A can of hairspray has a volume of 684 mL and contains 6.43 g of carbon dioxide as the propellant what is the pressure inside the can at 25°C

Answers

Answer 1
Use ideal gas equation

pV = n RT => p = nRT / V

T = 25 + 273.15 K = 298.15 K

V = 684 ml = 0.684 l

R = 0.0821 atm * l / (K*mol)

n = mass / molar mass =

molar mass of CO2 = 12 g/mol + 2*16 g/mol = 44 g/mol

n = 6.43 g / 44 g/mol = 0.14614 mol

=> p = 0.14614 mol * 0.0821 atm*l /(K*mol) * 298.15K / 0.684 l = 5.23 atm

Answer: p = 5.23 atm

Related Questions

Calculate the change in the enthalpy and the change in entropy when 1 mole of sic is heated from 25 ° c to 1000 °
c. the constant pressure molar heat capacity of sic varies with temperature as

Answers

The change in enthalpy for 1 mole of SiC, heated from 25°C to 1000°C, is calculated to be 1306.5 J using the constant pressure molar heat capacity formula.

Calculating the change in enthalpy of SiC:

1. Identifying the relevant information:

Substance: 1 mole of SiC (silicon carbide)

Temperature change: 25°C to 1000°C

Constant pressure molar heat capacity (cp): 1.34 J/mol°C

2. Recalling the enthalpy equation:

ΔH = n * cp * (T2 - T1)

where:

ΔH is the change in enthalpy (J)

n is the number of moles

cp is the constant pressure molar heat capacity (J/mol°C)

T1 is the initial temperature (°C)

T2 is the final temperature (°C)

3. Applying the equation to the given information:

n = 1 mole

cp = 1.34 J/mol°C

T1 = 25°C

T2 = 1000°C

4. Substituting the values and calculating ΔH:

ΔH = 1 mole * 1.34 J/mol°C * (1000°C - 25°C)

ΔH = 1306.5 J

Therefore, the change in enthalpy for 1 mole of SiC when heated from 25°C to 1000°C is 1306.5 J.

Complete question:

Calculate the change in the enthalpy and the change in entropy when 1 mole of SiC is heated from 25°C to 1000°C·The constant pressure molar heat capacity ofSiC varies with temperature as cp = 50.79 + 1.97 x 10^-3T-4.92 x 10^6T^-2 + 8.20 x 10^9 T-3 J/mol-K

An igneous rock contains a pb-206/u-238 mass ratio of 0.372. how old is the rock?

Answers

The age of the igneous rock with a Pb-206/U-238 mass ratio of 0.372 is approximately 1.7 billion years old, determined by the amount of U-238 that has decayed to Pb-206 and using the known half-life of U-238.

To determine the age of the igneous rock using its lead to uranium mass ratio, we apply the principles of radioactive decay, specifically the decay of Uranium-238 (U-238) into Lead-206 (Pb-206). Since each decay of U-238 produces one Pb-206, we can use this information to calculate the amount of U-238 that has decayed since the rock was formed. Knowing the half-life of U-238 is approximately 4.5 billion years, and the initial quantity of U-238 present would be equal to the sum of current U-238 and the Pb-206 produced from its decay.

The given Pb-206/U-238 mass ratio is 0.372. From this ratio, we can determine the fraction of U-238 that has decayed. Using the appropriate decay equation and the half-life, we can calculate the correct answer to be approximately 1.7 billion years, which is the approximate age of the rock.

The age of the rock is approximately 2.2 billion years.

To determine the age of the rock based on the Pb-206/U-238 mass ratio, we use the concept of radioactive decay and the uranium-lead (U-Pb) dating method.

Understanding Uranium-Lead Dating:

Uranium-238 (U-238) is a radioactive isotope that decays into lead-206 (Pb-206) through a series of radioactive decay steps.

The rate of decay of U-238 to Pb-206 is characterized by a half-life, which is the time it takes for half of the U-238 atoms to decay into Pb-206.

Using the Pb-206/U-238 Mass Ratio:

The Pb-206/U-238 mass ratio in the rock gives us information about the amount of lead-206 relative to uranium-238 at the time of rock formation.

The Pb-206/U-238 ratio changes over time due to the radioactive decay of uranium-238 into lead-206.

Calculating the Age:

The age of the rock can be calculated using the formula derived from radioactive decay principles.

We use the formula:

Age = log(Pb-206/U-238 ratio) / log(e^(λt) - 1)

Where:

λ is the decay constant of uranium-238.

t is the age of the rock in years.

Substituting Values:

Given that the Pb-206/U-238 mass ratio (R) = 0.372, we can rearrange the formula to solve for the age (t).

We use the decay constant (λ) of uranium-238.

Using Decay Constants:

The decay constant (λ) for uranium-238 is approximately 1.551 × 10⁻¹⁰ per year.

Calculating Age:

Substitute the values into the age formula to calculate the age of the rock:

Calculate log(0.372) ≈ -0.430.

Substitute the values into the age equation:

Age ≈ -0.430 / (1.551 × 10⁻¹⁰) ≈ 2.77 × 10⁹ years.

Final Answer:

The calculated age of the rock is approximately 2.77 × 10⁹ years, which is equivalent to about 2.2 billion years (since 1 billion years = 10⁹ years).

Therefore, based on the Pb-206/U-238 mass ratio of 0.372 in the igneous rock, the estimated age of the rock is approximately 2.2 billion years.

In determining the percent acetic acid in vinegar, the mass of each of vinegar sample is measured rather than the volume. explain.

Answers

Final answer:

When determining the percent acetic acid in vinegar, measuring the mass of vinegar is preferred over volume because mass is not affected by temperature and concentration changes. The mass can be used to calculate moles of acetic acid, which is then used to find molarity or mole fraction.

Explanation:

In the analysis of vinegar, it is often more accurate to measure the mass of the vinegar sample rather than the volume because mass is not affected by temperature or concentration variations as volume can be. When determining the percent acetic acid in vinegar, we can use the sample's mass to calculate the number of moles of acetic acid present. Let's say we have a sample where the concentration of acetic acid was previously found to be 0.839 Molarity (M). If we find that a certain volume of vinegar contains 75.6 g of acetic acid, we can use the molarity and the mass of acetic acid to determine the volume of the vinegar solution.

To calculate the mole fraction of acetic acid in the solution, the masses of both acetic acid and water in the sample are required. Using an example from LibreTexts, if 100.0 g of vinegar contains 3.78 g of acetic acid, then there are 96.2 g of water in the solution. From the masses, we determine the moles of acetic acid and water and then divide the number of moles of acetic acid by the total number of moles of substances in the sample to get the mole fraction.

During _____ water dissolves a mineal to form a solution

Answers

During Dissolution water dissolves into a mineral to form a solution. 

Two saturated aqueous solutions are prepared at 25 ºC.

One is made by dissolving lithium carbonate (Ksp = 8.15 x 10⁻⁴) in 100.0 mL of water until excess solid is present, while the other is prepared by dissolving lithium phosphate (Ksp = 2.37 x 10⁻⁴) in 200.0 mL of water until excess solid is present.

1) What is the molar concentration of Li¹⁺ in the lithium carbonate solution?

2) What is the molar concentration of Li¹⁺ in the lithium phosphate solution?

Please, show all calculation with comments. Thanks!

Answers

The equilibrium constant of solubility product, or Ksp, is the product of the solvated ions of a compound when dissolved in water.

Let us see the dissociation of Lithium Phosphate or (Li₂PO₄):

Li₂PO₄  ⇆ 2Li⁺ + PO₄²⁻

So, the Ksp for this dissociation is 

Ksp = [Li⁺]²[PO₄²⁻] = 8.15 ˣ 10⁻⁴

Since no amount of initial moles are known, let's just use the stoichiometric coefficients. The substances in '[]' are the molar concentrations (moles/liter). We let x be the moles of the substance dissociated:

[2x mol/0.1 L]²[x mol/0.1L] = 8.15 ˣ 10⁻⁴
x = 5.88ˣ10⁻3 mol
Hence, the concentration of [Li⁺] is 
[Li⁺] = 2(5.88ˣ10⁻3 mol) / 0.1 L
[Li⁺] = 0.118 M


The same procedure is applied to Lithium Carbonate (Li₂CO₃):
Li₂CO₃  ⇆ 2Li⁺ + CO₃²⁻

Ksp = [Li⁺]²[CO₃²⁻] = 2.37 ˣ 10⁻⁴
[2x mol/0.2 L]²[x mol/0.2L] = 8.15 ˣ 10⁻⁴
x = 7.797 ˣ 10⁻³ moles
Hence, the concentration of [Li⁺] is 
[Li⁺] = 2(7.797 ˣ 10⁻³ moles) / 0.2 L
[Li⁺] = 0.078 M

Determine the number of protons neutrons and electrons in an isotope that has 21 neutrons and a mass number of 40

Answers

40 protons and 40 electrons

How many grams of water are needed to dissolve 27.8 g of ammonium nitrate?

Answers

The moles of ammonium nitrate needed to dissolve 0.35 moles
The moles of water that will react is 0.35 moles as due to ratio
so mass of water will be 0.35 x 18=6.3g 
                                 MASS OF WATER WILL BE 6.3 g

Which of the following systems possesses the highest entropy?

A. a sugar crystal in a hot cup of coffee

B. a sugar cube in a hot cup of coffee

C. powdered sugar in a hot cup of coffee

D. no sugar in a hot cup of coffee

Answers

i think the C but im not sure about it

Answer: Option (C) is the correct answer.

Explanation:

Entropy means the degree of randomness in a substance or object. This means more is the kinetic energy of particles of an object more will be its entropy.

For example, powdered sugar will have more number of particles and when it is added in a hot cup of coffee then its molecules will gain kinetic energy.

As a result, more number of collisions will take place due to which rate of reaction will also increase. Hence, powdered sugar will readily dissolve in the coffee.

Therefore, we can conclude that powdered sugar in a hot cup of coffee systems possesses the highest entropy.

A jogger runs 107 yd in 10.00 seconds. What would be his time for a 483 m run at the same rate?

Answers

The jogger's speed is first converted to meters per second, and then the time for the 483-meter run is calculated using the speed and the formula time = distance/speed, resulting in approximately 49.38 seconds.

The student's question involves converting units and calculating time based on a given rate of speed. The jogger runs 107 yards in 10.00 seconds, and we need to determine the time it would take for a 483-meter run at the same rate.

Since 1 yard is roughly equivalent to 0.9144 meters, the jogger's speed in meters per second (m/s) can be calculated as: (107 yards × 0.9144 m/yard) / 10 s = 9.77928 m/s.

Now, to find the time for a 483-meter run at the same speed, we use the equation time = distance/speed, which gives us: 483 m / 9.77928 m/s = approximately 49.38 seconds.

Argon crystallizes in the face-centered cubic arrangement at 40k. given that the atomic radius of argon is 191 pm, calculate the density of solid argon.

Answers

Molecular weight of 1 mole of Argon = 39.948 g
for face-centered cube = x = (√8)r and here r = 191 pm
so, x = √8 x 191 = 540 pm = 540 x 10^-10 cm
density = (39.948g / mol) x (unit cell / 540x10^-10 cm)^3 x (mol / 6.022x10^23 atoms) x (4 atoms / unit cell) = 1.69g/cm^3
so density of solid argon is 1.69g/cm^3

Final answer:

To calculate the density of solid argon at 40 K, we first determine the edge length of the unit cell using the atomic radius, then calculate the volume of the unit cell. We then find the mass of argon in the unit cell using its atomic weight and Avogadro's number and divide the mass by the volume to find the density.

Explanation:

To calculate the density of solid argon, we can follow these steps:

First, we need to know the edge length a of the face-centered cubic unit cell. Since argon has a face-centered cubic arrangement and the atomic radius is given as 191 pm, we can use the equation for the face-centered cubic structure a = 2√2×r, where r is the atomic radius.Next, we calculate the volume of the unit cell by cubing the edge length: V = a³.Since there are four argon atoms per face-centered cubic unit cell, we multiply the number of atoms by the atomic weight of argon (39.948 g/mol) to get the mass of argon contained within one unit cell.To find the density (ρ), we divide the mass of the unit cell by its volume and then convert the units to the desired kg/m³.Remember to use Avogadro's number (6.022×10²³ mol¹) when converting from grams per mole to grams per unit cell.

By using the appropriate equations and constants, we can find the value for the density of solid argon at 40 K.

The compound HA is an acid that is soluble in water which of the beakers in the picture shows HA behaving as a weak acid in water?

Answers

HA is a weak acid so there should be little amount of HA and then H+ and A- in the beaker so the last one is true a weak acid never converts completely to H+ and A-

Final answer:

To identify the beaker showing HA behaving as a weak acid, we need to look for the beaker in which the concentration of H3O+ and A- is relatively low, indicating partial dissociation.

Explanation:

In the given question, we are asked to identify the beaker that shows the acid HA behaving as a weak acid in water.

A weak acid is one that only partially dissociates in water, creating a small amount of hydronium ions (H3O+) and the conjugate base (A-). Strong acids, on the other hand, completely dissociate into hydronium ions and the conjugate base.

To identify the beaker showing HA behaving as a weak acid, we need to look for the beaker in which the concentration of H3O+ and A- is relatively low, indicating partial dissociation.

Explain how a redox reacation involves electrons in the same way that a neutralization reaction involves protons

Answers

For the neutralization process: an acid acts as a donor and donates protons to the base. On the other hand, the base acts as an acceptor and accepts the transferred protons. In a nutshell, neutralization is mainly proton transfer process.

As for the redox process: the oxidized material usually transfers electrons to the reduced material. In a nutshell, redox is mainly electron transfer process.
Final answer:

Redox and neutralization reactions both involve the transfer of particles. Redox reactions involve the transfer of electrons, with one component gaining and another losing electrons. Neutralization reactions involve the transfer of protons or hydrogen ions, where an acid donates a proton that a base accepts.

Explanation:

A redox reaction and a neutralization reaction both involve the transfer of particles, but they differ in the type of particle that is transferred. In a redox reaction (which stands for reduction-oxidation), the key particles involved are electrons. During this type of reaction, one atom loses electrons (oxidation) and another atom gains electrons (reduction). For example, when copper reacts with silver nitrate in solution, silver is reduced (gains electrons) and copper is oxidized (loses electrons).

On the other hand, a neutralization reaction is a type of reaction between an acid and a base. Here, the primary particles involved are protons (or hydrogen ions, H+). An acid donates a proton (H+) and a base receives it. For example, when hydrochloric acid (HCl) reacts with sodium hydroxide (NaOH), HCl donates a proton to OH-, neutralizing both the acid and base to form water and a salt.

Learn more about Redox and Neutralization Reactions here:

https://brainly.com/question/31672150

#SPJ6

For this ionic compound, what would be the name of the anion? KMnO4 A. potassite B. potassiate C. permanganite D. permanganate

Answers

The name given to the anion of this ionic compound is that it would be called D. Permanganate. This is MnO4^-.

In the ionic compound KmNO₄, the name of the anion is permanganate. Therefore, option D is correct.

Ionic compounds are compounds that are composed of ions held together by electrostatic forces called ionic bonds. These compounds are typically formed between a metal cation and a nonmetal anion.

In an ionic compound, the metal cation donates one or more electrons to the nonmetal anion. It results in the formation of positively and negatively charged ions. The attraction between these opposite charges leads to the formation of a stable crystal lattice structure.

Learn more about ionic compounds, here:

https://brainly.com/question/9167977

#SPJ6

What is the maximum mass of s8 that can be produced by combining 87.0 g of each reactant? 8so2+16h2s=3s8+16h20?

Answers

The balanced chemical reaction is expressed as:

8SO2 + 16H2S = 3S8 + 16H2O

We are given the initial amount of the reactants. From there, we determine the limiting reactant. We do as follows:

87.0 g SO2 ( 1 mol / 64.07 g ) = 1.36 mol SO2 ( 16 mol H2S / 8 mol SO2 ) = 2.72 mol H2S
87.0 g H2S ( 1 mol / 34.08 g ) = 2.55 mol H2S ( 8 mol SO2 / 16 mol H2S ) = 1.28 mol SO2

Therefore, the limiting reactant would be H2S. We calculate the maximum amount of S8 that can be produced from the amount of H2S.

2.55 mol H2S ( 3 mol S8 / 16 mol H2S ) ( 256.48 g / 1 mol ) = 122.63 g S8
Final answer:

To find the maximum mass of S8 produced, we first convert mass of the reactants to moles, then use stoichiometry to find the amount of S8 each can produce. The reactant that produces the least S8 is the limiting reactant. Finally, we convert the moles of S8 to grams.

Explanation:

The calculation for maximum mass of S8 that can be produced in the reaction 8SO2 + 16H2S = 3S8 + 16H2O, first requires understanding of how to use stoichiometry and limiting reactants concept. We start by converting the given mass of the reactants (87.0 g) to moles using their molar mass. For SO2, it's 64 g/mol and for H2S, it's 34 g/mol. We get 1.36 mol of SO2 and 2.56 mol of H2S.

Then, by using the stoichiometric coefficients present in the balanced equation, we'll find the amount of S8 that can be produced by each reactant. The limiting reactant is the one which produces least amount of product. In this case, it's SO2. Finally, we convert the moles of S8 to grams using its molar mass (256 g/mol).

Learn more about Stoichiometry here:

https://brainly.com/question/34828728

#SPJ11

What term describes a mixture of 42 percent gold, 20 percent silver, and 38 percent copper?

a) solute
b) alloy
c) solvent
d) electrolyte

Answers

The answer is B, alloy.

Consider a 20.0 % (m/v) solution. how can this be written as a conversion factor?

Answers

A conversion factor is a fraction or a ratio representing a relationship of two different measurement values. To write 20% m/v to a conversion factor, we need to remember that a percent is a value that represents the amount of a part per 100 units of the whole. M/v in the given value represents that the percentage is by mass per volume. So, to write it as a conversion factor, we do as follows:

20% m/v = 20 mass units / 100 volume units = 1 mass units / 5 volume units

Usually units of this are in g per L. So, it is equivalent to 1 g / 5 L

when 42.66 grams of PCl5 react with excess P4O10 the amount of product formed is 47.22 grams of POCl3. What is the percent yield

Answers

Percent yield or yield is mathematically defined as:

Yield = Actual amount / Theoretical amount

So to solve the yield, let us first calculate the theoretical amount of POCl3 produced. The balanced chemical reaction for this is:

6 PCl5 + P4O10  --->  10 POCl3

Since P4O10 is stated to be supplied in large amount, then PCl5 becomes the limiting reactant.

So we calculate for POCl3 based on PCl5. To do this let us convert the amount into moles: (molar mass PCl5 = 208.24 g/mol)

n PCl5 = 42.66 grams / (208.24 g/mol)

n PCl5 = 0.205 mol

 

Now based on the stoichiometric ratio of the reaction:

n POCl3 = 0.205 mol (10 POCl3 / 6 PCl5)
n POCl3 = 0.3414 mol POCl3

Converting to mass (molar mass POCl3 = 153.33 g/mol)

m POCl3 = 0.3414 mol (153.33 g/mol)

m POCl3 = 52.35 g

 

Calculating for yield:

Yield = 47.22 g/ 52.35 g

Yield = 0.902

%Yield = 90.2 %                      (ANSWER)

The percent yield of POCl₃ is calculated by dividing the actual yield (47.22 grams) by the theoretical yield (52.36 grams), then multiplying by 100 to obtain a percent yield of 90.18%.

To calculate the percent yield of POCl₃, we first need the balanced chemical equation for the reaction between PCl₅ and P₄O₁₀. The equation is:

6 PCl₅ + P₄O₁₀ → 10 POCl₃

Next, we will convert the mass of PCl₅ to moles:

Molar mass of PCl₅ = 208.24 g/mol

Moles of PCl₅ = 42.66 g / 208.24 g/mol = 0.2049 moles

Using the stoichiometry of the balanced equation, we calculate the theoretical yield of POCl₃:

For every mole of PCl₅, (10/6) moles of POCl₃ are produced. Therefore, the moles of POCl₃ produced from 0.2049 moles of PCl₅ are:

Moles of POCl₃ = 0.2049 moles PCl₅ × (10/6) = 0.3415 moles

Molar mass of POCl₃ = 153.33 g/mol

Theoretical yield of POCl₃ = 0.3415 moles × 153.33 g/mol = 52.36 grams

Now, we can calculate the percent yield:

Percent yield = (Actual yield / Theoretical yield) × 100

Percent yield = (47.22 g / 52.36 g) × 100 = 90.18%

Therefore, the percent yield of POCl₃ is 90.18%.

Which would increase the rate of dissolving? Check all that apply.

A) low temperature

B) little to no agitation

C) more surface area

D) high temperature

E) a lot of agitation

F) little surface area

Answers

The rate of dissolving would increase with: 
C) more surface area
D) high temperature
E) a lot of agitation

Explanation:

Rate of dissolving is the rate at which a solute is able to dissolve in a solvent.

Some factors which affect the rate of dissolving are as follows.

More surface area : When there are more number of particles then it means there is more surface area of solute present in the solution. Thus, there will be more number of collisions between the solute and solvent molecules. As a result, rate of dissolving increases.

High temperature : More is the increase in temperature more will be the kinetic energy gained by molecules. Thus, this will lead to greater number of collisions and as a result, rate of dissolving increases.

Lot of agitation : When we stir a solution vigorously or create a disturbance then there will be increase in number of collisions which will also lead to increase in rate of dissolving.

Thus, we can conclude that the rate of dissolving would increase when there is:

more surface area.high temperature. a lot of agitation.

what are the common parts of nucleotide?

Answers

sugar and phosphate are common parts
The three main/common parts of a nucleotide are:
A sugar (deoxyribose)
A phosphate (1 phosphorus atom bonded to 4 oxygen atoms)
One of 4 bases (Adenine, Guanine, Cytosine or Thymine)

Which of the following best explains why electroplating is a useful process in many industries?

Answers

Since I cannot find the choices, I will tell you some of the benefits of electroplating in different industries. You can compare these benefits with the choices you have and choose the best fit.

1- Forms a protective layer to protect the material from the conditions of the atmosphere as the corrosion

2- Improves the appearance of some inexpensive materials and makes them look more appealing

3- Can enhance the electrical conductivity of materials

4- electroplating of zinc-nickel or gold can survive high temperatures

5- Sometimes hardens the material

6- Increases the thickness of the material 

Answer: A.

Explanation:  it makes some inexpensive materials look more appealing

Aspirin was first synthesized in:

Answers

Aspirin was first synthesized in: 1897
1997 by Felix Hoffman

The Kc for the following reaction at 225 ∘C is 1.7×102. 3H2(g)+N2(g)⇌2NH3(g)

If the equilibrium mixture contains 0.15 M H2 and 0.017 M N2, what is the molar concentration of NH3?

I have no idea what I am doing wrong here, help!

Answers

Answer:

Molar concentration of ammonia gas is 0.0987 M.

Explanation:

Concentration of hydrogen gas = [tex][H_2]=0.15 M[/tex]

Concentration of nitrogen gas = [tex][N_2]=0.017 M[/tex]

Concentration of ammonia gas = [tex][NH_3]=x[/tex]

Equilibrium constant of the reaction = [tex]K_c=1.7\times 10^2[/tex]

[tex]K_c=\frac{[NH_3]^2}{[H_2]^3\times [N_2]}[/tex]

[tex]1.7\times 10^2=\frac{x^2}{(0.15 M)^3\times (0.017 M)}[/tex]

[tex]9.5737\times 10^{-3} M^2=x^2[/tex]

x = 0.0987 M

Molar concentration of ammonia gas is 0.0987 M.

The molar concentration of NH₃ is approximately 0.0987 M.

To find the molar concentration of NH₃, we use the equilibrium constant expression.

Step-by-Step Solution:

Write the equilibrium constant expression:

Kc = [NH₃]₂ / ([H₂]₃ × [N₂])

Insert the known values into the expression:

1.7 × 10² = [NH₃]₂ / (0.15)³ × 0.017

Solve for [NH₃]:

First, compute the denominator:

(0.15)³ = 0.003375 and 0.003375 × 0.017 = 5.7375 × 10⁻⁵

Now solve for [NH₃]₂:

[NH₃]₂ = 1.7 × 10² × 5.7375 × 10⁻⁵

[NH₃]₂ = 0.00975475

Finally, take the square root of both sides to find [NH₃]:

[NH₃] = √0.00975475

[NH₃] ≈ 0.0987 M

Therefore, the molar concentration of NH₃ is approximately 0.0987 M.

What acid and base are neutralized to give potassium nitrate salt?

Answers

Potassiun nitrate salt is KNO3.

K is a metal, so it must come from the base, and NO3 is a radical that comes from an acid.

The acid with NO3 is nitric acid---> HNO3.

The base with K is potassium hydroxide ---> KOH

So the neutralization reaction is between nitric acid and potassium hydroxide.

HNO3 + KOH ---> KNO3 + H2O.

Answer: the nitric acid and the potassium hydroxide.

Sterling silver contains silver and copper metals. if a sterling silver chain contains 22.2 g of silver and 1.80 g of copper, what is the percent of silver?

Answers

22.2+1.8=24

22.2/24=.925

.925x100=92.5%

32.7 grams of water vapor takes up how many liters at standard temperature and pressure (273 K and 100 kPa)?

Answers

Under standard temperature and pressure conditions, it is known that 1 mole of a gas occupies 22.4 liters.

From the periodic table:
molar mass of oxygen = 16 gm
molar mass of hydrogen = 1 gm
Thus, the molar mass of water vapor = 2(1) + 16 = 18 gm

18 gm of water occupies 22.4 liters, therefore:
volume occupied by 32.7 gm = (32.7 x 22.4) / 18 = 40.6933 liters

He concentration of the appetite-regulating hormone ghrelin is about 1.3 × 10-10 m in the blood of a fasting person. how many molecules of ghrelin are in 1 l of blood?

Answers

There are approximately 7.81x 10¹³ molecules of ghrelin in 1 liter of blood.

A fasting individual has a very low ghrelin content in their blood, around 1.3 x 10²⁰ moles per litre. Avogadro's number—the number of molecules per mole—can be used to compute ghrelin molecules per litre of blood.

We compute the number of molecules using the formula:

Concentration (mol/L) × Volume (L) × Avogadro's number = Number of molecules.

Change the values:

Number of molecules = [tex]1.3 *10^{-10}\ mol/L * 1 L * 6.022 *10^{23}\ mol/mol.[/tex]

In 1 litre of blood, roughly 7.81 x 10¹³ ghrelin molecules are produced. This exceedingly low value shows how sensitive biological systems are to even tiny quantities of appetite-regulating signalling chemicals like ghrelin.

Learn more about ghrelin molecules, here:

https://brainly.com/question/33723197

#SPJ12

Final answer:

To calculate the number of ghrelin molecules in 1 L of blood with a concentration of 1.3 × 10^-10 M, multiply this concentration by Avogadro's number, resulting in approximately 78.3 × 10^13 molecules.

Explanation:

The concentration of the appetite-regulating hormone ghrelin is about 1.3 × 10^-10 M in the blood of a fasting person. To find out how many molecules of ghrelin are in 1 L of blood, we can use Avogadro's number, which is 6.022 × 10^23 molecules/mol. Multiplying the molarity of ghrelin by Avogadro's number gives us the total number of ghrelin molecules per liter of blood.

To calculate:

Number of molecules = (Concentration in molarity) × (Avogadro's number)= (1.3 × 10^-10 M) × (6.022 × 10^23 molecules/mol)≈ 78.3 × 10^13 molecules

Therefore, there are approximately 78.3 × 10^13 molecules of ghrelin in 1 liter of blood.

The state of refrigerant as it exits a compressor is a

A. high-pressure liquid.
B. low-pressure liquid.
C. high-pressure vapor.
D. low-pressure vapor.

Answers

The answer is option C.
The state of refrigerant as it exits a compressor is a high pressure vapor.
In a compressor when refrigerant enters, it is a low temperature, low pressure gas or vapors, the function of compressor is to increase the pressure and temperature, so when it exits a compressor it is high pressure vapor and then it goes to condenser.

The refrigerant exits a compressor as a high-pressure vapor due to the mechanical energy applied during compression, which raises both pressure and temperature. Hence, correct option C.

The state of refrigerant as it exits a compressor in a vapor compression system is high-pressure vapor. During the compression phase in vapor compression cooling systems, mechanical energy is applied to the refrigerant, causing both pressure and temperature to rise. This process changes the state of the refrigerant from a low-pressure vapor, which it is when it enters the compressor, to a high-pressure vapor as it exits the compressor. The high-pressure vapor is subsequently cooled and condensed in the condenser, transferring heat to the surroundings and turning into a high-pressure liquid ready to go through the cycle again.

Calculate the standard emf of a cell that uses the mg/mg2+ and cu/cu2+ half-cell reactions at 25 °c. write the equation for the cell reaction that occurs under standard-state conditions and write the line notation for the cell.

Answers

The cell reaction that occurs is as follows:

 [tex]\boxed{{\text{Mg + C}}{{\text{u}}^{{\text{2 + }}}} \rightleftarrows {\text{M}}{{\text{g}}^{2 + }}{\text{ + Cu}}}[/tex]

The line notation of cell is as follows:

[tex]\left. {{\text{Mg}}\left( {\text{s}} \right)} \right|{\text{M}}{{\text{g}}^{2 + }}\left( {{a_{{\text{M}}{{\text{g}}^{2 + }}}}} \right)\left\| {{\text{C}}{{\text{u}}^{2 + }}\left( {{a_{{\text{C}}{{\text{u}}^{2 + }}}}} \right)\left| {{\text{Cu}}\left( {\text{s}} \right)} \right.} \right.[/tex]

The standard emf value of the cell is [tex]\boxed{2.7{\text{ V}}}[/tex].

Further Explanation:

Redox reaction:

It is a type of chemical reaction in which the oxidation states of atoms are changed. In this reaction, both reduction and oxidation are carried out at the same time. Such reactions are characterized by the transfer of electrons between the species involved in the reaction.

The general representation of a redox reaction is,

 [tex]{\text{X}} + {\text{Y}} \to {{\text{X}}^ + }+{{\text{Y}}^ - }[/tex]

The oxidation half-reaction can be written as:

[tex]{\text{X}} \to {{\text{X}}^ + } + {e^ - }[/tex]

The reduction half-reaction can be written as:

[tex]{\text{Y}} + {e^ - } \to {{\text{Y}}^ - }[/tex]  

Here, X is getting oxidized and its oxidation state changes from  to +1 whereas B is getting reduced and its oxidation state changes from 0 to -1.

The element which has higher oxidation potential is oxidized at anode and the element with the less oxidation potential is reduced at cathode in the cell.

The standard oxidation potential for [tex]{\text{Mg/M}}{{\text{g}}^{2 + }}[/tex] is  [tex]+ 2.363{\text{ V}}[/tex].

The standard oxidation potential for [tex]{\text{Cu/C}}{{\text{u}}^{2 + }}[/tex] is [tex]- 0.337{\text{ V}}[/tex].

Since [tex]{\text{Mg}}[/tex] has higher oxidation potential thus the oxidation of [tex]{\text{Mg}}[/tex] takes place at anode and reduction of [tex]{\text{C}}{{\text{u}}^{2 + }}[/tex] takes place at cathode.

The oxidation half-reaction of [tex]{\text{Mg/M}}{{\text{g}}^{2 + }}[/tex] can be written as:

[tex]{\text{Mg}} \to {\text{M}}{{\text{g}}^{2 + }} + 2{e^ - }[/tex]     ......(1)

The reduction half-reaction [tex]{\text{Cu/C}}{{\text{u}}^{2 + }}[/tex] can be written as:

[tex]{\text{C}}{{\text{u}}^{2 + }} + 2{e^ - } \to {\text{Cu}}[/tex]     ......(2)

Add reaction (1) and (2) and eliminate common terms to determine the net reaction for the given cell.

[tex]{\text{Mg + C}}{{\text{u}}^{{\text{2 + }}}} \rightleftarrows {\text{M}}{{\text{g}}^{2 + }}{\text{ + Cu}}[/tex]           ......(3)

The expression of the cell is written as follows:

[tex]\left. {{\text{Mg}}\left( {\text{s}} \right)} \right|{\text{M}}{{\text{g}}^{2 + }}\left( {{a_{{\text{M}}{{\text{g}}^{2 + }}}}} \right)\left\| {{\text{C}}{{\text{u}}^{2 + }}\left( {{a_{{\text{C}}{{\text{u}}^{2 + }}}}} \right)\left| {{\text{Cu}}\left( {\text{s}} \right)} \right.} \right.[/tex]                             ......(4)

The expression to calculate the standard emf of the cell is as follows:

[tex]E_{{\text{cell}}}^0 = E_{{\text{anode}}}^0 - E_{{\text{cathode}}}^0[/tex]                  ......(5)

                                                           

Substitute [tex]+ 2.363{\text{ V}}[/tex] for [tex]E_{{\text{anode}}}^0[/tex] and [tex]- 0.337{\text{ V}}[/tex] for [tex]E_{{\text{cathode}}}^0[/tex] in equation (5).

[tex]\begin{aligned}E_{{\text{cell}}}^0&=\left({ + 2.363{\text{ V}}}\right)-\left( { - 0.337{\text{ V}}} \right)\\&= 2.7{\text{ V}}\\\end{aligned}[/tex]        

Learn more:

1. Which occurs during the redox reaction? https://brainly.com/question/1616320

2. Oxidation and reduction reaction: https://brainly.com/question/2973661

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Electrochemistry

Keywords: Mg/M2+, Cu/Cu2+, half-cell reaction, standard emf of the cell, oxidation state, reduction, oxidation, redox reaction, transfer of electrons, reducing agents, oxidizing agents.

Final answer:

To calculate the standard emf of a cell with Mg/Mg2+ and Cu/Cu2+ at 25 °C, subtract the anode potential (-2.37 V) from the cathode potential (+0.34 V) to get +2.71 V, indicating a spontaneous reaction. The line notation for the cell is Mg(s) | Mg2+(aq) || Cu2+(aq) | Cu(s).

Explanation:

To calculate the standard emf of a cell using the Mg/Mg2+ and Cu/Cu2+ half-cell reactions at 25 °C, we use the standard reduction potentials from the electrochemical series. The standard reduction potential for the Mg2+ to Mg half-cell is -2.37 V and for the Cu2+ to Cu half-cell is +0.34 V. Because oxidation occurs at the anode and reduction at the cathode, the Mg/Mg2+ cell will act as the anode and the Cu/Cu2+ cell as the cathode.

The overall cell reaction, under standard conditions, is derived by combining the half-reactions:

Mg(s) -> Mg2+(aq) + 2e- (Oxidation)

Cu2+(aq) + 2e- -> Cu(s) (Reduction)

When combined, the overall reaction is:

Mg(s) + Cu2+(aq) -> Mg2+(aq) + Cu(s)

The standard cell potential (Ecell) is calculated by taking the difference between the standard reduction potentials of the cathode and anode:

Ecell = Ecathode(red) - Eanode(ox) = 0.34 V - (-2.37 V) = +2.71 V

The positive value of Ecell indicates that the reaction is spontaneous under standard conditions. The line notation for the cell is:

Mg(s) | Mg2+(aq) || Cu2+(aq) | Cu(s)

The reaction below is exothermic: 2so2 (g) o2 (g) 2so3 (g) le châtelier's principle predicts that ________ will result in an increase in the number of moles of so3 (g) in the reaction container.

Answers

The balanced chemical reaction is as given above,

                         2SO2(g) + O2(g) --> 2SO3(g)

This is a reversible reaction. According to Le Chatelier's principle, the things that would allow in the increase of the number of moles of SO3(g) is,

(1) increase in the amount of the reactants which are SO2 and O2
(2) decrease in volume of the vessel to favor only 2 moles SO3 compared to 3 moles when combining 2 moles of SO2 and 1 mole of O2. 
(3) The effect of raising the temperature can be determined if we are given if the reaction is exothermic or endothermic. 

How many moles of Co2 are produced when 0.2 moles of sodium carbonate reacts with excess HCl

Answers

To determine the number of moles of carbon dioxide that is produced, we need to know the reaction of the process. For the reaction of HCl and sodium carbonate, the balanced chemical equation would be expressed as:

2HCl + Na2CO3 = 2NaCl + H2O + CO2

From the initial amount given of sodium carbonate and the relation of the substances from the balanced reaction, we calculate the moles of carbon dioxide as follows:

0.2 moles Na2Co3 ( 1 mol CO2 / 1 mol Na2Co3 ) = 0.2 moles CO2

Therefore, the amount in moles of carbon dioxide that is produced from 0.2 moles sodium carbonate would be 0.2 moles as well.
Other Questions
Why are metallic bonds in an alkali metal relatively weak? Using the system-dependent (passive) recovery process, which condition requires the accessing both the high and low side of the system for refrigerant recovery? 11 X 11= 4, 12x12=9,13x13=? Explain, in terms of particles, concentration, and reaction rate, what you expect to happen when liquid water is sealed in a flask on a warm day and reaches a state of equilibrium. h2o(l) h2o(g) Absent government regulations to guard against fraud, why might top managers deceive investors about the true financial condition of their firms? top managers might want to deceive investors about the true financial condition of their firms ________. Female Japanese names meaning lightning? It doesn't really need to excatly mean lightning, any name incleding lightnIng in it would be nice :) Name three bodies of water that form parts of the borders of illinois When a country allows trade and becomes an importer of jet skis,a. domestic producers of jet skis are better off, domestic consumers of jet skis are worse off, and the economic well-being of the country falls.b. domestic producers of jet skis are worse off, domestic consumers of jet skis are better off, and the economic well-being of the country rises.c. domestic producers of jet skis are better off, domestic consumers of jet skis are worse off, and the economic well-being of the country rises.d. domestic producers of jet skis are worse off, domestic consumers of jet skis are better off, and the economic well-being of the country falls? A student might describe information about the costs of production asa. dry and technical.b. boring.c. crucial to understanding firms and market structures.d. all of the above could be correct. PLEASE HELP!! IM REALLY CONFUSED A holter monitor is: a. an eeg test b. a stress test c. part of a chest ct scan d. an ekg taken during daily activity e. part of a cardiac catheterization If the federal reserve decreases the reserve rate from 7% to 5%, how does this affect the amount of money that would result because of fractional-reserve banking from an initial deposit into a bank of $30,000? One of the primary reasons for the limited scope of government Work out problem in picture The industrial revolution was dependent on the ____________ system. Because it focuses on processes that transform data into useful information, structured analysis is called a(n) ____ technique. You need to include:An explanation of gravityAn explanation of how mass determines (or affects) the force of gravityAn explanation of the part air resistance playsAn example of the force of gravity (be creative) The sugar glider in australia and the flying squirrel in north america are both small mammals with large expanses of loose skin between their fore- and hind-limbs allowing them to glide from tree to tree within their respective forest habitats. these two species are distantly related but are very similar in their overall appearance. the evolutionary explanation for their similarity is that Which word most clearly contribute to the academic style of dan pinks drive the surprising truth about what motivates us What led up to general sherman's order of 40 acres and a mule for former slaves? Steam Workshop Downloader