A container initially containing10 L of water in which there is 20 g of salt dissolved. A solution containing 4 g/L of salt is pumped into the container at a rate of 2 L/min, and the well-stilled mixture runs out at a rate of 1 L/min. How much salt is in the tank after 40 min

Answers

Answer 1

Answer:

[tex] A(40)= \frac{-200}{10+40} +4 (10 +40)=-4+200 = 196 [/tex]

Step-by-step explanation:

For this case the solution flows at a rate of 2L/min and leaves at 1L/min. So then we can conclude the volume is given by [tex] V= 10 +t[/tex]

Since the initial volume is 10 L and the volume increase at a rate of 1L/min.

For this case we can define A as the concentration for the salt in the container. And for this case we can set up the following differential equation:

[tex] \frac{dA}{dt}= 4 \frac{gr}{L} *2 \frac{L}{min} - \frac{A}{10+t}[/tex]

Because at the begin we have a concentration of 8 gr/L and would be decreasing at a rate of [tex] \frac{A}{10+t}[/tex]

So then we can reorder the differential equation like this:

[tex] \frac{dA}{dt} +\frac{A}{10+t} =8[/tex]

We find the solution using the integration factor:

[tex] \mu = -\int \frac{1}{10+t} dt = -ln(10+t)[/tex]

And then the solution would be given by:

[tex] A = e^{-ln (10+t)} (\int e^{\int \frac{1}{10+t} dt})[/tex]

And if we simplify this we got:

[tex] A= \frac{1}{10+t} (c + \int (10 +t) 8 dt)[/tex]

And after do the integral we got:

[tex] A= \frac{c}{10+t} +4 (10 +t) [/tex]

And using the initial condition t=0 A= 20 we have this:

[tex] 20 = \frac{c}{10} +40[/tex]

[tex] c= -200[/tex]

So then we have this function for the solution of A:

[tex] A= \frac{-200}{10+t} +4 (10 +t) [/tex]

And now replacinf t= 40 we got:

[tex] A(40)= \frac{-200}{10+40} +4 (10 +40)=-4+200 = 196 [/tex]

Answer 2
Final answer:

The amount of salt in the tank after 40 minutes is determined by first calculating the total amount of salt added to the tank, then considering the amount of salt-water mixture that exited the tank during this period due to the outgoing flow.

Explanation:

This question relates to a typical problem within the field of differential equations. You are asked to find the amount of salt in the tank after 40 minutes. The initial amount of salt in the tank is 20g, and additional salt-water solution is being pumped in at a rate of 2L/min with a salt concentration of 4g/L, hence adding 8g of salt per minute. At the same time, the well-stirred mixture is flowing out at a rate of 1L/min.

Therefore, after 40 minutes:
Additional salt added = 8g/min * 40 min = 320g.
Total salt content now = initial salt content + added salt = 20g + 320g = 340g.

However, within these 40 minutes,40 L of the mixture has flown out. Since the mixture is well-stirred, it retains the same concentration of salt as the mixture in the tank. Hence, if x is the amount of salt left in the tank, it will be on average the same concentration as that which flowed out and can be represented as follows: x/50 = (340-x)/40.

Solving for x we get the amount of salt left in the tank after 40 minutes.

Learn more about Differential Equations here:

https://brainly.com/question/33814182

#SPJ3


Related Questions

A box is formed by cutting squares from the four corners of a 9"-wide by 12"-long sheet of paper and folding up the sides.
Let x represent the length of the side of the square cutout (in inches), and let V represent the volume of the box (in cubic inches).
Write a formula that expresses V in terms of x.

Answers

The volume of a box is the amount of space in it.

The expression that represents volume is: [tex]\mathbf{V = (12 -2x) (9 - 2x)x}[/tex]

The dimension of the cardboard is given as:

[tex]\mathbf{Length = 12}[/tex]

[tex]\mathbf{Width = 9}[/tex]

Assume the cut-out is x.

So, the dimension of the box is:

[tex]\mathbf{Length =12-2x}[/tex]

[tex]\mathbf{Width =9 - 2x}[/tex]

[tex]\mathbf{Height = x}[/tex]

The volume of the box is:

[tex]\mathbf{V = (12 -2x) (9 - 2x)x}[/tex]

Hence, the expression that represents volume is:

[tex]\mathbf{V = (12 -2x) (9 - 2x)x}[/tex]

Read more about volumes at:

https://brainly.com/question/13529955

Final answer:

The volume of a box formed by cutting a square of side x from a 9" by 12" sheet and folding the sides is given by the formula V = x(12 - 2x)(9 - 2x).

Explanation:

The volume of a box is formed by multiplying its length, width, and height. In this case, if you cut a square of side x from each corner of the sheet, the new dimensions of your box would be:

Length = (12 - 2x) Width = (9 - 2x) Height = x

Therefore, the formula to express the volume V in terms of x is:

V = x(12 - 2x)(9 - 2x)

.

Learn more about Volume of Box here:

https://brainly.com/question/28209910

#SPJ3

The measures of the angles of ABC are given by the expressions in the table A( 6X - 1 ) ° B 20° C ( x + 14 ) ° what are the measures of angles A and C ? Enter your answers in the boxes mA = mC = ​

Answers

Answer:

Step-by-step explanation:

The sum of the angles in a triangle is 180 degrees. This means that in triangle ABC,

Angle A + angle B + angle C = 180

Therefore,

6x - 1 + 20 + x + 14 = 180

6x + x + 20 + 14 - 1 = 180

7x + 33 = 180

Subtracting 33 from the left hand side and the right hand side of the equation, it becomes

7x + 33 - 33 = 180 - 33

7x = 147

Dividing the left hand side and the right hand side of the equation by 7, it becomes

7x/7 = 147/7

x = 21

Therefore

Angle A = 6x - 1 = 6 × 21 - 1

Angle A = 125 degrees

Angle C = x + 14 = 21 + 14

Angle C = 35 degrees.

Five urns are numbered 3,4,5,6 and 7, respectively. Inside each urn, there are n² dollars where n is the number on the urn.
The following experiment is performed:
An urn is selected at random. If its number is a prime number the experimenter receives the amount in the urn and the experiment is over. If its number is not a prime number, a second urn is selected from the remaining four and the experimenter receives the total amount in the two urns selected.
What is the probability that the experimenter ends up with exactly twenty- five dollars?

Answers

Answer:

0.25 or 25%

Step-by-step explanation:

3, 5 and 7 are prime numbers.

There are two possible outcomes for which the experimenter ends up with exactly twenty-five dollars:

A) Choosing urn 5 (5 x 5 = 25).

[tex]P(A) = \frac{1}{5}[/tex]

B) Choosing urn 4 and then urn 3 ([4 x 4] + [3 x 3] = 25).

[tex]P(B)= \frac{1}{5} *\frac{1}{4}=\frac{1}{20}[/tex]

The probability that the experimenter ends up with exactly $25 is:

[tex]P(x=\$25)=P(A)+P(B)= \frac{1}{5}+\frac{1}{20}\\P(x=\$25)=0.25=25\%[/tex]

A researcher wants to determine if the nicotine content of a cigarette is related to​ "tar". A collection of data​ (in milligrams) on 29 cigarettes produced the accompanying​ scatterplot, residuals​ plot, and regression analysis. Complete parts a and b below. ) Explain the meaning of Upper R squared in this context. A. The linear model on tar content accounts for​ 92.4% of the variability in nicotine content. B. The predicted nicotine content is equal to some constant plus​ 92.4% of the tar content. C. Around​ 92.4% of the data points have a residual with magnitude less than the constant coefficient. D. Around​ 92.4% of the data points fit the linear model.

Answers

Answer:

Option A The linear model on tar content accounts for​ 92.4% of the variability in nicotine content.

Step-by-step explanation:

R-square also known as coefficient of determination measures the variability in dependent variable explained by the linear relationship with independent variable.

The given scenario demonstrates that nicotine content is a dependent variable while tar content is an independent variable. So, the given R-square value 92.4% describes that 92.4% of variability in nicotine content is explained by the linear relationship with tar content. We can also write this as "The linear model on tar content accounts for​ 92.4% of the variability in nicotine content".

Final answer:

The Upper R squared or the coefficient of determination here represents the percentage of the variability in the nicotine content that can be explained by the tar content in the regression model, which in this case is 92.4%.

Explanation:

In this context, the meaning of Upper R squared is represented by option A. The linear model on tar content accounts for 92.4% of the variability in nicotine content. This indicates that 92.4% of the change in nicotine content can be explained by the amount of tar content based on the linear regression model used. This measure is also known as the coefficient of determination. Meanwhile, options B, C, and D are not correct interpretations of the R squared in this context. Both B and D wrongly relate the percentage to the predictability of the data points and option C incorrectly associates this percentage with the residual magnitude.

Learn more about Upper R squared here:

https://brainly.com/question/34151428

#SPJ3

An urn contains n + m balls, of which n are red and m are black. They are withdrawn from the urn, one at a time and without replacement. Let X be the number of red balls removed before the first black ball is chosen. We are interested in determining E[X]. To obtain this quantity, number the red balls from 1 to n. Now define the random variables

if red ball i is taken before any black ball is chosen

Otherwise

a) Express X in terms of the

b) Find E[X]

Answers

The answer is a) [tex]X=X_1 +X_2 +X_3+..X_n[/tex]  b) The expression  is

[tex]E[X] = \dfrac{1}{n+m} +\dfrac{1}{n+m-1} +....+ \dfrac{1}{m+1}[/tex].

Given:

An urn contains n+m balls of which n is red and m is black

a)

Expressing X in terms of the defined random variables:

Let be the indicator random variable for the event that red ball i is taken before any black ball is chosen. It takes the value 1 if this event occurs and 0 otherwise.

Now, the value of X is the number of red balls removed before the first black ball is chosen. This can be expressed as the sum of the individual indicator random variables for each red ball:

[tex]X=X_1 +X_2 +X_3+..X_n[/tex]

b)

Find E[X] (expected value of X):

The expected value of a sum of random variables is the sum of the expected values of those random variables. To find E[X],

Find the expected value of each indicator random variable and then sum them up.

Therefore, the expected value   [tex]X_i[/tex] is:

[tex]E[X_i] = 1. \dfrac{1}{n+m-i+1} + 0\cdot \dfrac{m}{n+m-i+1}[/tex]

[tex]= \dfrac{1}{n+m-i+1}[/tex]

Now, to find  E[X], we sum up the expected values of the indicator random variables for all red balls:

[tex]E[X] = E[X_1]+E[X_2]+E[X_3]+.....+E[X_n][/tex]

Substitute the values of [tex]E[X_i][/tex] into the sum and simplify:

[tex]E[X] = \dfrac{1}{n+m} +\dfrac{1}{n+m-1} +....+ \dfrac{1}{m+1}[/tex]

a) [tex]X=X_1 +X_2 +X_3+..X_n[/tex]  b) [tex]E[X] = \dfrac{1}{n+m} +\dfrac{1}{n+m-1} +....+ \dfrac{1}{m+1}[/tex]

Learn more about  Probability here:

https://brainly.com/question/30764117

#SPJ12

Final answer:

X can be expressed as X = R_1 + 2R_2 + 3R_3 + ... + nR_n. To find E[X], use the linearity of expectation and the probabilities of R_i.

Explanation:

To determine E[X], we need to express X in terms of the random variables and then find the expected value. Let R_i denote the event that red ball i is taken before any black ball is chosen. The expression for X is:



X = R_1 + 2R_2 + 3R_3 + ... + nR_n



To find the expected value, we use the linearity of expectation. Since the probabilities for each R_i are the same, we have:



E[X] = E[R_1] + 2E[R_2] + 3E[R_3] + ... + nE[R_n]



Now, we need to determine the probabilities of R_i. Since the balls are drawn without replacement, the probability that red ball i is drawn before any black ball is chosen is:



P(R_i) = (n-i+1)/(n+m-i+1)



Substituting this probability into the expression for E[X], we get:



E[X] = (n/(n+m)) + (2(n-1)/(n+m-1)) + (3(n-2)/(n+m-2)) + ... + (n/n+m)

Learn more about Expected value here:

https://brainly.com/question/35639289

#SPJ3

Find the 95% confidence intervalfor the variance and standard deviation for the time ittakes a customer to place a telephone order with a largecatalogue company if a sample of 23 telephone ordershas a standard deviation of 3.8 minutes. Assume thevariable is normally distributed. Do you think that thetimes are relatively consistent?

Answers

Answer:

[tex] 8.637 \leq \sigma^2 \leq 28.93[/tex]

[tex] 2.939 \leq \sigma \leq 5.379[/tex]

Step-by-step explanation:

Data given and notation

s represent the sample standard deviation

[tex]\bar x[/tex] represent the sample mean

n=23 the sample size

Confidence=95% or 0.95

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population mean or variance lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.

The Chi Square distribution is the distribution of the sum of squared standard normal deviates .

Calculating the confidence interval

The confidence interval for the population variance is given by the following formula:

[tex]\frac{(n-1)s^2}{\chi^2_{\alpha/2}} \leq \sigma \leq \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}[/tex]

The sample standard deviation for this case was s = 3.8

The next step would be calculate the critical values. First we need to calculate the degrees of freedom given by:

[tex]df=n-1=23-1 =22[/tex]

Since the Confidence is 0.95 or 95%, the value of [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and we can use excel, a calculator or a tabele to find the critical values.  

The excel commands would be: "=CHISQ.INV(0.025,22)" "=CHISQ.INV(0.975,22)". so for this case the critical values are:

[tex]\chi^2_{\alpha/2}=36.78[/tex]

[tex]\chi^2_{1- \alpha/2}=10.98[/tex]

And replacing into the formula for the interval we got:

[tex]\frac{(22)(3.8)^2}{36.78} \leq \sigma^2 \leq \frac{(22)(3.8)^2}{10.98}[/tex]

[tex] 8.637 \leq \sigma^2 \leq 28.93[/tex]

Now we just take square root on both sides of the interval and we got:

[tex] 2.939 \leq \sigma \leq 5.379[/tex]

An train station has determined that the relationship between the number of passengers on a train and the total weight of luggage stored in the baggage compartment can be estimated by the least squares regression equation y=103+30x. Predict the weight of luggage for a flight with 86 passengers.

Answers

Answer:

2683

Step-by-step explanation:

Using the linear regression equation that predict the relationship between the weight of the luggage and the total number of passenger y = 103 + 30x, we can plug in the number of passenger x = 86 to predict the weight of the luggage on a flight:

y = 103 + 30*86 =  2683

It is known that the A matrix of a single-input-single-output state space system has 4 eigenvalues at -1, 1, 2, 3, and the D matrix is 0. Furthermore, when the input is u(t) = 1 and the initial states are all zero, the steady-state output of the system is 5. Find the controllable canonical form of the system

Answers

Answer:

The controllable canonical form of the system =

Y = (5 0 0 0) (x1)

                     (x2)

                     (x3)

                     (x4)

Step-by-step explanation:

The detailed explanation is as shown in the attached file.

The weight of a certain type of brick has an expectation of 1.12 kilograms with a variance of 0.0009 kilograms2. How many bricks would need to be selected so that the average weight has a standard deviation of no more than 0.005 kilograms

Answers

Answer:

[tex]n \geq 36[/tex]

Step-by-step explanation:

For this case we know the mean and the deviation:

[tex] \mu = 1.12 kg , \sigma= 0.0009[/tex]

The mean is given by this:

[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]

If we find the expected value for the sample mean we have:

[tex] E(\bar X) = E(\frac{\sum_{i=1}^n X_i}{n}) =\frac{1}{n} \sum_{i=1}^n E(X_i)[/tex]

Since each observation in the sample [tex] X_1, X_2,...., X_{25}[/tex] have an expectation [tex] E(X_i) = \mu , i =1,2,...,25[/tex] so then we have that:

[tex] E(\bar X) = \frac{1}{n} n\mu = \mu[/tex]

Now for the variance of the sample mean we have this:

[tex]Var (\bar X) = Var(\frac{\sum_{i=1}^n X_i}{n})= \frac{1}{n^2} \sum_{i=1}^n Var(X_i)[/tex]

And again each observation have a variance [tex] \sigma^2_i = 0.0009 , i =1,2,...,25[/tex] then we have:

[tex]Var (\bar X) =\frac{1}{n^2} n(\sigma^2) =\frac{\sigma^2}{n}[/tex]

And then the standard deviation would be:

[tex] Sd(\bar X) =\sqrt{\frac{\sigma^2}{n}}= \frac{\sigma}{\sqrt{n}}[/tex]

And we want that the standard deviation for the sample no more than 0.005 so we have this condition:

[tex]\frac{\sigma}{\sqrt{n}} \leq 0.005[/tex]

And since we know the value of [tex] \sigma= \sqrt{0.0009}=0.03[/tex] we can solve for the value of n like this:

[tex] \frac{0.03}{0.005} \leq \sqrt{n}[/tex]

[tex] 6 \leq \sqrt{n}[/tex]

And if we square both sides we got:

[tex] n\geq 36[/tex]

Final answer:

To achieve an average weight standard deviation of no more than 0.005 kilograms for a certain type of brick with a variance of 0.0009 kilograms², 36 bricks need to be selected.

Explanation:

The question concerns the calculation of the number of bricks needed so that the average weight of these bricks has a standard deviation of no more than 0.005 kilograms. Given that the weight of a certain type of brick has an expectation (mean) of 1.12 kilograms and a variance of 0.0009 kilograms2, the first step is to understand that the variance of the average weight of n bricks is equal to the variance of a single brick divided by n.

To achieve a standard deviation of the average weight of no more than 0.005 kilograms, we use the formula for the standard deviation of the mean, which is √(variance/n). The variance given is 0.0009 kilograms2. Setting the equation √(0.0009/n) <= 0.005 and solving for n gives:

0.0009/n = 0.0052

0.0009/n = 0.000025

n = 0.0009 / 0.000025 = 36

Therefore, to ensure the standard deviation of the average weight is no more than 0.005 kilograms, 36 bricks would need to be selected.

Discuss several ways to use fractions in everyday life

Answers

Answer:

Step-by-step explanation:

Fractions are used in telling time.

Fractions are used to determine discounts when there is sales going on.

Fraction is used to represent part of whole .

Fractions are used in baking to tell how much of an ingredient to use.

The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines simultaneously tangent to both graphs.(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation: (Two decimal places of accuracy.)y = ___ x + ___(b) The other line simultaneously tangent to both graphs has equation:(Two decimal places of accuracy.)y = ___ x + ___

Answers

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves x=4y2−y3 and x=0 about the x-axis.

Answers

Answer = 321.7

Explanation:

radius = y

height = [tex]4y^{2} - y^{3}[/tex]

area of cylinder = 2π*r*h

Integrate the area to calculate the volume:

[tex]= \int\limits^0_4 {2\pi(4y^{3} -y^{4}) } \, dy[/tex]

[tex]= 2\pi (\int\limits^0_4 {4y^{3}dy -\int\limits^0_4 y^{4} dy )} \,[/tex]

[tex]= 2\pi (256-\frac{1024}{5} )[/tex]

[tex]=\frac{512\pi }{5}[/tex]

[tex]= 321.7[/tex]

Final answer:

To compute the volume of the solid formed by rotating the region bounded by the curves x = 4y² − y³ and x = 0 around the x-axis, utilize the cylindrical shells method with the relevant volume formula for cylindrical shells and integrate over the intersecting interval of y-values.

Explanation:

Finding the Volume of a Solid of Revolution

To find the volume of the solid obtained by rotating the region bounded by the curves x = 4y2 − y3 and x = 0 about the x-axis using the method of cylindrical shells, we follow these steps:

Identify the range of y-values where the two curves intersect, which will give the limits of integration.Write down the formula for the volume of a cylindrical shell: dV = 2πry • dx, where r is the radius (function of y), and dx is the shell's thickness.Insert the given function into the formula to represent r as the function 4y2 − y3 and integrate with respect to y over the interval from step 1.

The relevant formulas for the volume and surface area of a sphere are (4/3)πr3 and 4πr2, respectively. It's important to note that the volume depends on the cube of the radius R3, while the surface area is a function of the square of the radius R2.

Which of the following is equivalent to finding the zeros of a function
A. X-intercepts
B. Y-intercepts
C. Slope
D. Origin

Answers

Answer:

A. X-intercepts

Step-by-step explanation:

The zeros of a function are the values of x for which y is 0.

For example:

y = 2x - 4

Has zeros

2x - 4 = 0

2x = 4

x = 2

Which means that when x = 2, y = 0. Looking at the graphic of this function, it crosses the x line when x = 2. So the zeros are also called x intercepts.

So the correct answer is

A. X-intercepts

Answer:

X-intercepts

Step-by-step explanation:

TRUST ME

A ball is dropped from a state of rest at time t=0.The distance traveled after t seconds is s(t)=16t^2 ft.
(a) How far does the ball travel during the time interval [3,3.5] ?Δs=____ft(b) Compute the average velocity over [3,3.5] .Δs/Δt= ____ ft/sec(c) Compute the average velocity over time intervals [3, 3.01] , [3, 3.001] , [3, 3.0001] , [2.9999, 3] , [2.999, 3] , [2.99, 3] .
Use this to estimate the object's instantaneous velocity at t=3 .V(3)= ____ ft/sec

Answers

Final answer:

The ball travels a distance of 52 ft during the time interval [3,3.5]. The average velocity over this interval is 104 ft/sec. When we calculate over increasingly smaller time intervals, it appears the instantaneous velocity at t=3 is 96 ft/sec.

Explanation:

(a) We need to find the displacement Δs over the time interval [3,3.5]. For that, we subtract the position at time 3 from the position at time 3.5:

Δs = s(3.5) - s(3) = 16(3.5^2) - 16(3^2) = 196 - 144 = 52 ft.

(b) We calculate the average velocity by dividing Δs by Δt. That is Δs/Δt = 52/0.5 = 104 ft/sec.

(c) To estimate the instantaneous velocity at t=3, we have to compute the average velocities over smaller and smaller intervals centered at t=3. Let's calculate the average velocities for [3,3.01],[2.999,3]:

For [3,3.01]: Δs/Δt = [16*(3.01)^2 - 16*3^2]/0.01 = 96.12 ft/sec. For [2.999,3]: Δs/Δt = [16*3^2 - 16*(2.999)^2]/0.001 = 96 ft/sec.

Instantaneous velocity at t=3, v(3) can be estimated as the limit of these average velocities, which seems to be approaching about 96 ft/sec.

Learn more about Instantaneous Velocity here:

https://brainly.com/question/35622957

#SPJ3

(a) The ball travel Δs= 52 ft during the time interval [3,3.5].

(b) The average velocity over [3,3.5] is Δs/Δt= 104 ft/sec

(c) The object's instantaneous velocity at t=3 .V(3)= 96 ft/sec

Let's solve the problem step-by-step.

Given:
The distance traveled by the ball after t seconds is given by the function: [tex]s(t) = 16t^2[/tex]

(a) To find the distance traveled, we need to calculate the change in the distance function, which is
[tex]\Delta s = s(3.5) - s(3)[/tex]

First, compute [tex]s(3)[/tex]:
[tex]s(3) = 16(3)^2 = 16 \times 9 = 144[/tex] ft

Next, compute [tex]s(3.5)[/tex]:
[tex]s(3.5) = 16(3.5)^2 = 16 \times 12.25 = 196[/tex] ft

So,
[tex]\Delta s = 196 - 144 = 52[/tex] ft

(b) Average velocity is calculated by dividing the change in distance by the change in time, which is
[tex]\frac{\Delta s}{\Delta t} = \frac{52}{0.5} = 104[/tex] ft/sec

(c) For the time intervals, we compute each average velocity:

[3, 3.01]:
[tex]\Delta t = 0.01[/tex]
[tex]s(3.01) = 16(3.01)^2 = 16 \times 9.0601 = 144.9616[/tex] ft
[tex]\Delta s = 144.9616 - 144 = 0.9616[/tex] ft
[tex]\text{Average velocity} = \frac{0.9616}{0.01} = 96.16[/tex] ft/sec

[3, 3.001]:
[tex]\Delta t = 0.001[/tex]
[tex]s(3.001) = 16(3.001)^2 = 16 \times 9.006001 = 144.096016[/tex] ft
[tex]\Delta s = 144.096016 - 144 = 0.096016[/tex] ft
[tex]\text{Average velocity} = \frac{0.096016}{0.001} = 96.016[/tex] ft/sec

[3, 3.0001]:
[tex]\Delta t = 0.0001[/tex]
[tex]s(3.0001) = 16(3.0001)^2 = 16 \times 9.00060001 = 144.00960016[/tex] ft
[tex]\Delta s = 144.00960016 - 144 = 0.00960016[/tex] ft
[tex]\text{Average velocity} = \frac{0.00960016}{0.0001} = 96.0016[/tex] ft/sec

[2.9999, 3]:
[tex]\Delta t = 0.0001[/tex]
[tex]s(2.9999) = 16(2.9999)^2 = 16 \times 8.99940001 = 143.99040016[/tex] ft
[tex]\Delta s = 144 - 143.99040016 = 0.00959984[/tex] ft
[tex]\text{Average velocity} = \frac{0.00959984}{0.0001} = 95.9984[/tex] ft/sec

[2.999, 3]:
[tex]\Delta t = 0.001[/tex]
[tex]s(2.999) = 16(2.999)^2 = 16 \times 8.994001 = 143.904016[/tex] ft
[tex]\Delta s = 144 - 143.904016 = 0.095984[/tex] ft
[tex]\text{Average velocity} = \frac{0.095984}{0.001} = 95.984[/tex] ft/sec

[2.99, 3]:
[tex]\Delta t = 0.01[/tex]
[tex]s(2.99) = 16(2.99)^2 = 16 \times 8.9401 = 143.0416[/tex] ft
[tex]\Delta s = 144 - 143.0416 = 0.9584[/tex] ft
[tex]\text{Average velocity} = \frac{0.9584}{0.01} = 95.84[/tex] ft/sec

From these values, we can see that as the interval gets smaller, the average velocities are approaching a specific value. This helps us estimate the instantaneous velocity at [tex]t = 3[/tex].

At a college, 71% of courses have final exams and 43% of courses require research papers. Suppose that 26% of courses have a research paper and a final exam. Part (a) Find the probability that a course has a final exam or a research paper.

Answers

Answer:

There is an 88% probability that a course has a final exam or a research paper.

Step-by-step explanation:

We solve this problem building the Venn's diagram of these probabilities.

I am going to say that:

E is the probability that a course has final exam.

P is the probability that a course requires research paper.

We have that:

[tex]E = e + (E \cap P)[/tex]

In which e is the probability that a course has final exam but does not require research paper and [tex]E \cap P[/tex] is the probability that a course has both of these things.

By the same logic, we have that:

[tex]P = p + (E \cap P)[/tex]

(a) Find the probability that a course has a final exam or a research paper.

This is

[tex]Pr = e + p + (E \cap P)[/tex]

Suppose that 26% of courses have a research paper and a final exam.

This means that

[tex]E \cap P = 0.26[/tex]

43% of courses require research papers.

So [tex]P = 0.43[/tex]

[tex]P = p + (E \cap P)[/tex]

[tex]0.43 = p + 0.26[/tex]

[tex]p = 0.17[/tex]

71% of courses have final exams

So [tex]E = 0.71[/tex]

[tex]E = e + (E \cap P)[/tex]

[tex]0.71 = e + 0.26[/tex]

[tex]e = 0.45[/tex]

The probability is

[tex]Pr = e + p + (E \cap P) = 0.45 + 0.17 + 0.26 = 0.88[/tex]

There is an 88% probability that a course has a final exam or a research paper.

Donna de paul is raising money for the homeless. She discovers that each church group requires 2 hours of let her writing and 1 hour of follow-up while for each labor union she needs 2 hours of letter written and 3 hours of follow-up. Donna can raise $150 from each church group and $200 from each Union Local and she has a maximum of 20 hours of letters written and a maximum of 16 hours of follow-up available per month. Determine the most profitable mixture of group she should contact in the most money she can lose in a month.

z=()x1+()x2

Answers

Answer:

x  =  7

y  =  3

z (max)  =  4950/3  =  1650

Step-by-step explanation:

Let call  

x numbers of church goup and

y numbers of Union Local

Then  

First contraint

2*x + 2*y ≤ 20

Second one

1*x + 3*y ≤ 16

Objective Function

z = 150*x + 200*y

Then the system is

z = 150*x + 200*y To maximize

Subject to:

2*x + 2*y ≤ 20

1*x + 3*y ≤ 16

x ≥ 0 y ≥ 0

We will solve by using the Simplex method

z - 150 *x - 200*y = 0

2*x + 2*y + s₁ = 20  

1*x + 3*y + 0s₁ + s₂ = 16

First Table

z           x          y          s₁           s₂          Cte

1        -150    -200       0            0     =      0

0          2         2           1            0     =    20

0          1          3          0            1      =     16

First iteration:

Column pivot   ( y column ) row pivot (third row) pivot 3

Second table

z           x                y          s₁           s₂                Cte

1       -250/3           0          0         200/3    =    3200/3

0      - 4/3               0          -1           2/3       =    -20/3

0         1/3               1            0           1/3       =    -20/3

Second iteration:

Column pivot  ( x column ) row pivot  (second row)  pivot  -4/3

Third table

z           x                y          s₁           s₂                Cte

1            0               0      750/12    700/6    =   4950/3

0            1                0        3/4          -1/2     =    7

0            0                1         -1/4          1/2     =  9/3

Final answer:

Donna should contact four church groups and four labor unions to maximize her fundraising, which would yield $1400. The maximum money she could 'lose' (or not earn) is $0 if she does not contact any group.

Explanation:

We need to set up linear inequalities to represent the constraints described by Donna's situation. We will let x represent the number of church groups and y represent the number of labor unions she contacts.

The time required for letter writing can be described by the inequality: 2x + 2y <= 20, and the time for follow-ups is x + 3y <= 16.

We want to maximize the sum z = 150x + 200y which represents the total money she can raise.

To find the maximum, one method is to graph the feasible region defined by the constraints and find the vertices. Then evaluate the objective function at the vertices. In this case, the vertices are (0,0), (0,5), (8,0) and (4,4).

Upon calculation, contacting four church groups and four labor unions yields the highest amount of $1400.

As for the loss, given the nature of the task, the most money she could 'lose' in a month is just not raising any money at all, which would be $0 if she doesn't contact any group.

Learn more about Linear Programming here:

https://brainly.com/question/34674455

#SPJ11

July 15: Hire part-time helper to be paid $12 per hour. Pay periods are the 1st through the 15th and 16th through the end of the month, with paydays being the 20th for the first pay period and the 5th of the following month for the second pay period. (No entry is required on this date; it is here for informational purposes only.)

Answers

Answer:

The information above is just a part of a long question.The main question is  found in the attached as well as the answer following a step by step methodical approach.

Step-by-step explanation:

Take a good at the full question before venturing into the statements prepared so as to have a thorough understanding of the requirements and how the answers provided have touched upon the requirements.

In a high school graduating class of 202 students, 95 are on the honor roll. Of these, 71 are going on to college, and of the other 107 students, 53 are going on to college. A student is selected at random from the class. What are the probabilities that the person chosen is (a) going to college, (b) not going to college, and (c) on the honor roll, but not going to college?

Answers

Answer:

Step-by-step explanation:

Given that in a high school graduating class of 202 students, 95 are on the honor roll. Of these, 71 are going on to college, and of the other 107 students, 53 are going on to college.

Total students = 202

Honor roll = 95

College going out of honor = 71

Non college going out of honor = 24

Not in honor roll = 107

Not going to college from not in honour = 53

The probabilities that the person chosen is

(a) going to college,  = [tex]\frac{71+53}{202} \\=0.614[/tex]

(b) not going to college, =[tex]\frac{202-124}{202} \\=0.485[/tex]

(c) on the honor roll, but not going to college

=[tex]\frac{24}{202} \\=0.119[/tex]

Final answer:

The probabilities for a student selected at random from the class are: going to college, not going to college, and being on the honor roll but not going to college, calculated based on provided numbers for a graduating class of 202 students.

Explanation:

To solve this problem, we first need to understand the given information about the high school graduating class consisting of 202 students, with 95 on the honor roll and 107 not on the honor roll. Out of those on the honor roll, 71 are going to college, and of those not on the honor roll, 53 are going to college. Let's calculate the probabilities for each scenario.

Probability of Going to College

Total students going to college = Students on the honor roll going to college + Students not on the honor roll going to college = 71 + 53 = 124

Probability = (Total students going to college) / (Total students) = 124 / 202

Probability of Not Going to College

Total students not going to college = Total students - Total students going to college = 202 - 124 = 78

Probability = 78 / 202

Probability of Being on the Honor Roll but Not Going to College

Total students on the honor roll but not going to college = Total students on the honor roll - Students on the honor roll going to college = 95 - 71 = 24

Probability = 24 / 202

Umbrella Corporation purchases a raw material in 55-gallon drums from a supplier. Records for the supplier indicate that the impurity level in the material per drum has a normal distribution with a mean of 3% and a standard deviation of 0.4%. An impurity level of 4% or more in any shipment requires that Umbrella return the entire drum to the supplier.
What is the probability that Umbrella has to return any given shipment?

Answers

Answer:

The probability that Umbrella returns any shipment is 0.0062.

Step-by-step explanation:

Let X = the impurity level in the material per drum

Then it is provided that,

[tex]X\sim N(\mu = 0.03,\ \sigma=0.004)[/tex]

Also if the impurity level is more than or equal to 4% or 0.04 in any shipment, then Umbrella returns the entire drum to the supplier.

Compute the probability that Umbrella returns any shipment as:

[tex]P(X\geq 0.04)=P(\frac{X-\mu}{\sigma}\geq \frac{0.04-0.03}{0.004}) \\=P(Z\geq 2.5)\\=1-P(Z<2.5)\\=1-0.99379\\=0.00621\\\approx0.0062[/tex]

Use the z-table fro left z-scores to determine the probability.

Thus, the probability that Umbrella returns any shipment is 0.0062.

A bottling plant fills one-gallon jugs with milk. The label on a one gallon jug of milk states that the volume of milk is 128 fluid ounces (fl.oz.) Federal law mandates that the jug must contain no less than the stated volume. The actual amount of milk in the jugs is normally distributed with mean µ = 129 fl. Oz. and standard deviation ơ = 0.8 fl. Oz. Use this information to answer below questions.
1. Find the z-score corresponding to a jug containing 128 fl. Oz. of milk?
2. What is the probability that a randomly selected jug will contain less than 128 fl. Oz. of milk?

Answers

Final answer:

The z-score for a jug with 128 fl. Oz. of milk and the probability of a jug containing less than 128 fl. Oz. are calculated using the mean and standard deviation provided.

Explanation:

1. Find the z-score corresponding to a jug containing 128 fl. Oz. of milk:

Calculate the z-score using the formula: z = (x - µ) / ơSubstitute the values: z = (128 - 129) / 0.8Calculate to find the z-score.

2. Probability that a jug contains less than 128 fl. Oz. of milk:

Convert the value to a z-score using the formula.Refer to the Z-table or calculator to find the probability.

Suppose we have a population of N deer in a study area. Initially n deer from this population are captured, marked so that they can be identified as having been captured, and returned to the population. After the deer are allowed to mix together, m deer are captured from the population and the number k of these deer having marks from the first capture is observed. Assuming that the first and second captures can be considered random selections from the population and that no deer have either entered or left the study area during the sampling period, what is the probability of observing k marked deer in the second sample of m deer

Answers

Answer:

[tex]P(k) = \frac{(n C k) [(N-n) C (m-k)]}{(NCm)}[/tex]

Step-by-step explanation:

Step 1: Number of possible combination of selecting ‘m’ deer in second sample

Total number of deer are N and therefore the combinations can be calculated as (N С m).  

Step 2: Number of possible combination of marked deer ‘k’ in second sample

Total number of marked deer in total population is ‘n’. Therefore, the possible number of selecting marked deer is (n C k).

Step 3: Number of possible combination unmarked deer in second sample

Since we have already calculated the total combinations of selecting marked deer in the second sample. Hence, we have to calculate the total unmarked deer in total population which is N-n and number of unmarked deer in the second sample which is m-k.

Therefore, total possible combination of unmarked deer in second sample is [(N-n) C (m-k)].

Step 4: Probability of selecting unmarked deer in the second sample is

Let the probability of selecting unmarked deer in the second sample be P(k)

Therefore,

                                 [tex]P(k) = \frac{(n C k) [(N-n) C (m-k)]}{(NCm)}[/tex]

A baseball team plays in a stadium that holds 56000 spectators. With the ticket price at $11 the average attendence has been 21000. When the price dropped to $9, the average attendence rose to 28000. Assume that attendence is linearly related to ticket price.

(a) Find the demand function, assuming that it is linear.

(b) How should ticket prices be set to maximize revenue?

Answers

Answer:

(a) [tex]p(x) = 17-\frac{x}{3,500}[/tex]

(b) $8.50

Step-by-step explanation:

(a) The slope of the demand function, p(x), is determined by:

[tex]m=\frac{11-9}{21,000-28,000}=-\frac{1}{3,500 }[/tex]

Applying the point (21,000; 11) to the general linear equation formula gives us the demand function:

[tex]p(x) - 11 = -\frac{1}{3,500}*(x-21,000)\\p(x) = 17-\frac{x}{3,500}[/tex]

(b) The revenue function, r(x), is given by:

[tex]r(x) =x*p(x) = 17x-\frac{x^2}{3,500}[/tex]

The value of x for which the derivate of the revenue function is zero gives us the attendance for which revenue is maximized:

[tex]\frac{dr(x)}{dx} =0= 17-\frac{2x}{3,500}\\x=29,750[/tex]

At an attendance of 29,750, the price is:

[tex]p = 17-\frac{29,750}{3,500}\\p=\$8.50[/tex]

Tickets should be set at a price of $8.50.

Final answer:

The demand function for the baseball team can be found using the given data points. The revenue function can be derived using the demand function, and its maximum can be determined by finding the critical points. The ticket price should be set at $8.50 to maximize revenue for the baseball team.

Explanation:

(a) To find the demand function, we can use the point-slope form of a linear equation. Let's denote the ticket price as p and the attendance as a. We have two data points: (11, 21000) and (9, 28000). We can use the formula: a - a1 = m(p - p1) where (p1, a1) represents one of the given data points and m represents the slope. Let's use the first data point:

21000 - 28000 = m(11 - 9)

-7000 = 2m

m = -3500

So, the demand function is: a(p) = -3500p + b. To find the constant term b, we can substitute one of the data points into the equation. Let's use the first data point (11, 21000):

21000 = -3500(11) + b

21000 = -38500 + b

b = 59500

Therefore, the demand function is: a(p) = -3500p + 59500.

(b) Revenue is the product of the ticket price and the attendance. Let's denote the revenue as R and the ticket price as p. The revenue function can be written as: R(p) = p * a(p). Substituting the demand function into the revenue function, we have: R(p) = p * (-3500p + 59500). To maximize revenue, we can find the critical points of the function by taking the derivative and setting it equal to zero.

R'(p) = -7000p + 59500 = 0

-7000p = -59500

p = 8.5

The critical point is p = 8.5. To confirm that this gives a maximum, we can take the second derivative and check its sign.

R''(p) = -7000

Since the second derivative is negative, the critical point p = 8.5 corresponds to the maximum revenue. Therefore, the ticket price should be set at $8.50 to maximize revenue.

Learn more about Demand Function here:

https://brainly.com/question/34102390

#SPJ3

Convert the following numbers to Mayan notation. Show your calculations used to get your answers. 135?

Answers

Answer:

The answer to your question is below

Step-by-step explanation:

In Mayan notation there are only 3 symbols

   dot   .    means one

   line   ---   means five

  snail          means zero

And the are three levels,     the lower means     x 1

                                              the first means       x 20

                                              the second means  x 400

                                              the higher means    x 8000

Then, 135 is lower than 400, so we must start in the first level and need to divide 135 by 20.                         6

                                        20    135

                                                   15

Finally place 6 in the fist level and 15 in the lower lever, like this

And 120 + 15 = 135.          

                             

Final answer:

To convert 135 to Mayan notation, one must work with a base-20 system. In this system, 135 is broken down to (6 x 20) + 15, which is written in Mayan as a bar and three dots on top, and below that, six dots.

Explanation:

The Maya used a vigesimal (base-20) numeral system for their calculations, which is different from our familiar base-10 system. To convert the number 135 to Mayan notation, you need to express it in base-20.

135 in base-20 is calculated as:

135 divided by 20 gives 6 as the quotient and 15 as the remainder.Therefore, 135 can be written as (6 x 20) + 15.In Mayan numerals, 6 is represented by six dots and 15 by a bar (which equals 5) and three dots on top of it.

In Mayan notation, numbers are written vertically with the largest value at the top, so 135 would be represented with a bar and three dots on top (for 15), and under that, six dots (for 6).

If the equation of a circle is (x - 2)2 + (y - 6)2 = 4, it passes through point (5,6). True or false

Answers

Answer: False

Step-by-step explanation:

To know if the circle passes through the given point, we simply insert the coordinates of the given point (5,6) into the general equation Of the Circle. If left hand side of the equation balances with the right hand side, then the circle passed through the point.

The equation of the circle is (x-2)² + (y-6)² = 4

By inserting the given coordinates (5,6) we have.

(5-2)² + (6-6)² = 3² =9

Since the answer gotten is not 4, then the circle does not pass through the point (5,6)

A certain type of plywood consists of 5 layers. The thickness of the layers follows a normal distribution with mean 5 mm and standard deviation 0.2 mm. Find the probability that the plywood is less than 24mm thick.

Answers

The resulting probability is approximately 100%.

To find the probability that the plywood is less than 24mm thick, we need to calculate the z-score for 24mm using the given mean and standard deviation. The z-score formula is:

z = (x - mean) / standard deviation

Substituting the values, we get:

z = (24 - 5) / 0.2 = 95

We can then look up the z-score in a standard normal distribution table to find the corresponding probability.

In this case, the probability is practically 1 (or 100%) since 24mm is significantly greater than the mean.

Therefore, the probability that the plywood is less than 24mm thick is approximately 100%.

A real estate agent has 14 properties that she shows. She feels that there is a 50% chance of selling any one property during a week. The chance of selling any one property is independent of selling another property. Compute the probability of selling more than 4 properties in one week.

Answers

Final answer:

To find the probability of selling more than 4 properties in one week, use the binomial probability formula for each number of sales above 4 and sum them, or subtract the sum of probabilities of 4 or fewer sales from 1.

Explanation:

To compute the probability of selling more than 4 properties in one week, given that the chance of selling any one property is 50% and is independent of selling another property, we can use the binomial probability formula. In our scenario, we have a total of 14 properties, and the random variable X represents the number of properties sold in a week.

The binomial probability formula is:

P(X = k) = (n choose k) * p^k * (1-p)^(n-k)

Where:

n is the number of trials (in this case, 14 properties)k represents the number of successes (properties sold)p is the probability of success on any given trial (50% or 0.5)

However, instead of calculating the probability of selling exactly k properties, we are interested in selling more than 4 properties. This means we need to calculate the probabilities for selling 5, 6, ..., up to 14 properties and sum them up. Alternately, we can calculate 1 minus the probability of selling 4 or fewer properties to save time, since the probabilities must sum to 1.

A house hunter on Long Island estimates that 20% of the available houses in her price range are in acceptable condition. Furthermore, she has time to look at only one house each week. What is the probability that she will find an acceptable house in the first two weeks that she looks (round off to second decimal place)?

Answers

Answer:

36% probability that she will find an acceptable house in the first two weeks that she looks.

Step-by-step explanation:

For each house, there is a 20% probability of it being acceptable. And a 100-20 = 80% of not being acceptable

What is the probability that she will find an acceptable house in the first two weeks that she looks (round off to second decimal place)?

She only looks one house a week.

So this is the same as the probability of taking two or less weeks to find a house.

The are two outcomes

Finding an acceptable house in the first week, with 20% probability

Not finding an acceptable house in the first week, with 80% probability, and then finding an acceptable house in the second week, with 20% probability.

Probability:

[tex]P = 0.2 + 0.8*0.2 = 0.36[/tex]

36% probability that she will find an acceptable house in the first two weeks that she looks.

The correct answer is 0.36 or 36%.

To solve this problem, we need to calculate the probability that the house hunter does not find an acceptable house in the first two weeks and then subtract this probability from 1 to find the probability that she does find an acceptable house within that time frame.

 Let's denote the probability of finding an acceptable house in a given week as[tex]\( p \)[/tex] and the probability of not finding an acceptable house in a given week as [tex]\( q \)[/tex]. Since 20% of the houses are in acceptable condition, [tex]\( p = 0.20 \) and \( q = 1 - p = 1 - 0.20 = 0.80 \).[/tex]

The probability that the house hunter does not find an acceptable house in the first week is[tex]\( q \).[/tex] The probability that she does not find an acceptable house in the first two weeks is the product of the probabilities that she does not find one in each of the two weeks separately, which is [tex]\( q \times q \) or \( q^2 \).[/tex]

Now, we calculate [tex]\( q^2 \):[/tex]

[tex]\[ q^2 = (0.80)^2 = 0.64 \][/tex]

This is the probability that she will not find an acceptable house in the first two weeks. To find the probability that she will find an acceptable house in the first two weeks, we subtract this value from 1:

[tex]\[ \text{Probability of finding an acceptable house in two weeks} = 1 - q^2 \][/tex]

[tex]\[ \text{Probability of finding an acceptable house in two weeks} = 1 - 0.64 \][/tex]

[tex]\[ \text{Probability of finding an acceptable house in two weeks} = 0.36 \][/tex]

According to data from the state blood program, 40 percent of all individuals have group A blood. If six individuals give blood, find the probability that exactly three of the individuals have group A blood.

Answers

Final answer:

The probability that exactly three out of six individuals have group A blood, with a 40 percent chance for each individual, is found using the binomial probability formula. The calculation yields approximately 27.648% as the probability for exactly three individuals having group A blood.

Explanation:

The question asks for the probability that exactly three out of six individuals have group A blood, given that 40 percent of all individuals have group A blood. This is a binomial probability problem because there are two outcomes (having group A blood or not) and a fixed number of trials (six individuals).

Let's denote X as the random variable representing the number of individuals with group A blood. The probability of success on any given trial is p = 0.40 (having group A blood). The probability of failure is q = 1 - p = 0.60 (not having group A blood).

The binomial probability formula is:

[tex]P(X = k) = C(n, k) * p^k * q^(n-k)[/tex]

where:

C(n, k) is the combination of n items taken k at a time,p is the probability of success,k is the number of successes,n is the number of trials, andq is the probability of failure.

For our problem:

n = 6 (total number of individuals),k = 3 (number of individuals with group A blood that we want to find the probability for),p = 0.40,q = 0.60.

Plugging these values into the binomial formula gives:

[tex]P(X = 3) = C(6, 3) * (0.40)^3 * (0.60)^3[/tex]

First, calculate the combination:

C(6, 3) = 6! / (3! * (6-3)!) = 20

Then, calculate the probability:

[tex]P(X = 3) = 20 * (0.40)^3 * (0.60)^3 = 20 * 0.064 * 0.216 = 0.27648[/tex]

Hence, the probability that exactly three of the individuals have group A blood is approximately 0.27648 or 27.648%.

Find the missing lengths and angle measures in kite ABCD

Answers

Answer:

Part 1) [tex]AC=40\ units[/tex]

Part 2) [tex]DC=29\ units[/tex]

Part 3) [tex]m\angle ABE=39^o[/tex]

Part 4) [tex]m\angle BCE=51^o[/tex]

Step-by-step explanation:

we know that

A kite has two pairs of consecutive, congruent sides the diagonals are perpendicular and the non-vertex angles are congruent

Part 1) Find AC

we know that

BD is the axis of symmetry, bisects the diagonal AC

so

[tex]AE=EC[/tex]

we have

[tex]EC=20\ units[/tex]

[tex]AC=AE+EC[/tex] ----> by segment addition postulate

therefore

[tex]AC=20+20=40\ units[/tex]

Part 2) Find CD

we know that

CDE is a right triangle (the diagonals are perpendicular)

so

Applying Pythagorean Theorem

[tex]DC^2=EC^2+ED^2[/tex]

substitute the values

[tex]DC^2=20^2+21^2[/tex]

[tex]DC^2=841\\DC=29\ units[/tex]

Part 3) Find m∠ABE

we know that

In the right triangle ABE

[tex]51^o+m\angle ABE=90^o[/tex] ----> by complementary angles

[tex]m\angle ABE=90^o-51^o=39^o[/tex]

Part 4) Find m∠BCE

we know that

[tex]m\angle BCE=m\angle BAE[/tex] ----> diagonal BD is the axis of symmetry

we have

[tex]m\angle BAE=51^o[/tex]

therefore

[tex]m\angle BCE=51^o[/tex]

The measure of AC is 40 units.

The measure of the length DC is 29 units.

The measure of the angle ABE is 39 degrees.

The measure of the angle BCE is 51 degrees.

We have to determine

The missing lengths and angle measures in kite ABCD.

According to the question

The rhombus is a four-sided quadrilateral with all its four sides equal in length.

Rhombus is a kite with all its four sides congruent.

A kite is a special quadrilateral with two pairs of equal adjacent sides.

1. The measure of the length of AC is;

In the figure, BD is the axis of symmetry, bisects the diagonal AC.

Then,

[tex]\rm AE = EC[/tex]

And the measure of AC is,

[tex]\rm AC = AE+EC \\ \\ AC = 20+20 \\ \\ AC = 40 \ units[/tex]

The measure of AC is 40 units.

2. In the figure, CDE is a right triangle (the diagonals are perpendicular)

Then,

By applying the Pythagoras Theorem

[tex]\rm DC^2=EC^2+ED^2\\ \\ DC^2=20^2+21^2\\\\ DC^2 = 400+441 \\ \\ DC^2 = 841\\ \\ DC = 29 \ \rm units[/tex]

The measure of the length DC is 29 units.

3. In the right triangle ABE by the complementary angles;

[tex]\rm 51+ \angle ABE = 90\\ \\ \angle ABE=90-51\\ \\ \angle ABE=39 \ degrees[/tex]

The measure of the angle ABE is 39 degrees.

4. By the axis of symmetry the diagonal BD is;

[tex]\rm m \angle BCE = m \angle BAE\\\\ m \angle BCE = m \angle BAE = 51 \ degrees[/tex]

The measure of the angle BCE is 51 degrees.

To know more about Kite click the link given below.

https://brainly.com/question/11089614

A large disaster cleaning company estimates that 30 percent of the jobs it bids on are finished within the bid time. Looking at a random sample of 8 jobs that it has contracted, calculate the mean number of jobs completed within the bid time.

Answers

Answer: 2.4

Step-by-step explanation:

Given : A large disaster cleaning company estimates that 30 percent of the jobs it bids on are finished within the bid time.

i..e The proportion of  the jobs it bids on are finished within the bid time: p = 30%= 0.30

Sample size of jobs that it has contracted : n= 8

Then ,  the mean number of jobs completed within the bid time : [tex]\mu=np[/tex]

[tex]= 8\times0.30=2.4[/tex]

Hence, the mean number of jobs completed within the bid time is 2.4 .

Other Questions
unidad 7 la transportacion Roommates Sarah and Zoe are hosting a Halloween party and have to make food for their guests and costumes for themselves. To finish both tasks as quickly as possible, Sarah and Zoe know that each of them should focus on just one task, but they don't know who should do what. To decide which roommate should do the cooking, Sarah and Zoe should determine which roommate:A) has the largest production possibility frontier in cooking.B) can complete the cooking in the least amount of time.C) has the absolute advantage in cooking.D) has the comparative advantage in cooking. The interior angles formed by the sides of a quadrilateral have measures that some to 360What is the value of x? 30. a. How do the properties of metals differ from thoseof both ionic and molecular compounds?b. What specific property of metals accounts for theirunusual electrical conductivity? Brian, Chris, and Damien took a math test that had 20 questions. The number of questions Brian got right is 14 more than the number of questions Chris got right. Damien correctly answered 2 less than the number of questions Chris answered correctly. If Brian and Damien have the same score, which statement is true?A. Brian and Damien both answered 2 fewer questions correctly than Chris did.B. Brian and Damien both answered 4 more questions correctly than Chris did.C. Brian and Damien both answered 2 more questions correctly than Chris did.D. Brian and Damien both answered 4 fewer questions correctly than Chris did. in triangle ABC , p is midpoint of BC and Q is the midpoint of AC . if b (2,7) , p (-1,5) and a (4,-5) are the known points , then find the co ordinates of c and q. How can we be efficient with the use of natural resources? Which organelle provides protection and support to a cell? Cell wall Cytoplasm Nucleus Ribosome 5 times 7/10 The product lies between - and - A tennis ball has a mass of 0.059 kg. A professional tennis player hits the ball hard enough to give it a speed of 41 m/s (about 92 miles per hour.) The ball moves toward the left, hits a wall and bounces straight back to the right with almost the same speed (41 m/s). A) What is the average speed of the ball during the period from first contact with the wall to the moment the ball's speed is momentarily zero? B) How much time elapses between first contact with the wall, and coming to a stop? C) What is the magnitude of the average force exerted by the wall on the bal dring contact? D) In contrast, what is the magnitude of the gravitational force of the Earth on the ball? Who did the Nazis begin using poisonous gas on in 1939? The spread of Christianity to 325 CE was mainly due to:A)the Crusades.B)Jesus's traveling preaching,C)Constantine's declaration of Christianity as the official religion of the Roman Empire.D) The work of missionaries, like Saint Paul. economic importance of earthworm Julius asks Rachel if she would like to sell her boat. Rachel privately has no interest in selling her boat, and believes that Julius cant afford her boat anyway. Rachel says, "Id sell my boat to you for $20,000." To Rachels surprise, Julius responds "Ok, its a deal." Rachel does not want to sell the boat to Julius for any price. Julius and Rachel have:________a. formed a valid contract, because Rachels outward expressions showed the formation of a contract. b. formed a valid contract, because Julius expressed outward interest in the boat. c. not formed a valid contract, because Rachel did not want to sell the boat for any price. d. not formed a valid contract because of lack of definiteness in the contract terms. All of the following are good reasons to attend a community college except:A. There are lots of campus activitiesB. Its less expensive than a four-year collegeC. To figure out what you want to studyD. To improve your GPA to get into a four-year college Suppose that you fill an ice-cube tray with water from the sink and put the trash in the freezer. The waters temperature decreases because _________.a. Cool air in the freezer flows into the waterb. Thermal energy flows out of the water into the air in the freezerc. Water evaporates and moves into the air in the freezerd. the water contracts at a lower temperature I need help asap, thank you How do you find the circumference and diameter of a circle? Please make this quick for a quiz tomorrow! thank you friends! A researcher wants to obtain a sample of 30 preschool children consisting of 10 two-year-old children, 10 three-year-old, and 10 four-year-old children. Assuming that the children are obtained from local daycare centers, this researcher should use ____ sampling. Given the function f(x)=4x+10 and g(x), which function has a greater slope Which of the following help departments organize unique access controls for access to folders and data files within a department or group so that only those employees who need access to confidential data are granted access? Steam Workshop Downloader