Answer:
22 minutes after 7:00 P.M. they will be closest.
Step-by-step explanation:
A boat heading south travelling for t hours at the rate of 20 km/h, so the distance x = 20t
The another boat will reach the dock after travelling another 1-t hours at the rate of 15 km/h, so the distance =
y = 15 - 15t
D = d² = x² + y²
D = (20t)² + (15 - 15t)²
dD/dt = -2(15² )( 1-t ) +2 × 20² × t
dD/dt = 2 (15² + 20²) × t -2 ( 15 )² = 0
t = [tex]\frac{2(15)^{2}}{(2\times15^{2}+2\times20^{2})}[/tex]
t = 0.36 hours = 0.36 × 60 = 21.6 minutes ≈ 22 minutes
Therefore, the distance is minimized 22 minutes after 7 pm.
The two boats were closest together 12 minutes after 7:00 PM.
Explanation:To find the time when the two boats were closest together, we can first determine the position of each boat at 8:00 PM. The boat traveling south will have traveled for 1 hour at a speed of 20 km/h, so it would be 20 km south of the dock. The boat traveling east will have traveled for 1 hour at a speed of 15 km/h, so it would be 15 km east of the dock. We can then calculate the distance between the two boats by using the Pythagorean theorem. The distance is the square root of the sum of the squares of the distances traveled south and east, which is approximately 25 km. Since both boats started at the dock at 7:00 PM, to find the time when they were closest together, we can subtract the time traveled by the boat heading south until it reaches the closest point to the other boat from 60 minutes. The boat heading south will have traveled (20/25) * 60 minutes, which is 48 minutes. So, the two boats were closest together 12 minutes after 7:00 PM.
Learn more about Finding the closest distance between two moving objects here:https://brainly.com/question/1582860
#SPJ3
The 8 rowers in a racing boat stroke so that all of the angles formed by their oars with the side of the boat stay equal. Explain why the oars on either side of the boat remain parallel
Explanation:
Assuming the side of the boat is a straight line, it would constitute a transversal crossing the lines of the oars. When corresponding angles at a transversal are congruent, the lines being crossed are parallel. Since the oars are those lines, the oars are parallel.
Find the power set of each of these sets, where a and b are distinct elements. a) {a} b) {a, b} c) {1, 2, 3, 4} show steps
Answer:
a) {{}, {a}}.
b) {{}, {a}, {b}, {a, b}}.
c) {{}, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, {1, 4}, {2, 4}, {1, 2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.
Step-by-step explanation:
The power set of a set is the set of all subset of the set in question. The number of power sets (including the empty set) of a set with [tex]n[/tex] (where [tex]n \in \mathbb{Z}[/tex]) unique elements is [tex]2^{n}[/tex].
In other words, there shall be
2 items in the power set of a), 4 items in the power set of b), and16 items in the power set of c).This explanation shows how to find the power set using binary numbers (only 0 and 1.) (Credit: Mathsisfun.)
a)List all the binary numbers that are equivalent to decimals ranging from 0 to [tex]2 - 1 = 1[/tex].
[tex]\begin{array}{l|l}\text{Decimal}&\text{Binary}\\ 0 & 0 \\ 1 & 1\end{array}[/tex].
Reverse the original set. Each digit in the binary number corresponds to a member of the original set (i.e. a letter in a) and b) or a number in c).) 0 means that the element is absent in the subset and 1 means that the element is present.
[tex]\begin{array}{c|l}a & \text{Element of the Power Set}\\ 0 & \{\}\\ 1 & \{a\}\end{array}[/tex].
The power set of a) thus contains:
{} and{a}.b)Similarly, list all the binary numbers that are equivalent to decimals ranging from 0 to [tex]4 - 1 = 3[/tex].
[tex]\begin{array}{l|l}\text{Decimal}&\text{Binary}\\ 0 & 00 \\ 1 & 01 \\ 2 & 10 \\ 3 & 11\end{array}[/tex].
[tex]\begin{array}{cc|l}b & a & \text{Element of the Power Set}\\ 0 & 0 & \{\}\\ 0 & 1 & \{a\}\\ 1 & 0 & \{b\} \\ 1 & 1 & \{a, b\}\end{array}[/tex].
The power set of b) thus contains:
{},{a}, {b}, and{a, b}.c)Similarly, list all the binary numbers that are equivalent to decimals ranging from 0 to [tex]16 - 1 = 15[/tex].
[tex]\begin{array}{l|l}\text{Decimal}&\text{Binary}\\ 0 & 0000 \\ 1 & 0001 \\ 2 & 0010 \\ 3 & 0011\\4 & 0100 \\ 5 & 0101\\ 6 & 0110 \\ 7 & 0111\\ 8 & 1000\\ 9 & 1001\\ 10 & 1010\\ 11 & 1011\\ 12& 1100 \\13 & 1101 \\ 14 & 1110\\ 15 & 1111 \end{array}[/tex].
[tex]\begin{array}{cccc|l}4 & 3 & 2 &1& \text{Element of the Power Set}\\ 0 & 0 & 0 & 0 &\{\}\\ 0 & 0 & 0 & 1 & \{1\}\\ 0 & 0 & 1 & 0 & \{2\} \\ 0 & 0 &1 & 1 & \{1, 2\} \\ 0 & 1 & 0 & 0 & \{3\} \\ 0 & 1 & 0 & 1& \{1, 3\}\\ 0 & 1 & 1 & 0& \{2, 3\}\\ 0 & 1 & 1 & 1 & \{1, 2, 3\} \\ 1 & 0 & 0 & 0 & \{4\} \\ 1 & 0 & 0 & 1 & \{1, 4\}\\ 1& 0 & 1 &0&\{2, 4\}\\ 1 & 0 & 1 & 1 &\{1, 2, 4\}\\ 1 & 1 & 0 & 0 & \{3, 4\} \\ 1 & 1 & 0 & 1 & \{1, 3, 4\} \\ 1 & 1 & 1 & 0 & \{2, 3, 4\} \\ 1 & 1 & 1 & 1 & \{1, 2, 3, 4\}\end{array}[/tex].
The power set of c) thus contains:
{},{1}, {2}, {1, 2},{3},{1, 3},{2, 3},{1, 2, 3}{4},{1, 4},{2, 4},{1, 2, 4},{3, 4}, {1, 3, 4},{2, 3, 4}, and{1, 2, 3, 4}.Solve the inequality and complete a line graph representing the solution. In a minimum of two sentences, describe the solution and the line graph.
8 3x + 5
Answer:
The solution is [tex]x\leq 1[/tex]
All real numbers less than or equal to 1
The graph in the attached figure
Step-by-step explanation:
we have
[tex]8\geq 3x+5[/tex]
Subtract 5 both sides
[tex]8-5\geq 3x[/tex]
[tex]3\geq 3x[/tex]
Divide by 3 both sides
[tex]1\geq x[/tex]
Rewrite
[tex]x\leq 1[/tex]
The solution is the interval ------> (-∞,1]
All real numbers less than or equal to 1
In a number line the solution is the shaded area at left of x=1 (close circle)
see the attached figure
How do I solve for the minimum and maximum of the function y=-1/2x^2 -5x+2
Try this solution:
There are several ways to find the max or min of the given function:
1. to use derivative of the function. For more details see the attachment (3 basic steps); the coordinates of max-point are marked with green (-5; 14.5)
2. to use formulas. The given function is the standart function with common equation y=ax²+bx+c, it means the correspond formulas are (where a<0, the vertex of this function is its maximum):
[tex]X_0=-\frac{b}{2a} ; \ X_0=-\frac{-5}{2*(-\frac{1}{2})} =-5.[/tex]
[tex]Y_0=-\frac{D}{4a}; \ Y_0=-\frac{25+4*2*0.5}{4*(-\frac{1}{2})} =14.5[/tex]
Finally: point (-5;14.5) - maximum of the given function.
3. to draw a graph.
What is 3 root 17 in a decimal
Answer:
=16.492
Step-by-step explanation:
3√17 is a surd that can be broken into 3 × √17
√17 = 4.123 ( to 4 S.F )
3 × 4.123 = 16.492
The decimal form is an estimation as it has many digits that can only be rounded off or truncated.
Write the Ratio 32 :42 as a Fraction in Simplest Form
Divide by 2 for both of the numbers
32/2, 42/2
16/21
Answer is 16/21
Answer:
Divide both numbers by 2
32÷2 ,42÷2
Or, 16,21
answer is 16,21
Suppose a system has two modules, A and B, that function independently. Module A fails with probability 0.24 and Module B fails with probability 0.38, when the system is executed. When the system is executed, find the probability that.
(a) only Module A fails (b) only Module B fails. (c) both modules fail. (d) neither module fails. (e) What do the probabilities add up to?
Let's denote the events as follows:
- A: Module A fails
- B: Module B fails
Given probabilities:
[tex]\[ P(A) = 0.24 \][/tex]
[tex]\[ P(B) = 0.38 \][/tex]
We can use the addition rule of probability for mutually exclusive events to calculate the probabilities:
(a) Probability that only Module A fails:
[tex]\[ P(A \text{ only}) = P(A) = 0.24 \][/tex]
(b) Probability that only Module B fails:
[tex]\[ P(B \text{ only}) = P(B) = 0.38 \][/tex]
(c) Probability that both modules fail:
[tex]\[ P(\text{both}) = P(A \cap B) = P(A) \times P(B) = 0.24 \times 0.38 = 0.0912 \][/tex]
(d) Probability that neither module fails:
[tex]\[ P(\text{neither}) = 1 - (P(A) + P(B) - P(A \cap B)) \][/tex]
[tex]\[ = 1 - (0.24 + 0.38 - 0.0912) \][/tex]
[tex]\[ = 1 - 0.5288 \][/tex]
[tex]\[ = 0.4712 \][/tex]
(e) The probabilities should add up to 1, representing the total probability of all possible outcomes:
[tex]\[ P(A \text{ only}) + P(B \text{ only}) + P(\text{both}) + P(\text{neither}) = 0.24 + 0.38 + 0.0912 + 0.4712 = 1 \][/tex]
So, the probabilities add up to 1, as expected.
a. The probability that only Module A fails is 0.1488
b. The probability that only Module B fails is 0.2888
c. The probability that both modules fail is 0.0912
d. The probability that neither module fails is 0.4712
e. The probabilities add up to is 1
Let's denote the events as follows:
Event A: Module A fails
Event B: Module B fails
Given probabilities:
P(A) = 0.24
P(B) = 0.38
(a) To find the probability that only Module A fails:
[tex]\[ P(A \cap \neg B) = P(A) \times P(\neg B) \][/tex]
To calculate [tex]\( P(\neg B) \)[/tex], we subtract the probability of B from 1:
[tex]\[ P(\neg B) = 1 - P(B) = 1 - 0.38 = 0.62 \][/tex]
[tex]\[ P(A \cap \neg B) = 0.24 \times 0.62 = 0.1488 \][/tex]
(b) Similarly, to find the probability that only Module B fails:
[tex]\[ P(\neg A \cap B) = P(\neg A) \times P(B) \][/tex]
[tex]\[ P(\neg A) = 1 - P(A) = 1 - 0.24 = 0.76 \][/tex]
[tex]\[ P(\neg A \cap B) = 0.76 \times 0.38 = 0.2888 \][/tex]
(c) To find the probability that both modules fail:
[tex]\[ P(A \cap B) = P(A) \times P(B) = 0.24 \times 0.38 = 0.0912 \][/tex]
(d) To find the probability that neither module fails:
[tex]\[ P(\neg A \cap \neg B) = P(\neg A) \times P(\neg B) \][/tex]
[tex]\[ P(\neg A \cap \neg B) = 0.76 \times 0.62 = 0.4712 \][/tex]
(e) The probabilities add up to :
[tex]\[ P(A \cap \neg B) + P(\neg A \cap B) + P(A \cap B) + P(\neg A \cap \neg B) = 0.1488 + 0.2888 + 0.0912 + 0.4712 = 1 \][/tex]
A hemispherical tank of radius 2 feet is positioned so that its base is circular. How much work is required to fill the tank with water through a hole in the base when the water source is at the base? (The weight-density of water is 62.4 pounds per cubic foot.)
To fill the hemispherical tank with water through a hole in the base, the work required is 418.88 foot-pounds.
Explanation:To calculate the work required to fill the hemispherical tank with water through a hole in the base, we can use the concept of work done against gravity.
The volume of the tank can be calculated using the formula for the volume of a hemisphere, which is (2/3)πr^3. In this case, the radius is given as 2 feet.
The weight of the water can be found by multiplying the volume by the weight-density of water, which is 62.4 pounds per cubic foot.
The work done is then the weight of the water multiplied by the height it is lifted, which is equal to the radius of the hemisphere.
So, the work required to fill the tank with water is (2/3)π(2^3)(62.4)(2) = 418.88 foot-pounds.
The work required to fill the hemispherical tank with water through a hole in the base is [tex]$\frac{1248\pi}{5}$[/tex] foot-pounds.
To solve this problem, we need to calculate the work done against gravity to fill the tank with water. The work done to lift a small layer of water at a height [tex]$h$[/tex] is given by the force required to lift it times the height [tex]$h$[/tex]. The force is the weight of the water, which is the volume of the water times its weight-density.
Let's break down the tank into thin horizontal slices. Each slice has a thickness [tex]$dh$[/tex] and is at a height [tex]$h$[/tex] from the base. The radius of each slice is given by [tex]$r = \sqrt{2^2 - h^2}$[/tex], where [tex]$2$[/tex] feet is the radius of the tank.
The volume of each slice is the area of the slice times its thickness [tex]$dh$[/tex]. The area of the slice is [tex]$\pi r^2$[/tex], so the volume [tex]$dV$[/tex] is [tex]\pi (2^2 - h^2) dh[/tex].
The weight of the water in each slice is the volume times the weight-density of water, which is [tex]$62.4$[/tex] pounds per cubic foot. Therefore, the weight of the water in each slice is [tex]$62.4\pi (2^2 - h^2) dh$[/tex].
The work done to lift this slice to the height [tex]$h$[/tex] is the weight of the water times the height [tex]$h$[/tex], which is [tex]$62.4\pi h (2^2 - h^2) dh$[/tex].
To find the total work done to fill the tank, we integrate this expression from [tex]$h = 0$[/tex] to[tex]$h = 2$[/tex] feet:
[tex]\[ W = \int_{0}^{2} 62.4\pi h (2^2 - h^2) dh \] \[ W = 62.4\pi \int_{0}^{2} h (4 - h^2) dh \] \[ W = 62.4\pi \int_{0}^{2} (4h - h^3) dh \] \[ W = 62.4\pi \left[ 2h^2 - \frac{h^4}{4} \right]_{0}^{2} \] \[ W = 62.4\pi \left[ 2(2)^2 - \frac{(2)^4}{4} \right] - 62.4\pi \left[ 2(0)^2 - \frac{(0)^4}{4} \right] \] \[ W = 62.4\pi \left[ 8 - 4 \right] \] \[ W = 62.4\pi \tims 4 \] \[ W = 249.6\pi \] \[ W = \frac{1248\pi}{5} \][/tex]
Therefore, the work required to fill the hemispherical tank with water through a hole in the base is [tex]$\frac{1248\pi}{5}$[/tex] foot-pounds.
A card is selected at random from a standard deck of playing cards.
Compute the probability that the card is a 7. (Enter the probability as a fraction.)
[tex]|\Omega|=52\\|A|=4\\\\P(A)=\dfrac{4}{52}=\dfrac{1}{13}[/tex]
The probability of getting the card of 7 in a deck will be 1 / 13.
What is probability?Probability is defined as the ratio of the number of favourable outcomes to the total number of outcomes in other words the probability is the number that shows the happening of the event.
Probability = Number of favourable outcomes / Number of sample
Given that a card is selected at random from a standard deck of playing cards. The probability of getting a number 7 will be,
There are four 7 cards in the deck of 52 cards.
Number of favourable outcomes = 4
Number of sample = 52
The probability is,
P = 4 / 52
P = 1 / 13
Therefore, the probability of getting the card of 7 in a deck will be 1 / 13.
To know more about probability follow
https://brainly.com/question/24756209
#SPJ5
Mathematicians say that "Statement P is a sufficient condition for statement Q" if P → Q is true. In other words, in order to know that Q is true, it is sufficient to know that P is true. Let x be an integer. Give a sufficient condition on x for x/2 to be an even integer.
Answer:
If x is a multiple of 4, then x/2 is even.
Step-by-step explanation:
An integer is even, if it is equal to 2n for some integer n. We want x/2 to be even, so ...
x/2 = 2n
x = 4n . . . . . multiply by 2
That is, x will be equal to 4n for some integer n. x is a multiple of 4.
To determine a sufficient condition for x/2 to be an even integer, we need to find values of x for which x/2 results in an even integer.
To find a sufficient condition for x/2 to be an even integer, we need to determine for which values of x the expression x/2 results in an even integer. Since an even integer is divisible by 2 without a remainder, a sufficient condition for x/2 to be an even integer is that x itself is divisible by 2 without a remainder. In other words, x should be an even integer.
Learn more about Determining a Sufficient Condition for x/2 to be an Even Integer here:https://brainly.com/question/31978581
#SPJ2
Convert ln x = y to exponential form.
Their perimeter of a triangle is 82' one side of the triangle is 2 times the 2nd side the 3rd side is 2' longer than the 2nd side find the length of each side
Answer:
side 1: 40; side 2: 20; side 3: 22
Step-by-step explanation:
It appears that sides 1 and 3 are based on side 2. So side 2 is our "control" and we'll call it x.
If side 1 is 2 times side 2, then
side 1 = 2x.
If side 3 is 2 feet longer than side 2, then
side 3 = x + 2
We are given the perimeter value. The perimeter of any shape is a measure around the outside of the shape. Since a triangle has 3 sides, we add them together and set their sum equal to the perimeter we were given. That looks like this:
x + 2x + x + 2 = 82
Combine like terms to get 4x + 2 = 82
Solve for x to get 4x = 80 and x = 20. That means that side 2 measures 20 feet; side 1 measures twice that, so side 1 = 40 feet, and side 3 measures 2 more than side 2, so side 3 measures 22. Let's add them all together and make sure the numbers work:
20 + 40 + 22 = 82
It works! So we're all done!
Rewrite the Product in Exponential Form : a. a. a. b. b. b. b
Answer:
a^3b^4
Step-by-step explanation:
You have 3 a's, so that would be
[tex]a^{3}[/tex]
and you have 4 b's so that would be
[tex]b^4[/tex]
so putting it together gives you
[tex]a^3b^4[/tex]
You want to endow a scholarship that will pay $10,000 per year forever, starting one year from now. If the school’s endowment discount rate is 7%, what amount must you donate to endow the scholarship? 13. How would your answer to Problem 12 change if you endow it now, but it makes the first award to a student 10 years from today?
Answer:
12. $142,857.14
13. $77,704.82 . . . it is changed by the accumulated interest on the amount
Step-by-step explanation:
12. You want one year's interest on the endowment to be equal to $10,000. The principal (P) can be found by ...
I = Prt
10,000 = P·0.07·1
10,000/0.07 = P ≈ 142,857.14
The endowment must be $142,857.14 to pay $10,000 in interest annually forever.
__
13. If the first award is in 10 years, we want the above amount to be the value of an account that has paid 7% interest compounded annually for 9 years. (The first award is 1 year after this amount is achieved.) Then we want the principal (P) to be ...
142,857.14 = P·(1 +0.07)^9
142,57.14/1.07^9 = P = 77,704.82
The endowment needs to be only $77,704.82 if the first award is made 10 years after the endowment date.
The initial amount required for endowment yielding $10,000 annually in perpetuity with a discount rate of 7% is $142,857.14. If the first payment is postponed to 10 years later, the present value of this amount is $72,975.85.
Explanation:The question pertains to figuring out the initial amount needed to fund an endowment that would yield $10,000 annually, indefinitely, given a discount rate of 7%. This is a case for the use of perpetuity, a financial concept in which an infinite amount of identical cash flows occur continually. The formula for perpetuity is: Perpetuity = Cash flow / Discount rate. Thus, in this case, the amount to endow is $10,000 / 0.07 = $142,857.14.
For the second part of the question, if the first award will be given 10 years from today, the present value of the perpetuity needs to be factored in. The present value of a perpetuity starting at a future point is: Present Value of Perpetuity = Perpetuity / (1 + r)^n where 'r' is the discount rate and 'n' is the number of periods before the perpetuity starts. Here, it will be $142,857.14 / (1 + 7%)^10 = $72,975.85
Learn more about Perpetuity here:https://brainly.com/question/32585421
#SPJ3
in what form is the following linear equation written y=9x+2
The linear equation can be written as; 9x - y = -2
What is a linear equation?A linear equation is an equation that has the variable of the highest power of 1. The standard form of a linear equation is of the form Ax + B = 0.
We are given the linear equation as;
y = 9x + 2
-9x + y = 2
A cannot be a negative:
-1(-9x + y = 2)
9x - y = -2
Learn more about linear equations;
https://brainly.com/question/10413253
#SPJ7
A rectangular plot of farmland will be bounded on one side by a river and on the other three sides by a single-strand electric fence. With 1000 m of wire at your disposal, what is the largest area you can enclose, and what are its dimensions?
Answer:
The largest area is 125000 m²
The dimensions of the farmland are 250 m and 500 m
Step-by-step explanation:
* Lets pick the information from the problem
- The farmland is shaped a rectangle
- The farmland will be bounded on one side by a river
- The other three sides are bounded by a single-strand electric fence
- The length of wire is 1000 m
- Lets consider the width of the rectangle is x and the length is y
- The side which will be bounded by the river is y
∴ The perimeter of the farmland which will be bounded by the electric
fence = x + x + y = 2x + y
- We will use the wire to fence the farmland
∵ The length of the wire is 1000 m
∵ The perimeter of the farmland is equal to the length of the wire
∴ 2x + y = 1000
- Lets find y in term of x
∵ 2x + y = 1000 ⇒ subtract 2x from both sides
∴ y = 1000 - 2x
- Now lets find the area can enclose by the wire
∵ The area of the rectangle = length × width
∵ The width of the farmland is x and its length is y
∴ The area of the farmland (A) = x × y = xy ⇒ (2)
- Use equation (1) to substitute the value of y in equation (2)
∴ A = x (1000 - 2x) ⇒ simplify
∴ A = 1000 x - 2 x²
- To find the maximum area we will differentiate A with respect to x
and equate the answer by zero to find the value of x which will make
the enclosed area largest
* Lets revise the rule of differentiation
- If y = ax^n, then dy/dx = a(n) x^(n-1)
- If y = ax, then dy/dx = a
- If y = a, then dy/dx = 0 , where a is a constant
∵ A = 1000 x - 2 x² ⇒ (3)
- Differentiate A with respect to x using the rules above
∴ dA/dx = 1000 - 2(2) x^(2-1)
∴ dA/dx = 1000 - 4x
- Put dA/dx = 0 to find the value of x
∵ 1000 - 4x = 0 ⇒ add 4x to both sides
∴ 1000 = 4x ⇒ divide both sides by 4
∴ 250 = x
∴ The value of x is 250
- Lets substitute this value in equation 3 to find the largest area
∵ A = 1000 x - 2 x²
∴ A = 1000 (250) - 2(250)² = 125000 m²
* The largest area is 125000 m²
∵ The width of the farmland is x
∵ x = 250
∴ The width of the farmland = 250 m
- Substitute the value of x in the equation (1) to find y
∵ y = 1000 - 2x
∵ x = 250
∴ y = 1000 - 2(250) = 1000 - 500 = 500
∵ The length of the farm lend is y
∴ The length of the farm land = 500 m
* The dimensions of the farmland are 250 m and 500 m
To get the maximum area from a rectangular farmland bounded on one side by a river and on the other three sides by a single-strand electric fence with 1000 meters of wire, the dimensions should be 250m x 500m yielding a maximum area of 125,000 square meters.
Explanation:This problem can be approached as a classic calculus maximization problem. The scenario mentioned in your question is about maximizing the area of a rectangle with a constant perimeter, this occurs when the rectangle is a square.
The three sides of your plot will consume the 1000 m of wire, if the length of each adjacent sides are x and y (where x is the length of the fence along the river, and y is the length of the other two fences), then
y + 2x = 1000
Substituting y from this equation into the area equation, A = xy(which results in A = x(1000-2x)), you can differentiate this equation with regards to x and set the derivative equal to zero to find the x-value that will give the maximum area. This happens when x = 250m, y = 500m then the maximum area is 125,000 m².
Learn more about Maximizing Area here:https://brainly.com/question/34713449
#SPJ3
Factor the higher degree polynomial
5y^4 + 11y^2 + 2
[tex]5y^4 + 11y^2 + 2=\\5y^4+10y^2+y^2+2=\\5y^2(y^2+2)+1(y^2+2)=\\(5y^2+1)(y^2+2)[/tex]
For this case we must factor the following expression:
[tex]5y ^ 4 + 11y ^ 2 + 2[/tex]
We rewrite[tex]y^ 4[/tex] as[tex](y^ 2) ^ 2[/tex]:
[tex]5 (y ^ 2) ^ 2 + 11y ^ 2 + 2[/tex]
We make a change of variable:
[tex]u = y ^ 2[/tex]
So, we have:
[tex]5u ^ 2 + 11u + 2[/tex]
we rewrite the term of the medium as a sum of two terms whose product is 5 * 2 = 10 and whose sum is 11. Then:[tex]5u ^ 2 + (1 + 10) u + 2\\5u ^ 2 + u + 10u + 2[/tex]
We factor the highest common denominator of each group:
[tex]u (5u + 1) +2 (5u + 1)[/tex]
We factor [tex](5u + 1):[/tex]
[tex](5u + 1) (u + 2)[/tex]
Returning the change:
[tex](5y ^ 2 + 1) (y ^ 2 + 2)[/tex]
ANswer:
[tex](5y ^ 2 + 1) (y ^ 2 + 2)[/tex]
Question 6 3 pts Joshua's diastolic blood pressure reading had been 80. After several weeks of medication, his reading is now 63. By what percent did he reduce his blood pressure? Round to two decimals.
Answer: There is 21.25% of reduction in blood pressure.
Step-by-step explanation:
Since we have given that
Diastolic blood pressure reading previously = 80
Diastolic blood pressure reading now = 63
Decrement is given by
[tex]80-63\\\\=17[/tex]
So, percentage he reduced his blood pressure is given by
[tex]\dfrac{17}{80}\times 100\\\\=\dfrac{1700}{80}\\\\=21.25\%[/tex]
Hence, there is 21.25% of reduction in blood pressure.
Expand the logarithm. log 5x/4y
Answer:
[tex] log ( \frac { 5 x } { 4 y} ) \implies [/tex] [tex] log ( 5 ) + log ( x ) - log ( 4 ) + log ( y ) [/tex]
Step-by-step explanation:
We are given the following for which we are to expand the logarithm:
[tex] log ( \frac { 5 x } { 4 y} ) [/tex]
Expanding the log by applying the rules of expanding the logarithms by changing the division into subtraction:
[tex] log ( 5 x ) - log ( 4 y ) [/tex]
[tex] log ( 5 ) + log ( x ) - log ( 4 ) + log ( y ) [/tex]
[tex]\bf \begin{array}{llll} \textit{logarithm of factors} \\\\ \log_a(xy)\implies \log_a(x)+\log_a(y) \end{array} ~\hspace{4em} \begin{array}{llll} \textit{Logarithm of rationals} \\\\ \log_a\left( \frac{x}{y}\right)\implies \log_a(x)-\log_a(y) \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \log\left( \cfrac{5x}{4y} \right)\implies \log(5x)-\log(4y)\implies [\log(5)+\log(x)]-[\log(4)+\log(y)] \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \log(5)+\log(x)-\log(4)-\log(y)~\hfill[/tex]
Use the ratio test to determine whether ∑n=14∞n+2n! converges or diverges. (a) Find the ratio of successive terms. Write your answer as a fully simplified fraction. For n≥14, limn→∞∣∣∣an+1an∣∣∣=limn→∞.
Answer:
The sum [tex]\displaystyle \sum^{\infty}_{n = 14} n + 2n![/tex] diverges ∵ of the Ratio Test.
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]Special Limit Rule [Coefficient Power Method]: [tex]\displaystyle \lim_{x \to \pm \infty} \frac{ax^n}{bx^n} = \frac{a}{b}[/tex]Series Convergence Tests
Ratio Test: [tex]\displaystyle \lim_{n \to \infty} \bigg| \frac{a_{n + 1}}{a_n} \bigg|[/tex]Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle \sum^{\infty}_{n = 14} n + 2n![/tex]
Step 2: Find Convergence
[Series] Define: [tex]\displaystyle a_n = n + 2n![/tex][Series] Set up [Ratio Test]: [tex]\displaystyle \sum^{\infty}_{n = 14} n + 2n! \rightarrow \lim_{n \to \infty} \bigg| \frac{n + 1 + 2(n + 1)!}{n + 2n!} \bigg|[/tex][Ratio Test] Evaluate Limit [Coefficient Power Method]: [tex]\displaystyle \lim_{n \to \infty} \bigg| \frac{n + 1 + 2(n + 1)!}{n + 2n!} \bigg| = \infty[/tex][Ratio Test] Define conclusiveness: [tex]\displaystyle \infty > 1[/tex]Since infinity is greater than 1, the Ratio Test defines the sum [tex]\displaystyle \sum^{\infty}_{n = 14} n + 2n![/tex] to be divergent.
---
Learn more about the Ratio Test: https://brainly.com/question/16654521
Learn more about Taylor Series: https://brainly.com/question/23558817
Topic: AP Calculus BC (Calculus I + II)
Unit: Taylor Series
identify the type of data that would be used to describe a response (A. Quantitative discrete B. Quantitative continuous, or C. Qualitative), and give an example of the data. (a) Number of tickets sold to a concert (b) Percent of body fat (c) Favorite baseball team (d) Time in line to buy groceries (e) Number of students enrolled at Evergreen Valley College (f) Most-watched television show (g) Brand of toothpaste (h) Distance to the closest movie theatre (i) Age of executives in Fortune 500 companies (j) Number of competing computer spreadsheet software packages.
Answer:
a) Quantitative discrete
b) Quantitative continuous
c) Qualitative
d) Quantitative continuous
e) Quantitative discrete
f) Qualitative
g) Qualitative
h) Quantitative continuous
i) Quantitative continuous
j) Quantitative discrete
Step-by-step explanation:
Okay, so an easy way to remember the difference between qualitative data and quantitative data:
Quantitative is measurable, it measures "QUANTITY."
Qualitative is categorical, meaning it has numeric value.
Now what about the difference between quantitative discrete and quantitative continuous.
Quantitative discrete there is NO IN BETWEEN. It counts things as whole numbers. The example would be your problem:
Number of tickets sold to a concert. Tickets are sold WHOLE, because you can't sell half a ticket.
Quantitative continuous has numbers in between, specifically, there could be decimals or fractions in between. Like in our problem:
Distance to the closest movie theater.
It can be 10.5m, 1.6 km. It does not necessarily have to be EXACTLY 1 Km away or 10 m away. So this is a continuous.
The type of data (Quantitative discrete, Quantitative continuous, or Qualitative) depends on whether a response involves counting, measuring, or categorizing. Examples were given to illustrate these different types of data, from counting tickets (Quantitative discrete) to measuring time (Quantitative continuous), to choosing a preferred product (Qualitative).
Explanation:The type of data used to describe a response differs depending on the nature of the response. Let's identify them:
(a) Number of tickets sold to a concert - Quantitative discrete (because we count the number of tickets)(b) Percent of body fat - Quantitative continuous (since it involves a measurement that can fall anywhere within a certain range)(c) Favorite baseball team - Qualitative (this is categorical data)(d) Time in line to buy groceries - Quantitative continuous (it can be measured precisely)(e) Number of students enrolled at Evergreen Valley College - Quantitative discrete (because students can be counted)(f) Most-watched television show - Qualitative (it's a category, not a numerical value)(g) Brand of toothpaste - Qualitative (it's categorical data)(h) Distance to the closest movie theatre - Quantitative continuous (since it's a measurable distance)(i) Age of executives in Fortune 500 companies - Quantitative continuous (age can fall anywhere within a certain range)(j) Number of competing computer spreadsheet software packages - Quantitative discrete (since we count the number of software packages).Learn more about Data Types here:https://brainly.com/question/37915128
#SPJ6
The police chief wants to know if the city’s African Americans feel that the police are doing a good job. Identify the management problem (I.e dependent variable) and identify the independent variable.
Solve the equation and check your answer. 0.95 t plus 0.05 left parenthesis 100 minus t right parenthesis equals 0.49 left parenthesis 100 right parenthesis
The value of t is:
t=48.8889
Step-by-step explanation:We are asked to solve the linear equation in terms of variable t.
The equation is given by:
[tex]0.95t+0.05(100-t)=0.49(100)[/tex]
Firstly we will solve the parentheses term in the left and right hand side of the equality as follows:
[tex]0.95t+0.05\times 100-0.05t=49[/tex]
Now we combine the like terms on the left side of equality by:
[tex]0.95t-0.05t+5=49\\\\i.e.\\\\0.90t+5=49[/tex]
Now we subtract both side of the equation by 5 to get:
[tex]0.90t=44[/tex]
Now on dividing both side of the equation by 0.90 we get:
[tex]t=\dfrac{44}{0.90}\\\\i.e.\\\\t=48.8889[/tex]
Hence, the value of t is: 48.8889
After simplifying and rearranging the given equation, the solution for the variable 't' comes out to be approximately 48.89. The solution was verified by substituting 't' back into the original equation.
Explanation:The equation given is: 0.95t + 0.05(100 - t) = 0.49(100). Start by simplifying the left side of the equation, which gives us: 0.95t + 5 - 0.05t = 49. Combine the t terms to get 0.9t + 5 = 49. Rearranging for t gives us 0.9t = 44. Dividing both sides by 0.9 yields t = 48.89. Checking our answer, we can substitute t back into the original equation: 0.95(48.89) + 0.05(100 - 48.89) = 49; simplifying this, we get 46.45 + 2.56 = 49, which checks out.
Learn more about Algebra here:https://brainly.com/question/24875240
#SPJ12
For a standard normal distribution (µ=0, σ=1), the area under the curve less than 1.25 is 0.894. What is the approximate percentage of the area under the curve less than -1.25?
Answer:
10.6%
Step-by-step explanation:
Normal curves are symmetrical. That means that on a standard normal distribution, the area less than -1.25 is the same as the area greater than +1.25. The total area under the curve is 1, so:
P = 1 - 0.894
P = 0.106
Approximately 10.6% of the area under the curve lies below -1.25.
For a standard normal distribution, the area under the curve to the left of a z-score of -1.25 is approximately 10.6% due to the fact that a normal distribution is symmetric around its mean.
Explanation:In a standard normal distribution, the properties of symmetry mean that the area on either side of the mean (µ=0) is identical. When looking at positive and negative z-scores that are the same magnitude but opposite in direction, the areas under the curve to their respective sides will be equivalent.
The given z-score is 1.25 and we know the area under the curve to the left of this z-score is 0.894 or 89.4%. Because of symmetry, the z-score of -1.25 will have an equal area under the curve to the right, which also represents 89.4%. Therefore, the area under the curve to the left of a z-score of -1.25 is 1 - 0.894 = 0.106, or approximately 10.6%.
Learn more about Standard Normal Distribution here:https://brainly.com/question/29509087
#SPJ11
What values of c and d make the equation true?
Answer:
the equation is true only if c=6 and d=2.
Step-by-step explanation:
We have the following expression:
[tex]\sqrt[3]{162x^{c}y^{5}} = 3x^{2}y\sqrt[3]{6y^{d}}[/tex]
Elevating to the power of three:
[tex]162x^{c}y^{5}=27x^{6}y^{3}(6y^{d})[/tex]
Simplifying:
→ [tex]162x^{c}y^{5}=162x^{6}y^{3}y^{d}[/tex]
→ [tex]x^{c}y^{5}=x^{6}y^{3}y^{d}[/tex]
→ [tex]x^{c}y^{5}=x^{6}y^{d+3}[/tex]
By comparing the two expression, we can say that:
[tex]c=6[/tex]
[tex]d+3 = 5[/tex] → [tex]d=2[/tex]
Therefore, the equation is true only if c=6 and d=2.
Answer:
c = 6 d = 2
on edge
As part of an annual fundraiser to help raise money for diabetes research, Diane joined a bikeathon. The track she biked on was 1,920 yards long. Diane biked 38.5 laps. Her sponsors agreed to donate an amount of money for each mile she biked. How many miles did she bike? First fill in the blanks on the left side using the ratios shown. Then write your answer.
Given Ratios: 5280ft / 1 mi , 1 mi /5280 ft , 1,920 yards / 1 lap , 1 lap / 1,920 yards , 3 ft / 1 yard , 1 yard / 3 ft.
Blanks: 38.5 laps / 1 yard x (blank) x (blank) x (blank) = (blank) miles
I'm really confused on how to do this, and the explanations aren't exactly helping. If you could walk me through how to do this, it would be greatly appreciated.
Answer:
[tex]38.5\,\text{laps}\times\dfrac{1920\,\text{yd}}{1\,\text{lap}}\times\dfrac{3\,\text{ft}}{1\,\text{yd}}\times\dfrac{1\,\text{mi}}{5280\,\text{ft}}[/tex]42 milesStep-by-step explanation:
You know that fractions with the same value in numerator and denominator reduce to 1. This is true whether the value is a number, a variable expression, or some mix of those. That is ...
[tex]\dfrac{1760}{1760}=1\\\\\dfrac{3\,\text{mi}}{1\,\text{mi}}=\dfrac{3}{1}\cdot\dfrac{\text{mi}}{\text{mi}}=3[/tex]
This example should show you that you can treat units as if they were a variable.
So, the unit conversion process is the process of choosing combinations of numerator and denominator units so that all the units you don't want cancel, leaving only units you do want.
You're starting with a number than has "laps" in the numerator. To cancel that, you need to find a conversion factor with "lap" in the denominator. On the list you are given, the one that has that is ...
[tex]\dfrac{1920\,\text{yd}}{1\,\text{lap}}[/tex]
Now, you have canceled laps, but you have yards. Also on your list of conversion factors is a ratio with yards in the denominator:
[tex]\dfrac{3\,\text{ft}}{1\,\text{yd}}[/tex]
This will cancel the yards in the numerator from the previous result, but will give you feet in the numerator. You want miles, so you look for a conversion factor between feet and miles, with miles in the numerator. The one you find is ...
[tex]\dfrac{1\,\text{mi}}{5280\,\text{ft}}[/tex]
These three conversion factors go into the blanks. When you form the product, you will get ...
[tex]\dfrac{38.5\cdot 1920\cdot 3}{1\cdot 1\cdot 5280}\cdot\dfrac{\text{laps$\cdot$yd$\cdot$ft$\cdot$mi}}{\text{lap$\cdot$yd$\cdot$ft}}=42\,\text{mi}[/tex]
Answer:
Step-by-step explanation:
The mean and the standard deviation of a sampled population are, respectively, 113.9 and 32.1. Find the mean and standard deviation of the sampling distribution of the sample mean for samples of size n=64. Round your answers to one decimal place.
Answer: The mean and standard deviation of the sampling distribution of the sample mean for samples of size n=64 is
[tex]113.9\text{ and }4.0[/tex] respectively.
Step-by-step explanation:
Given : The mean of sampled population : [tex]\mu = 113.9[/tex]
The standard deviation of sampled population : [tex]\sigma = 32.1[/tex]
We know that the mean and standard deviation of the sampling distribution of the sample mean for samples of size n is given by :_
[tex]\mu_s=\mu\\\\\sigma_s=\dfrac{\sigma}{\sqrt{n}}[/tex]
Now, the mean and standard deviation of the sampling distribution of the sample mean for samples of size n=64 will be :-
[tex]\mu_s=113.9\\\\\sigma_s=\dfrac{32.1}{\sqrt{64}}=4.0125\approx4.0[/tex]
The mean of the sample is 113.9, and the standard deviation of the sample is 4.0
The given parameters are:
[tex]\mu = 113.9[/tex] --- the population mean
[tex]\sigma = 32.1[/tex] --- the population standard deviation
[tex]n = 64[/tex] --- the sample size
The sample mean is calculated as:
[tex]\bar x = \mu[/tex]
So, we have:
[tex]\bar x = 113.9[/tex]
The sample standard deviation is calculated as:
[tex]\sigma_x = \frac{\sigma}{\sqrt n}[/tex]
This gives
[tex]\sigma_x = \frac{32.1}{\sqrt {64}}[/tex]
[tex]\sigma_x \approx 4.0[/tex]
Hence, the mean of the sample is 113.9, and the standard deviation of the sample is 4.0
Read more about mean and standard deviation at:
https://brainly.com/question/15858152
Use natural logarithms to solve the equation. e2x = 1.4 Round to the nearest thousandth.
Answer:
x = 0.16823611831
Step-by-step explanation:
ln (natural log), when multiplied by e, cancels it out.
Therefore ln*e2x = ln*1.4
2x = 0.33647223662
x = 0.16823611831
Answer: [tex]x=0.168[/tex]
Step-by-step explanation:
To solve the equation [tex]e^{2x}=1.4[/tex] you need to apply natural logarithm to both sides of the equation:
[tex]ln(e)^{2x}=ln(1.4)[/tex]
According to the logarithms property:
[tex]ln(b)^a=aln(b)[/tex]
Then, applying the property, you get:
[tex](2x)ln(e)=ln(1.4)[/tex]
You need to remember the following:
[tex]ln(e)=1[/tex]
Therefore:
[tex]2x(1)=ln(1.4)\\\\2x=ln(1.4)[/tex]
And finally, you must divide both sides of the equation by 2:
[tex]\frac{2x}{2}=\frac{ln(1.4)}{2}\\\\x=0.1682[/tex]
Rounded to the nearest thousand:
[tex]x=0.168[/tex]
The Pew Internet and American Life Project finds that 95% of teenagers (12–17) use the Internet and that 81% of online teens use some kind of social media. Of online teens who use some kind of social media, 91% have posted a photo of themselves. STATE: What percent of all teens are online, use social media, and have posted a photo of themselves?
The percent of all teens are online, use social media, and have posted a photo of themselves are:
70% (approx)
Step-by-step explanation:It is given that:
95% of teenagers use the Internet this means that the teens are online.
This means that 95%=0.95.
and 81% of online teens use some kind of social media.
i.e. 81%=0.81
and Of online teens who use some kind of social media, 91% have posted a photo of themselves.
i.e. 91%=0.91
Now we are asked to find the percent of teens who are online, use social media, and have posted a photo of themselves
i.e. The percent is: (0.95×0.81×0.91)×100
= 70.0245%
which is approximately equal to 70%
Answer:
The percent of all teens are online, use social media, and have posted a photo of themselves 70% (approx)
Step-by-step explanation:
A test consists of 10 multiple choice questions, each with 5 possible answers, one of which is correct. To pass the test a student must get 60% or better on the test. If a student randomly guesses, what is the probability that the student will pass the test?
Try this option:
if only one answer of five is correct, it means, the probability to choose it P=1/5=0.2.
If the student guesses randomly, it means, using the probability 0.2, he(she) can choose only 10*0.2=2 correct answers. To pass the test, the student must get 0.6*10=6 correct answers or more.