A cable exerts a constant upward tension of magnitude 2.14 ✕ 104 N on a 1.80 ✕ 103 kg elevator as it rises through a vertical distance of 2.30 m. HINT (a) Find the work done by the tension force on the elevator (in J)

Answers

Answer 1

Answer:

49220 J

Explanation:

The work done by the tension force on the elevator is given by:

W = F d

where

F is the magnitude of the tension

d is the vertical distance through which the elevator has moved

Here we have

[tex]F=2.14\cdot 10^4 N[/tex]

d = 2.30 m

Substituting,

[tex]W=(2.14\cdot 10^4 N)(2.30 m)=49220 J[/tex]

Answer 2
Final answer:

The work done by the tension force on the elevator as it rises through a vertical distance of 2.30 m while exerting a constant upward tension of 2.14 x 10^4 N, is calculated using the work formula (W = Fd). The calculated work done is 4.92 x 10^4 Joules.

Explanation:

The work done by the tension force on the elevator can be calculated using the formula for Work (W), which is force (F) multiplied by distance (d). Since tension is the force applied here and it's constant as the elevator moves vertically upwards, we can apply the formula as follows: W = Fd.

In this case, F (tension) is 2.14 x 10^4 N, and d (distance) is 2.30 m. Substituting these values into the formula will give us:

W = Fd = (2.14 x 10^4 N) x 2.30 m = 4.92 x 10^4 Joules

So, the work done by the tension force on the elevator as it rises 2.30 m is 4.92 x 10^4 Joules.

Learn more about Physics - Work done by a force here:

https://brainly.com/question/33344497

#SPJ11


Related Questions

A hot air balloon is ascending at a rate of 12 m/s. when it is 80m above the ground, a package is dropped over the side of he passenger basket. What is the speed of the package just before it hits the ground?

Answers

Answer:

41.4 m/s

Explanation:

Consider downward direction of motion as negative

v₀ = initial velocity of the package as it is dropped over the side = 12 m/s

v = final velocity of the package just before it hits the ground

y = vertical displacement of the package = - 80 m

a = acceleration = - 9.8 m/s²

Using the kinematics equation

v² = v₀² + 2 a y

v² = 12² + 2 (- 9.8) (- 80)

v² = 144 + 1568

v = - 41.4 m/s

The negative sign indicates the downward direction of motion.

Hence the speed of package comes out to be 41.4 m/s

You are driving directly behind a pickup truck, going at the same speed as the truck. A crate falls from the bed of the truck to the road. (a) Will your car hit the crate before the crate hits the road if you neither brake nor swerve? (b) During the fall, is the horizontal speed of the crate more than, less than, or the same as that of the truck?

Answers

Final answer:

The crate will hit the road before your car hits the crate. The horizontal speed of the crate is the same as that of the truck.

Explanation:

(a) If you are driving directly behind a pickup truck at the same speed and neither brake nor swerve, the crate will hit the road before your car hits the crate. This is because the crate and your car are both traveling at the same horizontal speed, and the crate will have a shorter distance to fall than your car would have to travel to reach the crate.

(b) During the fall, the horizontal speed of the crate is the same as that of the truck. This is because both the truck and the crate are moving at the same speed horizontally, and gravity acts only vertically on the falling crate.

The nuclear potential that binds protons and neutrons in the nucleus of an atom is often approximated by a square well. Imagine a proton conned in an innite square well of length 105 nm, a typical nuclear diameter. Calculate the wavelength and energy associated with the photon that is emitted when the proton undergoes a transition from the rst excited state (n 2) to the ground state (n 1). In what region of the electromagnetic spectrum does this wavelength belong?

Answers

3. The nuclear potential that binds protons and neutrons in the nucleus of an atom

is often approximated by a square well. Imagine a proton confined in an infinite

square well of length 10−5 nm, a typical nuclear diameter. Calculate the wavelength

and energy associated with the photon that is emitted when the proton undergoes a

transition from the first excited state (n = 2) to the ground state (n = 1). In what

region of the electromagnetic spectrum does this wavelength belong?

Answer 3

We are given that,

Length of square well = L = 10−5

nm = 10−14 m.

Energy of proton in state n is given by,

En =

π

2n

2~

2

2mpL2

,

where L is the width of the square well.

⇒ E1 =

π

2~

2

2mpL2

E2 =

2~

2

2mpL2

·

A horizontal desk surface measures 1.7 m by 1.0 m. If the Earth's magnetic field has magnitude 0.42 mT and is directed 68° below the horizontal, what is the magnetic flux through the desk surface?

Answers

Answer:

The magnetic flux through the desk surface is [tex]6.6\times10^{-4}\ T-m^2[/tex].

Explanation:

Given that,

Magnetic field B = 0.42 T

Angle =68°

We need to calculate the magnetic flux

[tex]\phi=BA\costheta[/tex]

Where, B = magnetic field

A = area

Put the value into the formula

[tex]\phi=0.42\times10^{-3}\times1.7\times1.0\cos22^{\circ}[/tex]

[tex]\phi=0.42\times10^{-3}\times1.7\times1.0\times0.927[/tex]

[tex]\phi=6.6\times10^{-4}\ T-m^2[/tex]

Hence, The magnetic flux through the desk surface is [tex]6.6\times10^{-4}\ T-m^2[/tex].

A traveler pulls on a suitcase strap at an angle 36 above the horizontal with a force of friction of 8 N with the floor. If 752 J of work are done by the strap while moving the suitcase a horizontal distance of 15 m, what is the tension in the strap?

Answers

Answer:

71.8 N

Explanation:

T = Tension force in the strap

W = net work done = 752 J

f = force of friction = 8 N

d = displacement = 15 m

θ = angle between tension force and horizontal displacement = 36 deg

work done by frictional force is given as

W' = - f d

Work done by the tension force is given as

W'' = T d Cos36

Net work done is given as

W = W' + W''

W = T d Cos36 - f d

752 = T (15) Cos36 - (8) (15)

T = 71.8 N

A test charge is A a very small negative charge with little miee B a point charge of q 100 C C a spbere of charge D. a very amall positive charge with little s

Answers

Answer:

D. a very small positive charge with little s

Explanation:

A test charge is a very small charge with positive value which do not disturb the electric field exist in the region

So test charge is to find out the strength of electric field that exist in the region.

If the magnitude of test charge is large then it will change the strength of the existing electric field and due to this the value of the force will be altered.

So here in this case the test charge must be small as well as it must be positive nature

When during new product development is Design For Manufacture and Assembly (DFMA) most effective? a) At all times b) During production c) During process design and development d) During product design and development e) Before design

Answers

Answer:most likely E

Explanation:

Why would anybody do something after design there done with there work after that

A chain link fence should be cut quickly with a

Answers

Answer: it should be cut with a chainsaw

Explanation:

Final answer:

A bolt cutter is usually the preferred tool to use to cut through a chain link fence quickly, taking into account the thickness and hardness of the chain link fence. Safety precautions should be taken while using such tools.

Explanation:

To cut through a chain link fence quickly without undue strain, the preferred tool is typically a bolt cutter. Bolt cutters possess the strength and design needed to snip through metal links easily. They come in various sizes, and the size needed would depend on the thickness and hardness of the chain link fence. Ideally, a medium-sized bolt cutter would be used for a standard fence. However, it's advisable to wear protective gear while using such tools, as the cut metal links might be razor-sharp and could cause injuries.

Learn more about Cutting a Chain Link Fence here:

https://brainly.com/question/37455710

#SPJ12

Which of the following quantities are units of momentum? (There could be more than one correct choice.) A)N m B) kg s/m C) kg m/'s D)N-s 12 Points] E) kg m2/s2

Answers

Answer : Units of momentum are :

1. Kg m/s

2. N-s

Explanation:

The momentum of an object is given by the product of its mass and velocity with which it is moving. Mathematically, it is given by :

P = mv

Where

m is in kilogram

v is in m/s

Option (1) : N-m = It is not a unit of momentum. It includes the product of force and distance.

Option (2) : Kg s/m = It is again not a unit of momentum.

Option (3) : Kg m/s =

Since, p = mv

p = Kg × m/s

It can be the unit of momentum.

(4) Option (4) : N-s = The change in momentum is equal to the impulse applied on an object. It is given by the product of force and short duration of time. It can be the unit of momentum.

(5) Option (5) : Kg/m²/s² = It is not the unit of momentum.

Hence, the correct options are (c) and (d).

Final answer:

The quantities that are units of momentum among the options provided are C) kg m/s and D) N-s. The other options correspond to different physical quantities.

Explanation:

The concept in question pertains to the momentum of an object, which, in physics, is a vector quantity defined as the product of an object's mass and its velocity. The standard international (SI) unit of momentum is kilogram meter per second (kg m/s).

Examining each giver option: A) Newton meter (N m) is a unit of work, not momentum. B) Kilogram second/meter (kg s/m) does not align with the definition of momentum. C) Kilogram meter/second (kg m/s), this is the correct SI unit for momentum. D) Newton-second (N-s) is also a correct unit for momentum as Newton is equivalent to kg m/s2. E) Kilogram meter2/second2 (kg m2/s2) is the unit for kinetic energy, not momentum.

So, C) kg m/s and D) N-s are the units of momentum among the given choices.

Learn more about Momentum here:

https://brainly.com/question/33450468

#SPJ3

(a) Calculate the force (in N) needed to bring a 1100 kg car to rest from a speed of 85.0 km/h in a distance of 125 m (a fairly typical distance for a non-panic stop). (b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).

Answers

(a) -2451 N

We can start by calculating the acceleration of the car. We have:

[tex]u=85.0 km/h = 23.6 m/s[/tex] is the initial velocity

v = 0 is the final velocity of the car

d = 125 m is the stopping distance

So we can use the following equation

[tex]v^2 - u^2 = 2ad[/tex]

To find the acceleration of the car, a:

[tex]a=\frac{v^2-u^2}{2d}=\frac{0-(23.6 m/s)^2}{2(125 m)}=-2.23 m/s^2[/tex]

Now we can use Newton's second Law:

F = ma

where m = 1100 kg to find the force exerted on the car in order to stop it; we find:

[tex]F=(1100 kg)(-2.23 m/s^2)=-2451 N[/tex]

and the negative sign means the force is in the opposite direction to the motion of the car.

(b) [tex]-1.53\cdot 10^5 N[/tex]

We can use again the equation

[tex]v^2 - u^2 = 2ad[/tex]

To find the acceleration of the car. This time we have

[tex]u=85.0 km/h = 23.6 m/s[/tex] is the initial velocity

v = 0 is the final velocity of the car

d = 2.0 m is the stopping distance

Substituting and solving for a,

[tex]a=\frac{v^2-u^2}{2d}=\frac{0-(23.6 m/s)^2}{2(2 m)}=-139.2 m/s^2[/tex]

So now we can find the force exerted on the car by using again Newton's second law:

[tex]F=ma=(1100 kg)(-139.2 m/s^2)=-1.53\cdot 10^5 N[/tex]

As we can see, the force is much stronger than the force exerted in part a).

A disk with a radius of R is oriented with its normal unit vector at an angle\Theta with respect to a uniform electric field. Which of the following represent the electric flux through the disk? A: E(πR^2)cosϕ B: E(πR^2)sinΘ C: E(πR^2)cosΘ D: E(2πR)sinΘ E: E(2πR)cosΘ F: E(πR^2)sinϕ

Answers

Answer:

option (A)

Explanation:

electric flux is defined as the number of electric field lines which crosses through any area.

It is given by

Ф = E . A (It is the dot product of electric field vector and area vector)

According to the question, the angle between electric filed vector and area vector is θ.

So, electric flux

Ф = E x π R^2 Cosθ

The electric flux through a disk in a uniform electric field is represented by E(πR^2)cosΘ, so the correct answer is C: E(πR²)cosΘ.

The question is asking about the electric flux through a disk when the disk's normal is oriented at an angle Θ with respect to a uniform electric field. Electric flux is given by the product of the electric field strength, the area through which the field is passing, and the cosine of the angle between the field and the normal to the surface. The formula for the electric flux through a surface is Φ = E * A * cos(Θ), where E is the electric field strength, A is the area of the surface, and Θ is the angle between the electric field and the normal to the surface. For a disk with radius R, the area is πR². Thus, the correct answer for the electric flux through the disk is C: E(πR²)cosΘ.

1. What do you need to change the momentum of a system?

2. What are the features of a typical modern running shoe? How does this change the ground reaction force during a heel strike when running with shoes compared to a heel strike when running without shoes?

3. When running with shoes how does the ground reaction force change from a heel strike run to a forefoot strike run?

Answers

1. Momentum (P) is a equal to mass (M) times velocity (V). But there are other ways to think about momentum! Force (F) is equal to the change in momentum (triangleP) over the change in Time (triangleT). And the change in momentum (triangleP) is also equal to the impulse (J)

When a parachute opens, the air exerts a large drag force on it. This upward force is initially greater than the weight of the sky diver and, thus, slows him down. Suppose the weight of the sky diver is 936 N and the drag force has a magnitude of 1032 N. The mass of the sky diver is 95.5 kg. Take upward to be the positive direction. What is his acceleration, including sign?

Answers

Answer: [tex]1.0052m/s^{2}[/tex]

Explanation:

Assuming there is only force in the y-component, the total net force [tex]F_{y}[/tex] acting on the parachute and the sky diver is:

[tex]F_{y}=F_{D}-W[/tex]   (1)

Where:

[tex]F_{D}=1032N[/tex] is the drag force acting upwards

[tex]W=936N[/tex] is the weight of the sky diver acting downwards, hence with negative sign

Then:

[tex]F_{y}=1032N-936N=96N[/tex]   (2) This is the total net force excerted on the system parachute-sky diver, and the fact it is positive means is upwards

Now, according Newton's 2nd Law of Motion the force is directly proportional to the mass [tex]m[/tex] and to the acceleration [tex]a[/tex] of a body:

[tex]F_{y}=m.a[/tex] (3)

Where [tex]m=95.5kg[/tex] is the mass of the diver.

Substituting the known values and finding [tex]a[/tex]:

[tex]a=\frac{F_{y}}{m}[/tex] (4)

[tex]a=\frac{96N}{95.5kg}[/tex] (5)

Finally:

[tex]a=1.0052m/{s^{2}}\approx 1m/s^{2}[/tex]  This is the acceleration of the sky diver. Note it has a positive sign, which means its direction is upwards.

If a converging lens forms a real, inverted image 24.0 cm to the right of the lens when the object is placed 48.0 cm to the left of a lens, determine the focal length of the lens

Answers

Answer:

Focal length, f = 16 cm

Explanation:

Image distance, v = 24 cm

Object distance, u = -48 cm

We need to find the focal length of the lens. It can be determined using the lens formula as :

[tex]\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}[/tex]

[tex]\dfrac{1}{24\ cm}-\dfrac{1}{(-48\ cm)}=\dfrac{1}{f}[/tex]

f = 16 cm

So, the focal length of the converging lens is 16 cm. Hence, this is the required solution.

Answer:

f = 16 cm

Explanation:

If a converging lens forms a real, inverted image 24.0 cm to the right of the lens when the object is placed 48.0 cm to the left of a lens, the focal length of the lens is 16 cm.

On an airplane's takeoff, the combined action of the air around the engines and wings of an airplane exerts a 8420-N force on the plane, directed upward at an angle of 69.0° above the horizontal. The plane rises with constant velocity in the vertical direction while continuing to accelerate in the horizontal direction. (a) What is the weight of the plane? N (b) What is its horizontal acceleration?

Answers

(a) 7861 N

Along the vertical direction, the plane is moving at constant velocity: this means that the net vertical acceleration is zero, so the vertical component of the 8420 N upward force is balanced by the weight (pointing downward).

The vertical component of the upward force is given by:

[tex]F_y = F sin \theta[/tex]

where

F = 8420 N is the magnitude of the force

[tex]\theta=69.0^{\circ}[/tex] is the angle above the horizontal

Substituting,

[tex]F_y = (8420 N)(sin 69.0^{\circ}) =7861 N[/tex]

This means that the weight of the plane is also 7861 N.

(b) 3.87 m/s^2

From the weight of the plane, we can calculate its mass:

[tex]m=\frac{W}{g}=\frac{7861 N}{9.8 m/s^2}=802 kg[/tex]

Where g = 9.8 m/s^2 is the acceleration due to gravity.

Along the horizontal direction, the 8420 N is not balanced by any other backward force: so, there is a net acceleration along this direction.

The horizontal component of the force is given by

[tex]F_x = F cos \theta = (8420 N)(cos 69.0^{\circ})=3107 N[/tex]

According to Newton's second law, the net force along the horizontal direction is equal to the product between the plane's mass and the horizontal acceleration:

[tex]F_x = m a_x[/tex]

so if we solve for a_x, we find:

[tex]a_x = \frac{F_x}{m}=\frac{3107 N}{802 kg}=3.87 m/s^2[/tex]

A child throws a ball with an initial speed of 8.00 m/s at an angle of 40.0° above the horizontal. The ball leaves her hand 1.00 m above the ground. What is the magnitude of the ball's velocity just before it hits the ground?

Answers

The ball's position vector has components

[tex]x=\left(8.00\dfrac{\rm m}{\rm s}\right)\cos40.0^\circ t[/tex]

[tex]y=1.00\,\mathrm m+\left(8.00\dfrac{\rm m}{\rm s}\right)\sin40.0^\circ t-\dfrac g2t^2[/tex]

where [tex]g=9.80\dfrac{\rm m}{\mathrm s^2}[/tex] is the acceleration due to gravity. The ball hits the ground when [tex]y=0[/tex]:

[tex]0=1.00\,\mathrm m+\left(8.00\dfrac{\rm m}{\rm s}\right)\sin40.0^\circ t-\dfrac g2t^2\implies t=1.22\,\mathrm s[/tex]

The ball's velocity vector has components

[tex]v_x=\left(8.00\dfrac{\rm m}{\rm s}\right)\cos40.0^\circ[/tex]

[tex]v_y=\left(8.00\dfrac{\rm m}{\rm s}\right)\sin40.0^\circ-gt[/tex]

so that after 1.22 s, the velocity vector is

[tex]\vec v=(6.13\,\vec\imath-6.79\,\vec\jmath)\dfrac{\rm m}{\rm s}[/tex]

and the magnitude is

[tex]\|\vec v\|=\sqrt{6.13^2+(-6.79)^2}\,\dfrac{\rm m}{\rm s}=\boxed{9.14\dfrac{\rm m}{\rm s}}[/tex]

A sample of a material has 200 radioactive particles in it today. Your grandfather measured 400 radioactive particles in it 60 years ago. How many radioactive particles will the sample have 60 years from today?

Answers

Answer:

Amount of radioactive particles left after 60 years = 100 particles.

Explanation:

Amount of radioactive particles before 60 years = 400

Amount of radioactive particles present today = 200

That is radio active particles reduced to half. That is 60 years is half life of this radio active material.

After 60 years this 200 radio active particles will reduce to half.

Amount of radioactive particles left after 60 years = 0.5 x 200 = 100 particles.

Final answer:

The sample will have 100 radioactive particles remaining 60 years from today, based on the half-life of the material being 60 years.

Explanation:

The question concerns the concept of radioactive decay and specifically the half-life of a radioactive sample. In this case, the sample's quantity of radioactive particles was observed to decrease from 400 to 200 over a span of 60 years. Thus, the half-life of the material is 60 years, which is the time it takes for half of the radioactive atoms (parent nuclei) to decay into their decay products (daughter elements).

Given that the sample has 200 particles today, we can predict that in another 60 years, the number of radioactive particles will again be halved. Therefore, after 60 years from today, we expect there to be 100 radioactive particles remaining in the sample.

If the speed of light in a vaccum is c, the speed of light in a medium like glass with an index of refraction of 1.5 is : (a) 3c/2 (b) 3c (c) 2c/3 (d) 9c/4 (e) 4c/9 Please explain in detail why it is the answer you have chosen

Answers

Answer:

The speed of light in the medium is [tex]\dfrac{2c}{3}[/tex]

(c) correct option.

Explanation:

Given that,

Speed of light in vacuum = c

Refraction index = 1.5

We need to calculate the value of speed of light in the medium

The refractive index is equal to the speed of light in vacuum divide by the speed of light in medium.

Using formula of refractive index

[tex]\mu = \dfrac{c}{v}[/tex]

[tex]v=\dfrac{c}{\mu}[/tex]

Where, c = speed of light in vacuum

v = speed of light in medium

Put the value into the formula

[tex]v=\dfrac{c}{1.5}[/tex]

[tex]v=\dfrac{2c}{3}[/tex]

Hence, The speed of light in the medium is [tex]\dfrac{2c}{3}[/tex]

If a ball is thrown vertically upward with a velocity of 144 ft/s, then its height after t seconds is s = 144t − 16t2. (a) What is the maximum height reached by the ball? ft (b) What is the velocity of the ball when it is 320 ft above the ground on its way up? (Consider up to be the positive direction.) ft/s What is the velocity of the ball when it is 320 ft above the ground on its way down? ft/s

Answers

(a) 168.2 ft/s

The vertical position of the ball is given by

[tex]s = 144t - 16t^2[/tex]

where t is the time.

By differentiating this expression, we find the velocity:

[tex]v = 144-32 t[/tex]

The maximum height is reached when the velocity is zero, so:

[tex]0 = 144 - 32 t[/tex]

From which we find

[tex]t = \frac{144}{32}=4.5 s[/tex]

And substituting this value into the equation for s, we find the maximum height:

[tex]s = 144(4.5 s)-16(4.5 s)^2=324 ft[/tex]

(b) 16 ft/s

We want to find the velocity of the ball when the position of the ball is

s = +320 ft

Substituting into the equation for the position,

[tex]320 = 144t-16t^2[/tex]

[tex]16t^2 -144t +320 = 0[/tex]

Solving for t, we find two solutions:

t = 4 s

t = 5 s

The first one corresponds to the instant in which the ball is still on its way up: Substituting into the equation for the velocity, we find the velocity of the ball at that time

[tex]v = 144 - 32 t=144- 32(4 s)=16 ft/s[/tex]

(c) -16 ft/s

Now we want to find the velocity of the ball when the position of the ball is

s = +320 ft

but on its way down. In the previous part, we found

t = 4 s

t = 5 s

So the second time corresponds to the instant in which the ball is at s = 320 ft but on the way down.

Substituting t = 5 s into the equation for the velocity, we find:

[tex]v = 144 - 32 t=144- 32(5 s)=-16 ft/s[/tex]

And the negative sign means the direction is downward.

The answers for the ball thrown vertically upward with a velocity of 144 ft/s and with a height after t seconds of s = 144t - 16t² are:

a) The maximum height reached by the ball is 324 ft.

b) The velocity of the ball when it is 320 ft above the ground on its way up is 16 ft/s.

c) The velocity of the ball when it is 320 ft above the ground on its way down is -16 ft/s.

a) The maximum height reached by the ball can be calculated with the given equation:

[tex] s = 144t - 16t^{2} [/tex]   (1)

Where:

s: is the height

t: is the time

We can find the time with the following equation:

[tex] v_{f} = v_{i} - gt [/tex]   (2)

Where:

[tex] v_{f} [/tex]: is the final velocity = 0 (at the maximum height)

[tex] v_{i} [/tex]: is the initial velocity = 144 ft/s

g: is the acceleration due to gravity = 32 ft/s²    

Solving equation (2) for t and entering into equation (1), we can find the maximum height:

[tex]s = 144t - 16t^{2} = 144(\frac{v_{i}}{g}) - 16(\frac{v_{i}}{g})^{2} = 144(\frac{144 ft/s}{32 ft/s^{2}}) - 16(\frac{144 ft/s}{32 ft/s{2}})^{2} = 324 ft[/tex]  

Hence, the maximum height is 324 ft.

                       

b) To find the velocity of the ball when it is 320 ft above, we can use the following equation:                       

[tex] v_{f}^{2} = v_{i}^{2} - 2gs [/tex]

[tex]v_{f}^{2} = (144 ft/s)^{2} - 2*32 ft/s^{2}*320 ft[/tex]    

The above equation has two solutions:

[tex]v_{f_{1}} = 16 ft/s[/tex]

[tex]v_{f_{2}} = -16 ft/s[/tex]

Since the question is for the velocity of the ball on its way up and considering the way up as the positive direction, the answer is the positive value [tex]v_{f_{1}} = 16 ft/s[/tex].                      

c) The velocity of the ball when it is 320 ft above the ground on its way down is -16 ft/s (we take the negative value calculated above, [tex] v_{f_{2}}[/tex]). We consider the way down as the negative direction.

Find more about vertical motion here https://brainly.com/question/13665920?referrer=searchResults

I hope it helps you!    

A rod 10.0 cm long is uniformly charged and has a total charge of -21.0 µC. Determine the magnitude and direction of the electric field along the axis of the rod at a point 34.0 cm from its center.

Answers

Final answer:

The magnitude of the electric field is -1.39 x 10^6 N/C and it is directed inward.

Explanation:

To determine the magnitude and direction of the electric field along the axis of the rod at a point 34.0 cm from its center, we can use the formula for the electric field due to a uniformly charged rod. The formula is given by:

E = (k * Q * L) / (x^2 * sqrt(L^2 + x^2))

where E is the electric field, k is the Coulomb's constant, Q is the total charge on the rod, L is the length of the rod, and x is the distance from the center of the rod to the point where we want to find the electric field.

Substituting the given values:

E = (9.0 x 10^9 Nm^2/C^2 * (-21.0 x 10^-6 C) * 0.10 m) / (0.34 m)^2 * sqrt((0.10 m)^2 + (0.34 m)^2) = -1.39 x 10^6 N/C

The negative sign indicates that the electric field is directed inward.

a shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0 ∘above the horizontal. the shot hits the ground 2.08 s later. you can ignore air resistance. how far did she throw the shot?

Answers

Answer:

15.7 m

Explanation:

The range (horizontal distance) of the projectile is determined only by its horizontal motion.

The horizontal motion is a motion with constant speed, which is equal to the initial horizontal velocity of the object:

[tex]v_x = v cos \theta[/tex]

where

v = 12.0 m/s is the initial velocity

[tex]\theta=51.0^{\circ}[/tex] is the angle between the direction of v and the horizontal

Substituting,

[tex]v_x = (12.0 m/s)(cos 51.0^{\circ} )=7.55 m/s[/tex]

We know that the projectile hits the ground in a time of

t = 2.08 s

so the horizontal distance covered is

[tex]d = v_x t = (7.55 m/s)(2.08 s)=15.7 m[/tex]

Final answer:

The shot putter threw the shot approximately 15.71 meters by using the horizontal component of the initial velocity and the time of flight.

Explanation:

To calculate the distance the shot putter threw the shot, we need to break down the velocity into its horizontal and vertical components. Given that the shot was released with a velocity of 12.0 m/s at an angle of 51.0 degrees above the horizontal, we can use trigonometry to find these components.

The horizontal velocity (vx) is given by vx = v * cos(θ) = 12.0 m/s * cos(51.0) = 7.55 m/s. The vertical velocity (vy) is vy = v * sin(θ) = 12.0 m/s * sin(51.0) = 9.35 m/s.

Since there's no acceleration in the horizontal direction (ignoring air resistance), this component of the velocity will remain constant until the shot hits the ground. Thus, the horizontal distance (range) the shot travels is simply the product of the horizontal velocity and the time it's in the air, given by Range = vx * t = 7.55 m/s * 2.08 s = 15.71 meters. So, the shot putter threw the shot approximately 15.71 meters.

Describe Lenz's law.

Answers

Answer:

Explanation:

Lenz law is used to find the direction of induced emf in the coil.

It state taht the direction of induced emf in the coil is such that it always opposes the change due to which it is produced.

Suppose there is a coil and a north pole of the magnet comes nearer to the coil. Due to changing magnetic flux an induced emf is developed in the coil whose direction is such that the north pole moves away. That means this face of the coil behaves like a north pole and the current flows at this face is in anticlockwise wise direction.

Final answer:

Lenz's law is a manifestation of the conservation of energy in physics. It states that the direction of the induced electromotive force (emf) drives current around a wire loop to always oppose the change in magnetic flux that causes the emf. Lenz's law ensures that the induced current produces a magnetic field that tries to cancel out the change in flux caused by a changing magnetic field.

Explanation:

Lenz's law is a manifestation of the conservation of energy in physics. It states that the direction of the induced electromotive force (emf) drives current around a wire loop to always oppose the change in magnetic flux that causes the emf. This means that when there is a change in the magnetic field through a circuit, the induced current will create a magnetic field that acts against the change.

For example, if a magnet is brought near a wire loop, the induced current will flow in such a way that it creates a magnetic field that opposes the motion of the magnet. This is because the changing magnetic field induces an emf in the wire loop, and Lenz's law ensures that the induced current produces a magnetic field that tries to cancel out the change in flux caused by the magnet.

he electric fux through a surface is zero. Thereloee there are no chargm inside the ace A. True, if there in no fus theee ran be no chargs B. Fase, flux hae nothing to do with nclosed charge C. True, thst is how Ewoks control the world banks D. Fabe, the sum of all thargrs inside can be aro

Answers

Answer:

Option (D)

Explanation:

According to the Gauss theorem in electrostatics, the electric flux passing through any surface is equal to the one divided by epsilon note ties the total cahrge enclosed in the surface.

As the flux is zero it means the enclosed charge is zero. It means the sum of the total cahrge inside is zero.

The human heart is a powerful and extremely reliable pump. Each day it takes in and discharges about 7300 L of blood. Assume that the work done by the heart is equal to the work required to lift that amount of blood a height equal to that of the average citizen of Atlantic Falls, approximately 1.6 m. The density of blood is 1050 kg/m3. What is the heart's power output in watts?

Answers

Answer:

1.39 W

Explanation:

The volume of blood is

[tex]V=7300 L = 7.3 m^3[/tex]

the density is

[tex]\rho = 1050 kg/m^3[/tex]

So the total mass of blood lifted in one day is

[tex]m=\rho V=(1050 kg/m^3)(7.3 m^3)=7665 kg[/tex]

So the total work done is:

[tex]W=mgh=(7665 kg)(9.8 m/s^2)(1.6 m)=1.2\cdot 10^5 J[/tex]

The total time taken is one day, so

[tex]t=24 h = 86400 s[/tex]

So the power output is

[tex]P=\frac{W}{t}=\frac{1.2\cdot 10^5 J}{86400 s}=1.39 W[/tex]

g a stone with mass m=1.60 kg IS thrown vertically upward into the air with an initial kinetic energy of 470 J. the drag force acting on the stone throughout its flight is constant, independent of the velocity of the stone, and has a magnitude of 0.900 N. what is the maximum height reached by the stone?

Answers

Answer:

Height reached will be 28.35 m

Explanation:

Here we can use the work energy theorem to find the maximum height

As we know by work energy theorem

Work done by gravity + work done by friction = change in kinetic energy

[tex]-mgh - F_f h = 0 - \frac{1}{2}mv_i^2[/tex]

now we will have

[tex]-1.60(9.8)(h) - 0.900(h) = - 470[/tex]

[tex]-16.58 h = -470[/tex]

[tex]h = 28.35 m[/tex]

so here the height raised by the stone will be 28.35 m from the ground after projection in upward direction

A rope attached to a load of 175 kg bricks Ilifts the bricks with a steady acceleration of 0.12.m/s^2 straight up. What is the tension in the rope? (a)2028N (b)1645 N (c) 1894 N (d) 1976 N (e) 1736 N (f) 1792 N

Answers

Answer:

Tension, T = 1736 N

Explanation:

It is given that,

Mass of bricks, m = 175 kg

A rope is attached to a load of 175 kg bricks lifts the bricks with a steady acceleration of 0.12 m/s² in vertically upwards direction. let T is the tension in the rope. Using second equation of motion as :

T - mg = ma

T = ma + mg

T = m(a + g)

T = 175 kg ( 0.12 m/s² + 9.8 m/s² )

T = 1736 N

Hence, the tension in the wire is 1736 N.

Answer:

The tension in the rope is 1736 N.

(e) is correct option.

Explanation:

Given that,

Mass of bricks = 175 kg

Acceleration = 0.12 m/s²

Let T is the tension in the rope.

A rope attached to a load of 175 kg bricks lifts the bricks with a steady acceleration of 0.12.m/s^2 in vertically upward direction.

Using equation of balance

[tex]T-mg=ma[/tex]

[tex]T=mg+ma[/tex]

[tex]T=175(9.8+0.12)[/tex]

[tex]T= 1736\ N[/tex]

Hence, The tension in the rope is 1736 N.

A ball is thrown straight up with an initial speed of 16.9 m/s. At what height above its initial position will the ball have one‑half its initial speed?

Answers

Answer:

10.9 m

Explanation:

We can solve the problem by using the law of conservation of energy.

The initial mechanical energy is just the kinetic energy of the ball:

[tex]E = K_i = \frac{1}{2}mu^2[/tex]

where m is the mass of the ball and u = 16.9 m/s the initial speed.

At a height of h, the total mechanical energy is sum of kinetic energy and gravitational potential energy:

[tex]E=K_f + U_f = \frac{1}{2}mv^2 + mgh[/tex]

where v is the new speed, g is the gravitational acceleration, h is the height of the ball.

Due to the conservation of energy,

[tex]\frac{1}{2}mu^2 = \frac{1}{2}mv^2 +mgh\\u^2 = v^2 + 2gh[/tex] (1)

Here, at a height of h we want the speed to be 1/2 of the initial speed, so

[tex]v=\frac{1}{2}u[/tex]

So (1) becomes

[tex]u^2 = (\frac{u}{2})^2+2gh\\\frac{3}{4}u^2 = 2gh[/tex]

So we can find h:

[tex]h=\frac{3u^2}{8g}=\frac{3(16.9 m/s)^2}{8(9.8 m/s^2)}=10.9 m[/tex]

Final answer:

To find the height where the ball has one-half its initial speed, we can use the equations vf = v0 + gt and d = v0t - 0.5gt2.

Explanation:

To find the height above its initial position where the ball has one-half its initial speed, we need to use the fact that the initial velocity (v0) of the ball is 16.9 m/s. At the highest point of the ball's trajectory, the velocity will be zero. We can use the formula vf = v0 + gt, where vf is the final velocity, g is the acceleration due to gravity, and t is the time it takes for the ball to reach its highest point.

By substituting vf = 0 and v0 = 16.9 m/s, we can solve for t. Once we have the value of t, we can use the equation d = v0t - 0.5gt2 to calculate the height (d) above the initial position where the ball will have one-half its initial speed.

By substituting the calculated value of t into the equation, we can find the value of d.

Suppose that the Mars orbiter was to have established orbit at 155 km and that one group of engineers specified this distance as 1.55 × 105 m. Suppose further that a second group of engineers programmed the orbiter to go to 1.55 × 105 ft. What was the difference in kilometers between the two altitudes? How low did the probe go?

Answers

Answer:

108 km

Explanation:

The conversion factor between meters and feet is

1 m = 3.28 ft

So the second altitude, written in feet, can be rewritten in meters as

[tex]h_2 = 1.55 \cdot 10^5 ft \cdot \frac{1}{3.28 ft/m}=4.7\cdot 10^4 m[/tex]

or in kilometers,

[tex]h_2 = 47 km[/tex]

the first altitude in kilometers is

[tex]h_1 = 155 km[/tex]

so the difference between the two altitudes is

[tex]\Delta h = 155 km - 47 km = 108 km[/tex]

A particle with mass 1.81×10−3 kg and a charge of 1.22×10−8 C has, at a given instant, a velocity v⃗ =(3.00×104m/s)j^. What are the magnitude and direction of the particle’s acceleration produced by a uniform magnetic field B⃗ =(1.63T)i^+(0.980T)j^?

Answers

Answer:

The magnitude and direction of the acceleration of the particle is [tex]a= 0.3296\ \hat{k}\ m/s^2[/tex]

Explanation:

Given that,

Mass [tex]m = 1.81\times10^{-3}\ kg[/tex]

Velocity [tex]v = (3.00\times10^{4}\ m/s)j[/tex]

Charge [tex]q = 1.22\times10^{-8}\ C[/tex]

Magnetic field [tex] B= (1.63\hat{i}+0.980\hat{j})\ T[/tex]

We need to calculate the acceleration of the particle

Formula of the acceleration is defined as

[tex]F = ma=q(v\times B)[/tex]

[tex]a =\dfrac{q(v\times B)}{m}[/tex]

We need to calculate the value of [tex]v\times B[/tex]

[tex]v\times B=(3.00\times10^{4}\ m/s)j\times(1.63\hat{i}+0.980\hat{j})[/tex]

[tex]v\times B=4.89\times10^{4}[/tex]

Now, put the all values into the acceleration 's formula

[tex]a =\dfrac{1.22\times10^{-8}\times(-4.89\times10^{4}\hat{k})}{1.81\times10^{-3}}[/tex]

[tex]a= -0.3296\ \hat{k}\ m/s^2[/tex]

Negative sign shows the opposite direction.

Hence, The magnitude and direction of the acceleration of the particle is [tex]a= 0.3296\ \hat{k}\ m/s^2[/tex]

The magnitude and direction of the particle’s acceleration produced by a uniform magnetic field  [tex]B =(1.63T)i[/tex]^[tex]+(0.980T)j[/tex]^ is [tex]\bold{{a}}= -(0.330 m/s^2) \bold{\hat{{k}}}[/tex]

Explanation:

A particle with mass 1.81×10−3 kg and a charge of 1.22×10−8 C has, at a given instant, a velocity v⃗ =(3.00×104m/s)j^. What are the magnitude and direction of the particle’s acceleration produced by a uniform magnetic field [tex]B =(1.63T)i[/tex]^[tex]+(0.980T)j[/tex]^?

A charged particle is a particle with an electric charge. Whereas electric charge is the matter physical property that causes to experience a force when placed in an electromagnetic field. Uniform magnetic field is the condition when magnetic field lines are parallel then magnetic force experienced by an object is same at all points in that field

From Newton's second law, the force is given by:

[tex]F=ma[/tex]

Magnetic force is

[tex]F= qv \times B[/tex]

[tex]ma = qv \times B[/tex]

[tex]a = \frac{qv \times B}{m}[/tex]

Subsituting with the givens above we get

[tex]a = \frac{(1.22 \times 10^{-8} C) (3 \times 10^{4} m/s) (1.63 T ) (\hat{j} \times \hat{i})}{1.81 \times 10^{-3} kg} = -(0.330 m/s^2) \bold{\hat{{k}}}[/tex]

Therefore the magnitude and direction of the particle’s acceleration produced by a uniform magnetic field  [tex]B =(1.63T)i[/tex]^[tex]+(0.980T)j[/tex]^ is [tex]\bold{{a}}= -(0.330 m/s^2) \bold{\hat{{k}}}[/tex]

Learn more about the particle’s acceleration https://brainly.com/question/3376016

#LearnWithBrainly

A traveling electromagnetic wave in a vacuum has an electric field amplitude of 81.1 V/m. Calculate the intensity S of this wave. Then, determine the amount of energy U that flows through the area of 0.0253 m^2 over an interval of 19.9 s, assuming that the area is perpendicular to the direction of wave propagation.

Answers

Answer:

U = 4.39 J

Explanation:

Electric field energy stored in the medium or vacuum is given as

[tex]U = \frac{1}{2}\epsilon_0 E^2 V[/tex]

here we know that

[tex]\epsilon_0 = 8.85 \times 10^{-12} [/tex]

E = 81.1 V/m

V = volume

[tex]V = (0.0253)(speed \times time)[/tex]

[tex]V = (0.0253)(3\times 10^8 \times 19.9)[/tex]

[tex]V = 1.51 \times 10^8 m^3[/tex]

now from above formula we have

[tex]U = \frac{1}{2}(8.85 \times 10^{-12})(81.1)^2(1.51 \times 10^8)[/tex]

[tex]U = 4.39 J[/tex]

Other Questions
A television usesA. visual elements onlyB. audio and visual elementsC. text elements onlyD. audio elements only The Millers drove 150 miles in 3 hours. At this rate, how long will it take them to drive 400 miles? What equation results from completing the square and then factoring? X 2 + 4x = 7 A. (x + 4)2 = 3 B. (x + 2)2 = 3 C. (x + 4)2 = 11 D. (x + 2)2 = 11 The equation cos(35) =can be used to find the lengthWhat is the length of PC? Round to the nearest tenthof BC49.6= 20.5 in350B25 in. Is the following relation a function?xy12132132 Please answer this multiple choice question correctly for 30 points and brainliest!! Which option most accurately identifies the differences between the North and the South prior to the Civil War?A) Industries, like shipbuilding, dominated in the South while agriculture dominated in the NorthB) Political dominance was maintained in the North at the expense of the South based on the Three-Fifths Clause.C) Methods used to seek out cheap labor differed between the two geographic locations.D) Social class structures between the North and South differed based on architectural extravagance, Which was not used in support of the continental drift hypothesis? fossil evidence coastline fit of South America and Africa ancient climate composition of meteorites 52. Who is the first poet of world?A. SukaratC. BhanubhaktaB. HomerD. Rabindranath Tagor In a small section of a stadium there are 40 spectators watching a game between the Cook Islands and Fiji. They all support at least one of the two teams.25 spectators support the Cook Islands and 16 of these support both teams. How many support only Fiji? Solve |2x - 6| > 10{x|x < -8 or x > 2}{x|x < -2 or x > 8}{x|-2 < x < 8} PLease help! timeddFind the angle between u = sqr5i-8J and v = sqr5i+j. Round to the nearest tenth of a degree. (the square root is only on the 5i in both)A.65.9B.98.5C.90.4D33.3Use the dot product to find [v] when v =(-2,-1)A.-1b.-3c;sqr5dsqr3 plz help...................... The lovely voices in ardor appealing over the watermade me crave to listen, and I tried to say'Untie me!' to the crew, jercing my brows;but they bent steady to the oars. Then Perimedesgot to his feet, he and Eurylochus, and passed more line about, to hold me still.The Odyssey,HomerWhich quotation is correctly formatted using ML.A citation?A. I tried to say / 'Untie me!' to the crew, jercing my brows. (Homer 80)B. Homer writes, I tried to say / 'Untie me!' to the crew, jercing my brows (80). C. I tried to say / 'Untie me!' to the crew, jercing my brows (Homer 77-78).D. Homer writes, I tried to say / 'Untie me!' to the crew, jercing my brows (77-78). You dug a hole that was 8 feet deep. After taking a short break, you dug down 3 more feet in the same hole. When finished digging, a tractor accidentally filled the hole with 4 feet of dirt. How deep is your hole now? Select the correct answer.Which is an additive secondary color in the RGB model?A) YellowB) RedC) Blue D) Green The ___ spectrum contains photons of all energies.A.) electric force fieldB.) EMRC.) colorD.) visible light A research company is looking at the correlation between the years since 1970 and the average amount of years that couples stay married. Use complete sentences to explain how the data below indicates a non-linear model.Time (in years) since 1970: 0, 10, 20, 30, 40 Average age of a marriage (yrs.): 10, 11.2, 13.9, 17.2, 29 How did the lives of ancient peoples living in pre-civilizational communities differ from those living within civilization? Read and choose the option with the correct verb conjugation to complete the sentence. Hola, Lidia. Te gusta practicar deportes? S, mi equipo de ftbol ________ en la escuela los sbados. practica practicamos practican practico Steam Workshop Downloader