen behaves as an ideal gas and use the relation between pressure, volume, temperature, and the number of moles of gas, which is constant since the tank is rigid.

Firstly, convert all pressures into absolute pressures by adding atmospheric pressure to the gage pressures. Then, apply the ideal gas law in the form of Charles's Law (P1/T1 = P2/T2), which relates pressure and temperature at constant volume and number of moles. To find the final temperature (T2), rearrange the equation to T2 = (P2/P1) * T1, where P2 and P1 are the final and initial absolute pressures, respectively, and T1 is the initial temperature in Kelvin.

A 96.0 kg hoop rolls along a horizontal floor so that its center of mass has a speed of 0.240 m/s. How much work must be done on the hoop to stop it

Answers

Answer:

The work done by the hoop is equal to 5.529 Joules.

Explanation:

Given that,

Mass of the hoop, m = 96 kg

The speed of the center of mass, v = 0.24 m/s

To find,

The work done by the hoop.

Solution,

The initial energy of the hoop is given by the sum of linear kinetic energy and the rotational kinetic energy. So,

[tex]K_i=\dfrac{1}{2}mv^2+\dfrac{1}{2}I\omega^2[/tex]

I is the moment of inertia, [tex]I=mr^2[/tex]

Since, [tex]\omega=\dfrac{v}{r}[/tex]

[tex]K_i=mv^2[/tex]

[tex]K_i=96\times (0.24)^2=5.529\ J[/tex]

Finally it stops, so the final energy of the hoop will be, [tex]K_f=0[/tex]

The work done by the hoop is equal to the change in kinetic energy as :

[tex]W=K_f-K_i[/tex]

W = -5.529 Joules

So, the work done by the hoop is equal to 5.529 Joules. Therefore, this is the required solution.

A skier of mass 103 kg comes down a slopeof constant angle 32◦with the horizontal.What is the force on the skier parallel tothe slope? Neglect friction. The accelerationof gravity is 9.8 m/s2.Answer in units of N.

Answers

Final answer:

The force on the skier parallel to the slope is found by calculating the component of the skier's weight that acts along the slope. This force is the weight multiplied by the sine of the angle of the slope, which results in 534.8 Newtons for a 103 kg skier on a 32° slope.

Explanation:

To determine the force on the skier parallel to the slope, we can make use of the component of the gravitational force along the slope. Since we are neglecting friction, the only force acting on the skier in the direction parallel to the slope is the component of the skier's weight in that direction.

The weight of the skier can be calculated by multiplying the mass (m) by the acceleration due to gravity (g), which is W = m × g. The component of the weight parallel to the slope is Wparallel = W × sin(θ), where θ is the angle of the slope. Substituting the given values, we have W = 103 kg × 9.8 m/s² = 1009.4 N. The parallel component is then 1009.4 N × sin(32°).

To find the sine of 32°, we use a calculator and get sin(32°) ≈ 0.5299. Multiplying this by the weight gives the parallel force on the skier, which is 1009.4 N × 0.5299 ≈ 534.8 N. Therefore, the force on the skier parallel to the slope is 534.8 Newtons.

In the manufacturing of computer chips, cylinders of silicon are cut into thin wafers that are 3.00 in. in diameter and have a mass of 1.50 g of silicon. How thick, in millimeters, is each wafer if silicon has a density of?

Answers

Final answer:

The thickness of a silicon wafer can be found using the volume of a cylinder and the density formula. Given the diameter and the mass, rearranging to solve for height will give the thickness of the wafer in millimeters.

Explanation:

The thickness of the silicon wafer can be found by using the formula for the volume of a cylinder (Volume = pi * radius2 * height) and the definition of density (Density = mass/volume). Given the silicon wafer has a diameter of 3 inches (or a radius of 1.5 inches), and a mass of 1.5g, we can determine the volume of the wafer from the given density. Rearranging the equation for the volume of a cylinder to solve for height (or thickness, in this case) gives: Thickness = Volume / (pi * radius2). Assuming measurements are converted correctly for consistent units, this calculation will give the thickness of the wafer in millimeters.

Learn more about Silicon wafer thickness here:

https://brainly.com/question/31496365

#SPJ3

Which layer in the Earth has a composition similar to the granite shown in this photograph?

Answers

Answer:

Earth crust and specifically the continental crust.

Explanation:

If we examine the earth crust there is mostly the granite and basalt and most of the granite is present in the continental crust part which is less thicker and denser. That's why we say that the continental crust has the composition similar to that of granite.

A rubber ball with a mass of 0.145 kg is dropped from rest. From what height (in m) was the ball dropped, if the magnitude of the ball's momentum is 0.800 kg · m/s just before it lands on the ground?

Answers

Answer:

1.55 m

Explanation:

Momentum: This can be defined as the product of  mass of a body and it velocity. the S.I unit of momentum is kgm/s.

Mathematically,

Momentum can be represented as,

M = mv................................. Equation 1

Where m = mass of the body, v = velocity of the body, M = momentum.

Making v the subject of the equation,

v = M/m........................................... Equation 2

Given: M = 0.80 kg.m/s, m = 0.145 kg.

Substituting into equation 2,

v = 0.8/0.145

v = 5.52 m/s.

Using the equation of motion,

v² = u² + 2gs ....................... Equation 3.

Where v = final velocity of the rubber ball, u = initial velocity of the rubber ball, s = distance, g = acceleration due to gravity.

Given: v = 5.52 m/s, u = 0 m/s, g = 9.81 m/s².

Substituting into equation 2

5.52² = 0² + 2(9.81)s

30.47 = 19.62s

s = 30.47/19.62

s = 1.55 m.

Thus the ball was dropped from a height of 1.55 m

_____ is a disorder that results from damage to the brain's motor centers, causing difficulty with motor control so that speech and movements are impaired. Klinefelter syndrome Muscular dystrophy Cerebral palsy Crohn's disease.

Answers

Answer:

Cerebral palsy

Explanation:

Cerebral palsy - it is referred to that disorder which is related to damages that caused permanent disorder in the functioning of body parts.  it affects the proper functioning of muscles thus cause the coordination problem.

it is caused due to abnormalities in the brain that result in the coordination of the body. As it is related to abnormalities in the brain thus it also causes a problem in vision, speaking, hearing, etc

The brakes on your automobile are capable of creating a deceleration of 4.9 m/s2. If you are going 149 km/h and suddenly see a state trooper, what is the minimum time in which you can get your car under the 100 km/h speed limit?

Answers

Answer:

You need at least 2.8 s to slow down your car to 100 km/h. If we add reaction time (≅0.3 s), you will need 3.1 s.

Explanation:

Hi there!

The equation of velocity for an object moving in a straight line is the following:

v = v0 + a · t

Where:

v = velocity at time t.

v0 = initial velocity.

a = acceleration.

t = time.

We have to find the time at which the velocity is 100 km/h with a decceleration of 4.9 m/s² and an initial velocity of 149 km/h. Let´s first convert km/h into m/s:

149 km/h · (1000 m / 1 km) · ( 1 h / 3600 s) = 41.4 m/s

100 km/h · (1000 m / 1 km) · ( 1 h / 3600 s) = 27.8 m/s

Now, let´s solve the equation of velocity for the time:

v = v0 + a · t

(v - v0) / a = t

Replacing with the data:

(27.8 m/s - 41.4 m/s) / -4.9 m/s² = t

Notice that the acceleration is negative because you are slowing down.

t = 2.8 s

You need at least 2.8 s to slow down your car to 100 km/h. If we add reaction time (≅0.3 s), you will need 3.1 s.

Final answer:

To get the car under the speed limit, it would take approximately 4.34 seconds.

Explanation:

To calculate the minimum time it takes for the car to get under the 100 km/h speed limit, we need to find the deceleration required to slow down from 149 km/h to 100 km/h.

First, let's convert the speeds to m/s. 149 km/h is equal to 41.4 m/s and 100 km/h is equal to 27.8 m/s.

Using the equation v² = u² + 2as, where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the distance, we can rearrange the equation to solve for acceleration:

a = (v² - u²) / (2s)

Plugging in the values, we get a = (27.8² - 41.4²) / (2(-30.5)).

Solving this equation, we find that the minimum deceleration required is approximately -3.13 m/s².

Finally, we can use the formula a = Δv / t to find the minimum time:

t = Δv / a = (41.4 - 27.8) / 3.13 = 4.34 seconds.

What occurs in a nuclear power plant when Uranium-235 splits into two smaller isotopes? A nuclear fusion B nuclear fission C a chemical reaction D a neutralization reaction

Answers

B) Nuclear fission

Explanation:

Nuclear power plants work by using the process of nuclear fission.

Nuclear fission occurs when a heavy, unstable radioactive nuclei decays, breaking apart into two or more lighter nuclei, more stable. In the process, several neutrons are also released, alongside with energy.

In nuclear power plants, the nucleus used for the process is the Uranium-235. When an atom of uranium-235 absorbs a slow neutron, it becomes a very unstable nucleus of uranium-236, which quickly decays into a nucleus of Barium-141, Kripton-92 and 3 neutrons.

The uranium nuclei are located in the so-called fuel rods, which are placed in a moderator (usually water). The purpose of the moderator is to slow down the neutrons emitted in the reaction: this way, these neutrons can be absorbed by other nuclei of uranium-235, causing more fission reactions to occur.

Learn more about radioactive decay:

brainly.com/question/4207569

brainly.com/question/1695370

#LearnwithBrainly

Your car's engine is a heat engine; it converts the thermal energy from burning fuel into energy to move your car and power its systems. On a cold winter day, you needn't feel guilty about cranking up the heat in your car; running the heater doesn't cost any additional energy beyond the small amount needed to run the fan. Explain why this is so.

Answers

Answer:

Explanation:

The efficiency of the heat engine is less than 100%. The heat engine converts the thermal energy from the burning of fuel to the mechanival energy. Thus, some of the energy gets lost as waste heat.

Hence, this waste heat is used up to heat up the interior of the car and person feels warmer in the car.

Thus, the waste heat generated in the engine is used for the heating of the car interior.

Final answer:

Running the heater in a car on a cold winter day doesn't cost much additional energy beyond running the fan because the heat generated by the engine is mostly released into the environment instead of being used for work in the car.

Explanation:

Heat engines convert thermal energy into work. In a car engine, heat is produced when fuel is burned, and this heat is converted into kinetic energy to move the car and power its systems. Running the heater in a car on a cold winter day doesn't cost much additional energy beyond running the fan because the heat generated by the engine is mostly released into the environment instead of being used for work in the car.

The force exerted on the small piston of a hydraulic lift is 780 N . If the area of the small piston is 0.0075 m2 and the area of the large piston is 0.13 m2, what is the force exerted by the large piston?

Answers

Answer:

13520 N

Explanation:

Pascal's Principle: The principle states that the pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel.

The operation of hydraulic press and car brake system is based on pascal's principle.

From pascal's principle,

F/A = f/a ........................... Equation 1

Where F = force exerted by the large piston, A = area of the large piston, f = force applied to the small piston, area of the small piston.

Making F the subject of the equation

F = A(f/a)......................... Equation 2

Given: A = 0.13 m², a = 0.0075 m², f = 780 N

Substituting into equation 2

F = 0.13(780/0.0075)

F = 13520 N.

Thus the force exerted by the large piston = 13520 N

A spring with a force constant of 5.0 N/m has a relaxed length of 2.63 m. When a mass is attached to the end of the spring and allowed to come to rest, the vertical length of the spring is 3.93 m. Calculate the elastic potential ene

Answers

Answer:

4.225 J

Explanation:

Elastic Potential Energy: This is the potential energy stored in an elastic material.This also the energy required to stretch an elastic material. The S.I unit is Joules.

Mathematically it is expressed as

E = 1/2ke²....................... Equation 1

Where E =elastic potential Energy, k = spring constant, e = extension.

Given: k = 5.0 N/m, e = 3.93-2.63 =  1.3 m.

Substitute into equation 1

E = 1/2(5)(1.3)²

E = 8.45/2

E = 4.225 J.

Thus the Elastic potential Energy = 4.225 J.

When 1.60 × 10 5 J 1.60×105 J of heat transfer occurs into a meat pie initially at 17.5 °C , 17.5 °C, its entropy increases by 485 J / K . 485 J/K. Estimate the final temperature of the pie.

Answers

Answer:

Explanation:

Given

Heat transfer [tex]Q=1.6\times 10^5\ J[/tex]

initial Temperature [tex]T_i=17.5^{\circ}\approx 290.5\ K[/tex]

Entropy change [tex]dS=485\ J/K[/tex]

The expression for entropy is given by

[tex]dQ=TdS[/tex]

[tex]T=\frac{dQ}{dS}[/tex]

[tex]T=\frac{1.6\times 10^5}{485}[/tex]

[tex]T=329.89\ K[/tex]

Temperature can be written as average of initial and final temperature

[tex]T=\frac{T_i+T_f}{2}[/tex]

[tex]329.89=\frac{T_f+290.5}{2}[/tex]

[tex]T_f=659.78-290.5[/tex]

[tex]T_f=369.28\ K[/tex]

Other Questions
Describing What was the relationship between artistic activities, religion, and government during the rise of civilization? Match the associations with the "light" and "dark" phases of photosynthesis: a. solar energy. b. CO 2 intake. c. release of energy. d. storage of energy. e. release of O2. f. release of water. g. ATP. h. forms carbohydrates. The client's lab values are sodium 166 mEq/L, potassium 5.0 mEq/L, chloride 115 mEq/L, and bicarbonate 35 mEq/L. What condition is this client likely to have, judging by anion gap? The length of a football field is x. The width of the field is 70 yards less than the length. Write an expression that represents the perimeter of the field without parentheses. Biologists will use molecular biology to see how closely related a species is to another type of species. In molecular biology, they compare the sequences of genes (homologous or orthologous genes) found in different species. For instance, humans, cows, chickens, and chimpanzees all have a gene that encodes the hormone insulin. What can one infer about these species sharing the same insulin gene? One who believes that under certain circumstances involving a criminal threat to public safety, the interests of society should take precedence over individual rights. In a study of whether alcohol consumption might affect memory, research participants were assigned to drink either an alcoholic or a nonalcoholic beverage prior to completing a memory test. Those who drank the nonalcoholic beverage participated in the _____ condition. a. survey b. experimental c. control d. correlation In contemporary psychology, the psychodynamic perspective, the behavioral perspective, and the humanistic perspective: (A) are often emphasized among psychologists working in the mental health field. (B) are considered pseudosciences. (C) focus on how people process and remember information, develop language, solve problems, and think. (D) have been combined to form a new major perspective in modern psychology called comparative psychology. John Watson believed that in order to be categorized as a science, psychology needed to focus on observable behaviors that could be measured. Science relies on the use of descriptions of abstract properties (for example, aggression) in terms of concrete terms (for example, hitting, biting, yelling, tail-gating). In science, this process is known as a/an________. Why and how did blacks from the south get new opportunities during WW1? You're shopping for a new router and are attracted by the advertising for a 600N model. Upon examining the specifications, you see that the router transmits 300+300, so you know it is using _______ broadcast channels. A healthy lifestyle has been described as a(n) ________ that might account for the association of religious involvement and life expectancy. What is the effect of opening the essay with elaborate descriptions of the womens appearance? The nursing instructor is teaching the students the basics of the labor and delivery process. The instructor determines the session is successful when the students correctly choose which action will best help to prevent infections in their clients?A. Thoroughly wash the hands before and after client contact.B. Replace soiled drapes and linen as needed.C. Clean the woman's perineum with a Betadine scrub.D. Strictly follow universal precautions. In science, when a hypothesis or group of hypotheses supported by repeated experimental evidence holds true through time, it can be developed into a ________. A. It is not a guess. B. It is not static. C. It is tentative and dynamic and can be adjusted when new, compelling evidence is discovered. D. It is typically an overarching explanation that best fits all of the available information or evidence. Taxpayers must use the mid-month convention when more than 40% of the personal property is placed in service during the last three months of the tax year.True / False. A regular polygon has an interior angle of 165 degrees. How many sides does it have? The continuing cycle of erratic demand causing forecasts to include safety stock which in turn magnify supplier forecasts and cause production planning problems is known as______________. A nurse assesses an older adult client who reports a 2 day history of vomiting and diarrhea. which findings will the nurse expect during the physical exam? Isotopic notation of phosphorus-29 Steam Workshop Downloader