A factory makes 10% defective items and items are independently defective. If a sample of 10 items is to be selected, find the probability that 9 or more are NOT defective in two ways. (Round to 3 decimal places) g

Answers

Answer 1

Answer:

[tex]P(x \geq 9)=P(X=9)+P(X=10)[/tex]

[tex]P(X=9)=(10C9)(0.9)^9 (1-0.9)^{10-9}=0.387[/tex]

[tex]P(X=10)=(10C10)(0.9)^{10} (1-0.9)^{10-10}=0.349[/tex]

And adding we got:

[tex]P(x \geq 9)=P(X=9)+P(X=10)=0.387+0.349=0.736[/tex]

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Solution to the problem

Let X the random variable of interest, on this case we now that:

[tex]X \sim Binom(n=10, p=1-0.1=0.9)[/tex]

Where 1-p = 1-0.1=0.9 represent the probability of being NOT defective

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

And we want to find this probability:

[tex]P(x \geq 9)=P(X=9)+P(X=10)[/tex]

[tex]P(X=9)=(10C9)(0.9)^9 (1-0.9)^{10-9}=0.387[/tex]

[tex]P(X=10)=(10C10)(0.9)^{10} (1-0.9)^{10-10}=0.349[/tex]

And adding we got:

[tex]P(x \geq 9)=P(X=9)+P(X=10)=0.387+0.349=0.736[/tex]


Related Questions

Add and simplify. Please help

Answers

Answer: Third answer

Step-by-step explanation:

11. Simplify the complex fraction. n-4/n² - 2n-15/n +1/n +3

NEED HELP ASAP!!!!

Answers

Final answer:

In simplifying complex fractions, first, put the individual fractions in simplest terms. Solve the equations based on the order of operations, simplify the fractions, find a common denominator, and combine the fractions. Your skill in Algebraic operations, particularly with polynomials and fractions, play a significant role in solving the problem.

Explanation:

When it comes to simplifying complex fractions, you need to first ensure that the individual fractions are in their simplest terms. For the fraction n-4/n², consider factoring out n from the denominator, while for 2n-15/n +1/n +3, the expression can be simplified to (2n-15+n+3)/n or (3n-12)/n.

Following an order of operations, evaluate the expressions and perform the indicated operations for a simple and correct answer. Briefly, your steps should include: simplifying the complex fractions, finding a common denominator, and combining the fractions. Once you have done this, continue to simplify until you are left with one fraction.

Also note that a key aspect to solving this is applying your knowledge of Algebraic Operations, specifically with polynomials and fractions. It's important to take care not to make any mistakes in signs or operations as they can significantly alter your responses.

Learn more about Simplifying Complex Fractions here:

https://brainly.com/question/14924643

#SPJ12

The simplified form is (3n² - n + 11)/n².

To simplify the complex fraction (n - 4)/(n²) - (2n - 15)/n + 1/n + 3, follow these steps:

Find a common denominator for all the fractions involved. Here, the common denominator will be n².

1. Rewrite each term with the common denominator:

(n - 4)/n²

(2n - 15)/n becomes (2n - 15)n/n²

1/n becomes n/n²

3 becomes 3n²/n²

2. Combine all terms to have the same denominator:

(n - 4 - 2n + 15 + n + 3n²)/n²

3. Simplify the numerator:

(n - 4 - 2n + 15 + n + 3n²)

Combine like terms: (3n² + n - 2n + n - 4 + 15)

4. Simplifies to: (3n² - n + 11)

5. Rewrite the fraction:

(3n² - n + 11)/n²

So, the simplified fraction is (3n² - n + 11)/n².

Given the following winning percentages of the teams in a league (for a single year) compute the within-season standard deviation for the league. Team Season Winning Percentage 1 0.750 2 0.750 3 0.200 4 0.600 5 0.200 (a) 0.79 (b) 0.251 (x) 0.56 (d) 0.063

Answers

Answer:

(b) 0.251

Step-by-step explanation:

1. Standard deviation equation:

[tex]SD=\sqrt{\frac{\sum\limits^N_i {(x_{i}-X)^{2} } }{N} }[/tex]

Where X is the mean of the data, and N the amount of data. Then, N=5

2. Estimate the Mean:

[tex]X=\frac{0.750+0.750+0.200+0.600+0.200}{5}=\frac{2.5}{5}=0.5\\[/tex]

3. Caclulate Standard deviation:

[tex]SD=\sqrt{\frac{{(0.750-0.500)^{2}+(0.750-0.500)^{2}+(0.200-0.500)^{2}+(0.600-0.500)^{2}+(0.200-0.500)^{2} } }{5} }[/tex]

[tex]SD=\sqrt{\frac{0.315}{5} }=\sqrt{0.063}\\SD=0.251[/tex]

Suppose that X has a Poisson distribution with a mean of 64. Approximate the following probabilities. Round the answers to 4 decimal places (e.g. 98.7654). a) Upper P left-parenthesis Upper X greater-than 84right-parenthesis equals b) Upper P left-parenthesis Upper X less-than 64 right-parenthesis equals

Answers

Answer:

(a) The probability of the event (X > 84) is 0.007.

(b) The probability of the event (X < 64) is 0.483.

Step-by-step explanation:

The random variable X follows a Poisson distribution with parameter λ = 64.

The probability mass function of a Poisson distribution is:

[tex]P(X=x)=\frac{e^{-\lambda}\lambda^{x}}{x!};\ x=0, 1, 2, ...[/tex]

(a)

Compute the probability of the event (X > 84) as follows:

P (X > 84) = 1 - P (X ≤ 84)

                [tex]=1-\sum _{x=0}^{x=84}\frac{e^{-64}(64)^{x}}{x!}\\=1-[e^{-64}\sum _{x=0}^{x=84}\frac{(64)^{x}}{x!}]\\=1-[e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{84}}{84!}]]\\=1-0.99308\\=0.00692\\\approx0.007[/tex]

Thus, the probability of the event (X > 84) is 0.007.

(b)

Compute the probability of the event (X < 64) as follows:

P (X < 64) = P (X = 0) + P (X = 1) + P (X = 2) + ... + P (X = 63)

                [tex]=\sum _{x=0}^{x=63}\frac{e^{-64}(64)^{x}}{x!}\\=e^{-64}\sum _{x=0}^{x=63}\frac{(64)^{x}}{x!}\\=e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{63}}{63!}]\\=0.48338\\\approx0.483[/tex]

Thus, the probability of the event (X < 64) is 0.483.

Final answer:

To approximate probabilities for a Poisson distribution with mean 64, one can use the cumulative distribution function of the Poisson distribution. But for large means like 64, using a Normal approximation to the Poisson might be more accurate.

Explanation:

The question is about the Poisson distribution which is a probability distribution used often in statistical modelling where we are counting the number of times an event happens in a fixed interval of time or space. The mean is given as 64. To compute probabilities for values more than or less than a certain value, we use the cumulative distribution function (cdf) of the Poisson distribution.

The cumulative distribution function gives us the probability that the random variable is less than or equal to a certain value. In other words, if we want to find P(X > 84), we can find it by subtracting P(X <= 83) from 1. Likewise, to find P(X < 64), we can directly use the cdf at 63.

Please note however, because of the large mean (64), it may be more accurate to use a Normal approximation to the Poisson with mean 64 and variance 64. In that case, standardize the variables and use the Standard Normal table for the probabilities.

Learn more about Poisson Distribution here:

https://brainly.com/question/33722848

#SPJ3

In a survey of 5100 randomly selected T.V. viewers, 40% said they watch network news programs. Find the margin of error for this survey if we want 95% confidence in our estimate of the percent of T.V. viewers who watch network news programs.

Answers

Answer:

Margin of error = 0.01344

Step-by-step explanation:

Margin of error = critical value × standard deviation.

critical value for 95% confidence interval = 1.96

Standard deviation = √[(p)(q)/n]

p = 0.4, q = 1 - p = 1 - 0.4 = 0.6, n = 5100

Standard deviation = √[(0.6×0.4)/5100] = 0.00686

Margin of error = 1.96 × 0.00686 = 0.0134

The probability a student at a university is a business major is 0.17. The probability a student at a university is receiving financial aid is 0.55. Assume whether is a student is a business major is independent of whether the student is receiving financial aid. What is the probability the student is a business major and receiving financial aid

Answers

Answer: 0.0935

Step-by-step explanation: p(business major) = 0.17, p(receiving financial aids) = 0.55

The two events are independent that's the occurrence of one does not affect the other.

Hence, the probability of that the student is a business major and receiving financial aid is given below as

p(business major and financial aid) = 0.17×0.55 = 0.0935.

An art history professor assigns letter grades on a test according to the following scheme. A: Top 5% of scores B: Scores below the top 5% and above the bottom 62% C: Scores below the top 38% and above the bottom 22% D: Scores below the top 78% and above the bottom 5% F: Bottom 5% of scores Scores on the test are normally distributed with a mean of 73.3 and a standard deviation of 9.7. Find the numerical limits for a B grade. Round your answers to the nearest whole number, if necessary.

Answers

Answer:

76 ≤ B ≤ 89

Step-by-step explanation:

Mean score (μ) = 73.3

Standard deviation (σ) = 9.7

If B Scores are below the top 5% and above the bottom 62%, then:

62% ≤ B ≤ 95%

In a normal distribution, the 62nd percentile has a corresponding z-score of z = 0.305, while the 95th percentile has a corresponding z-score of z = 1.650.

The grades X1 and X2 which are the limits for a B grade are given by:

[tex]z= \frac{X-\mu}{\sigma}\\0.305= \frac{X_1-73.3}{9,7}\\X_1=76.2\\1.650= \frac{X_2-73.3}{9,7}\\X_2=89.3[/tex]

Rounding to the nearest whole number, a B grade is given to grades between 76 and 89.

Final answer:

To calculate the numerical limits for a B grade in a normally distributed set of test scores with a mean of 73.3 and a standard deviation of 9.7, we find the z-scores corresponding to the top 5% and bottom 62%. The B grade range is approximately between 70 and 89.

Explanation:

To find the numerical limits for a B grade in a normally distributed set of test scores, we must determine the z-scores that correspond to the top 5% and the bottom 38% of scores since a B grade is assigned to scores below the top 5% and above the bottom 62% (which is equivalent to being below the top 38%). Given the mean score is 73.3 and the standard deviation is 9.7, we can use z-score formulas to convert these percentages to raw scores.

For the top 5% cutoff (z = 1.645), the score is calculated as follows:

Top 5% cutoff score = mean + (z x standard deviation)

Top 5% cutoff score = 73.3 + (1.645 x 9.7)

Top 5% cutoff score = 73.3 + 15.9565

Top 5% cutoff score ≈ 89

For the top 38% cutoff (z = -0.31), which is the bottom 62%, the score is calculated as:

Bottom 62% cutoff score = mean + (z x standard deviation)

Bottom 62% cutoff score = 73.3 + (-0.31 x 9.7)

Bottom 62% cutoff score = 73.3 + (-2.997)

Bottom 62% cutoff score ≈ 70

Therefore, a B grade on this test would be for scores roughly between 70 and 89.

Which of the following is a quantitative continuous variable? a. Where a family goes on vacation b. Distance a family travels on vacation c. Number of vacations a family takes per year d. Number of consecutive years that a family goes on a vacation (Let a trip of at least 200 miles from home be defined as a "vacation") e. Amount spent on the vacation, to the nearest $100.

Answers

Answer:

Which of the following is a quantitative continuous variable?

b. Distance a family travels on vacation

e. Amount spent on the vacation, to the nearest $100.

Step-by-step explanation:

Quantitative variables use numbers to express attributes, there are 2 types:

1. Quantitave continuous variables use numbers to express the attributes but, could have an infinite value between its maximum and minimum values, and are able to be divided into smaller values, such as in options b and e.

2. Quantitative discrete, also use numbers to express attributes, but they may have some, but not all the values, and must be integers, such as in options:

c. Number of vacations a family takes per year

d. Number of consecutive years that a family goes on a vacation (Let a trip of at least 200 miles from home be defined as "vacation").

e. Amount spent on the vacation, to the nearest $100.

And there are the cualitative variables, which use words to express attributes, such as in:

a. Where a family goes on vacation.

Before a strike prematurely ended the 1994 major league baseball season, Tony Gwynn of the San Diego Padres had 165 hits in 419 at bats, for a .394 batting average. Baseball fans argued over whether Gwynn was effectively a .400 hitter that year. Test this hypothesis

Answers

Answer:

yes, he was effectively a .400 hitter

Step-by-step explanation:

The mean rate of success ( ÿ ) is 0.394.

The total number of hits was 419.

Under table t the  value at 5% confidence interval is 1.96.  

Here se the asymptotic standard deviation is given as follows

se = [tex]\sqrt{\frac{y(1 - y)}{n} }[/tex]

     = [tex]\sqrt{\frac{0.394(1 - 0.394)}{419} }[/tex]

    = 0.02387  

The confidence interval is calculated as follows:  

y ± 1.96 * se

0.394 ± 1.96  * 0.02387  

the answer is  -0.347 or  0.4407)  

meaning that the mean lies between -0.347 to 0.4407.  

There is strong evidence that 0.4 lies between the above confidence interval.

This means that  Gwynn was effectively a 0.4 hitter

Tony Gwynn's batting average was .394 with 165 hits in 419 at bats. He would have needed approximately 3 more hits to officially reach a .400 average. Despite his impressive performance, it is factually incorrect to label him a .400 hitter for that season.

To test the hypothesis that Tony Gwynn was a .400 hitter in 1994 before the strike ended the season, we need to see if his actual batting average could be considered close to .400 even though it was .394.

Gwynn had 165 hits in 419 at bats, which gives a batting average of 165/419, or approximately .394 when rounded to three decimal places. To have a .400 average, he would need to have 419 * .400 hits, which equals 167.6. Therefore, he needed approximately 3 more hits (rounding up from 2.6) to achieve a .400 average with the same number of at bats.

Given that batting averages are not rounded up after the season ends, stating that Gwynn was a .400 hitter would be incorrect. However, his achievement of .394 is remarkably high, and some may argue that rounding up for discussion purposes could informally suggest he was 'effectively' a .400 hitter.

Other Questions
You travel 150 miles on 5 gallons how far did you travel per gallon? True or False: Economic interests often influence U.S. involvement in international affairs A sound allocation system should: be cheap and easy to administer provide incentives for cost control charge in proportion to amount used or benefit received be perceived as equitable by those who are charged be all of the above ................................. Read this excerpt from a speech by US president Lyndon B. Johnson. Which phrase refers to the origins of American immigrants?Our beautiful America was built by a nation of strangers. From a hundred different places or more they have poured forth into an empty land,joining and blending in one mighty and irresistible tide.The land flourished because it was fed from so many sources-because it was nourished by so many cultures and traditions and peoples. What kind of wave is sound and how do the particles move? help and hurry plzzzzzzzzzzzzz The pair of random variables (X,Y) is equally likely to take any of the four pairs of values (0,1), (1,0), (1,0), (0,1). Note that X and Y each have zero mean.a) Find E[XY].E[XY]=b) YES or NO: For this pair of random variables (X,Y), is it true that Var(X+Y)=Var(X)+Var(Y)? Select an option Yes No c) YES or NO: We know that if X and Y are independent, then Var(X+Y)=Var(X)+Var(Y). Is the converse true? That is, does the condition Var(X+Y)=Var(X)+Var(Y) imply independence? Select an option Yes No A game at the fair involves a wheel with seven sectors. Two of the sectors are red, two of the sectors are purple, two of the sectors are yellow, and one sector is blue. Landing on the blue sector will give 3 points, landing on a yellow sector will give 1 point, landing on a purple sector will give 0 points, and landing on a red sector will give 1 point. If you take one spin, what is your expected value? What changes could you make to values assigned to outcomes to make the game fair? Prove that the game would be fair using expected values. Which of the following is NOT a major difference between DNA and RNA? RNA is only associated with coding parts of the genome. Uracil replaces thymine in RNA. RNA is single stranded and DNA is double stranded. RNA is much more structurally stable than DNA. A high-resolution screen hasno pixels.Fewer pixelsMore pixels what is x? 1.5x - 6 = 7.5 Given the trinomial, what is the value of the coefficient B in the factored form?2x^2 + 4xy 48y^2 = 2(x + By)(x 4y)-1212-66 The following program includes fictional sets of the top 10 male and female baby names for the current year. Write a program that creates: A set all_names that contains all of the top 10 male and all of the top 10 female names. A set neutral_names that contains only names found in both male_names and female_names. A set specific_names that contains only gender specific names. Sample output for all_names: {'Michael', 'Henry', 'Jayden', 'Bailey', 'Lucas', 'Chuck', 'Aiden', 'Khloe', 'Elizabeth', 'Maria', 'Veronica', 'Meghan', 'John', 'Samuel', 'Britney', 'Charlie', 'Kim'} NOTE: Because sets are unordered, they are printed using the sorted() function here for comparison Which sentence has a vague pronoun error?A)My mom never seems to care if my brother cleans his room, and this really bothers me.B)Some of the cookies were a little broken on the edges, but they were still delicious.C)This movie, while incredibly long and unrealistic, still has some exciting action sequences.D)I'm not sure if that job is going to pay me enough to be able to save up for some new shoes. student enrollment at a local school is concerning the community because the number of students has dropped to 504 which is a 20% decrease from the previous year. what was the student enrollment the previous year? 3. Which element is most important for growing crops?a. carbon dioxideBAb. hydrogenC. calciumd. nitrogen4. Who discovered how to manipulate equilibrium systems? Which data representation system utilizes both letters and numbers? binary decimal hexadecimal octal Interestingly, ____________ do not directly attack nor destroy any pathogens, rather they bind to pathogens and in doing so render them incapable of causing an immune response. How was the Japanese government structured during the 1930s?ACitizens elected legislative representatives who made all laws.BThe emperor exercised complete control over the government.CMilitary leaders controlled Japan with the support of the emperor.DThe military abolished the monarchy and established a dictatorship.Why did the United States believe the Marshall Plan was necessary?AThe United States believed it would help contain the spread of fascism.BThe United States believed it would help contain the spread of communism.CThe United States believed it would prevent Germany from rebuilding its military.DThe United States believed it would prevent the Soviet Union from rebuilding its military. Steam Workshop Downloader