A block and tackle is used to lift an automobile engine that weighs 1800 N. The person exerts a force of 300 N to lift the engine. How many ropes are supporting the engine

Answers

Answer 1

Answer:

1800/300 = 6ropes

Explanation:

The engine weighs 1800N and the person exerts a force of 300N, so for him to lift the engine and exerting a force of 300N all through we divide the weight of the engine by the force exerted to know how many ropes are used. Which makes it 6 thereby each rope uses 300N to lift the engine.


Related Questions

A 55.0 kg ice skater is moving at 4.07 m/s when she grabs the loose end of a rope, the opposite end of which is tied to a pole. She then moves in a circle of radius 0.808 m around the pole. (b) Compare this force with her weight by finding the ratio of the force to her weight.

Answers

Answer:

Explanation:

mass of ice skater, m = 55 kg

velocity, v = 4.07 m/s

radius, r = 0.808 m

The force is centripetal force, the formula for this force is

[tex]F_{c}=\frac{mv^{2}}{r}[/tex]

[tex]F_{c}=\frac{55\times 4.07\times 4.07}{0.808}[/tex]

Fc = 1127.56 N

Weight of the person, W = mg

W = 55 x 9.8 = 539 N

The ratio of force to he weight

[tex]\frac{F_{c}}{W}=\frac{1127.56}{539}[/tex]= 2.09

The amount of kinetic energy an object has depends on its mass and its speed. Rank the following sets of oranges and cantaloupes from least kinetic energy to greatest kinetic energy. If two sets have the same amount of kinetic energy, place one on top of the other. 1. mass: m speed: v2. mass: 4 m speed: v3. total mass: 2 m speed: 1/4v4. mass: 4 m : speed: v5. total mass: 4 m speed: 1/2v

Answers

The ranking from least to greatest kinetic energy is: Set 3 < Set 1 < Set 5 < Set 2, Set 4.

To rank the sets of oranges and cantaloupes based on their kinetic energy, from the formula for kinetic energy:

Kinetic Energy (KE) = 0.5 × mass × speed²

Calculate the kinetic energy for each set and then rank them from least to greatest kinetic energy:

Set 1: KE = 0.5 × m × v²

Set 2: KE = 0.5 ×  4m ×  v² = 2 ×  0.5 ×  m ×  v² (Same as Set 1)

Set 3: KE = 0.5 ×  2m ×  (1/4v)² = 0.125 ×  ×  v² (Less than Set 1)

Set 4: KE = 0.5 ×  4m ×  v² = 2 ×  0.5 ×  m ×  v² (Same as Set 1 and 2)

Set 5: KE = 0.5 ×  4m ×  (1/2v)² = 1 ×  0.5 × m ×  v² (Same as Set 1, 2, and 4)

Ranking from least kinetic energy to greatest kinetic energy:

Set 3 (total mass: 2m, speed: 1/4v)

Set 1 (mass: m, speed: v)

Set 5 (total mass: 4m, speed: 1/2v)

Sets 2 and 4 (mass: 4m, speed: v)

Hence, the ranking from least to greatest kinetic energy is: Set 3 < Set 1 < Set 5 < Set 2, Set 4.

To learn more about Kinetic energy, here:

https://brainly.com/question/999862

#SPJ12

Final answer:

The kinetic energy of an object is dependent on both its mass and speed. The ranking of the sets of oranges and cantaloupes, based on their kinetic energy (from least to greatest), is: KE3, KE5, KE1 = KE4, KE2. These rankings are calculated by substituting the values of mass and speed provided into the formula for kinetic energy.

Explanation:

The kinetic energy of an object can be defined as the energy which it possesses due to its motion. It is dependent on both its mass and speed, as outlined by the formula KE = 1/2mv². Where KE is the kinetic energy, m is the mass of the object, and v is the velocity (or speed).

Considering the information provided on the sets of oranges and cantaloupes:

Set 1: KE1 = 1/2m(v)².Set 2: KE2 = 1/2(4m)(v)².Set 3: KE3 = 1/2(2m)((1/4v)²).Set 4: KE4 = 1/2(4m)(v)².Set 5: KE5 = 1/2(4m)((1/2v)²).

Ranking them according to their kinetic energy, from least to greatest, gives us: KE3, KE5, KE1 = KE4, KE2.

Learn more about Kinetic Energy here:

https://brainly.com/question/26472013

#SPJ3

Mateo drew the field lines around the ends of two bar magnets but forgot to label the direction of the lines with arrows. At left a rectangular box with the long horizontal side labeled S. At right a rectangular box with the long horizontal side labeled N. There is a gap between the boxes. Curved lines labeled 1 emerge from the right end of S and reach the left end of N. In which direction should an arrow at position 1 point?

Answers

Answer:

left

Explanation:

The magnetic field lines always point outwards from the north pole and merges towards the south pole. Thus, the arrow, is from right to left.

What is bar magnet?

A bar magnet is an object made of materials having permanent magnetism.  They have two poles namely south poles and north poles. The like poles of magnets will repel and unlike pole attracts each other.

Conventionally, it is assumed that the magnet's field flows from its north pole inward to its south pole. Ferromagnetic materials can be used to create permanent magnets.

The magnetic field is strongest inside the magnetic substance, as seen by the magnetic field lines. Near the poles, there are the strongest external magnetic fields. A magnetic north pole will pull a magnet's south pole toward it while repelling another magnet's north pole. Hence, the arrow is pointing  to left direction.

To find more on bar magnets, refer here;

https://brainly.com/question/708941

#SPJ5

Two 20.0 g ice cubes at − 20.0 ∘ C are placed into 285 g of water at 25.0 ∘ C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, T f , of the water after all the ice melts.

Answers

Final answer:

To calculate the final temperature after placing ice cubes into water, principles of thermodynamics are used, involving calculations for warming the ice, melting it, and adjusting the water temperature. The steps highlight the application of heat transfer and phase change concepts within a closed system.

Explanation:

The student's question involves the calculation of the final temperature of the water after two 20.0 g ice cubes at -20.0 °C are placed into 285 g of water at 25.0 °C. The principles of thermodynamics, specifically the concept of heat transfer and the conservation of energy, are essential to solving this problem. However, with the given information, an exact numerical solution cannot be provided without knowing the specific heats of ice and water, as well as the heat of fusion of ice. Generally, the solution involves several steps:

Calculate the amount of energy required to warm the ice from -20.0 °C to 0 °C using the specific heat of ice.

Calculate the energy needed to melt the ice into water at 0 °C using the enthalpy of fusion.

Calculate the energy released by the water as it cools down to the new equilibrium temperature.

Set the energy gained by the ice equal to the energy lost by the water to find the final temperature of the mixture.

Without the numerical values, the step-by-step method demonstrates how principles of heat transfer and phase change are applied to predict changes in temperature and state within a closed system.

1) Steven carefully places a 1.85 kg wooden block on a frictionless ramp, so that the block begins to slide down the ramp from rest. The ramp makes an angle of 59.3° up from the horizontal. Which forces below do non-zero work on the block as it slides down the ramp?a) gravityb) normalc) frictiond) spring2) How much total work has been done on the block after it slides down along the ramp a distance of 1.85 m? 3) Nancy measures the speed of the wooden block after it has gone the 1.85 m down the ramp. Predict what speed she should measure.4) Now, Steven again places the wooden block back at the top of the ramp, but this time he jokingly gives the block a big push before it slides down the ramp. If the block's initial speed is 2.00 m / s and the block again slides down the ramp 1.91 m , what should Nancy measure for the speed of the block this time?

Answers

The forces doing non-zero work as the block slides down a frictionless ramp are gravity and any applied forces. The work done can be calculated using the mass, gravitational acceleration, and height. For the pushed block, the initial kinetic energy is combined with gravitational work to predict the final speed.

The forces that do non-zero work on a block as it slides down a frictionless ramp include gravity and any applied forces (like a push or a pull), but not the normal force or friction since the ramp is frictionless. Gravity does positive work as it pulls the block down the plane, increasing its kinetic energy. To calculate the total work done on the 1.85 kg wooden block after sliding down a distance of 1.85 m on the ramp at a 59.3° angle, you can use the formula:

Work = mgh, where m is mass, g is acceleration due to gravity, and h is the height.

To predict the speed of the block after sliding down, you can use the conservation of energy principle or kinematic equations that relate distance, acceleration, and velocity. For the scenario where the block is given an initial push, the final speed can be predicted using the same principles by accounting for the initial kinetic energy provided by the push.

Here's an example of calculating work done:

Problem: A block of mass 10 kg slides down through a length of 10 m over an incline of 30°. If the coefficient of kinetic friction is 0.5, then find the work done by the net force on the block. In this example, work done by the net force can be calculated by finding the components of the gravitational force parallel and perpendicular to the incline and applying the kinetic friction force in the opposite direction of motion.

A 10-kg disk-shaped flywheel of radius 9.0 cm rotates with a rotational speed of 320 rad/s. Part A Determine the rotational momentum of the flywheel. Express your answer to two significant figures and include the appropriate units. Part B With what magnitude rotational speed must a 10-kg solid sphere of 9.0 cm radius rotate to have the same rotational momentum as the flywheel? Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

(A). The rotational momentum of the flywheel is 12.96 kg m²/s.

(B). The rotational speed of sphere is 400 rad/s.

Explanation:

Given that,

Mass of disk = 10 kg

Radius = 9.0 cm

Rotational speed = 320 m/s

(A). We need to calculate the rotational momentum of the flywheel.

Using formula of momentum

[tex]L=I\omega[/tex]

[tex]L=\dfrac{1}{2}mr^2\omega[/tex]

Put the value into the formula

[tex]L=\dfrac{1}{2}\times10\times(9.0\times10^{-2})^2\times320[/tex]

[tex]L=12.96\ kg m^2/s[/tex]

(B). Rotation momentum of sphere is same rotational momentum of the  flywheel

We need to calculate the magnitude of the rotational speed of sphere

Using formula of rotational momentum

[tex]L_{sphere}=L_{flywheel}[/tex]

[tex]I\omega_{sphere}=I\omega_{flywheel}[/tex]

[tex]\omega_{sphere}=\dfrac{I\omega_{flywheel}}{I_{sphere}}[/tex]

[tex]\omega_{sphere}=\dfrac{I\omega_{flywheel}}{\dfrac{2}{5}mr^2}[/tex]

Put the value into the formula

[tex]\omega_{sphere}=\dfrac{12.96}{\dfrac{2}{5}\times10\times(9.0\times10^{-2})^2}[/tex]

[tex]\omega_{sphere}=400\ rad/s[/tex]

Hence, (A). The rotational momentum of the flywheel is 12.96 kg m²/s.

(B). The rotational speed of sphere is 400 rad/s.

Final answer:

To find the rotational momentum of a flywheel, one must calculate the moment of inertia and then use it to ascertain the angular momentum by multiplying the moment of inertia with the angular speed. L = Iw. To compare this with another rotating object, for example a sphere, one would then utilize their common momentum and calculate the necessary angular speed the sphere would need in order to match the flywheel's momentum.

Explanation:

Part A: To determine the rotational momentum of the flywheel, we first need to find its moment of inertia. For a disk, the moment of inertia (I) is given by I = 1/2 MR² where M is the mass and R is the radius. Substituting values, I becomes = 1/2 * 10 Kg * (0.09m)² = 0.0405 kg • m². The rotational momentum can then be found by multiplying moment of inertia by the rotational speed w. Therefore the rotational momentum (L) of the flywheel is L = Iw = 0.0405 kg • m² * 320 rad/s = 12.96 Kg • m²/s.

Part B: Let's now find the speed a spherical object needs to achieve the same momentum. The moment of inertia of a solid sphere is given by I=2/5 MR². The angular momentum L (which should be the same as the flywheel's) equals Iw, so we solve for w giving w = L/I = 12.96 kg•m²/s / (2/5*10 kg (0.09 m)²) = 180 rad/s. Thus, a 10-kg solid sphere of 9.0 cm radius would have to rotate at a speed of 180 rad/s to have the same rotational momentum as the flywheel.

Learn more about Rotational Momentum here:

https://brainly.com/question/33716808

#SPJ3

Imagine that you take a beam of monochromatic light and start to reduce the power of this beam of light. As you get the power (intensity) lower and lower, what will happen to your observations of the beam of light with regards to observing individual photons?

Answers

Answer:

No change in velocity of photons...

Explanation:

The reason speed of light is constant is that is doesn't depend upon intensity of light as produced by the source. This is the main reason why the wave function (psi)* in Einstein's Photoelectric experiment remains unaffected by intensity. The monochromatic beam of light will glow lower and lower as the power decreases and eventually vanishes from visible range as the emission from the power source has been stopped...

A concrete highway curve of radius 60.0 m is banked at a 19.0 ∘ angle. what is the maximum speed with which a 1400 kg rubber-tired car can take this curve without sliding? (take the static coefficient of friction of rubber on concrete to be 1.0.)

Answers

Final answer:

The student's question involves calculating the maximum speed a car can take a banked curve without sliding, using physic principles of circular motion and the coefficient of static friction.

Explanation:

The student's question revolves around determining the maximum speed at which a 1400 kg car can navigate a banked highway curve without sliding, given a static coefficient of friction between rubber and concrete. To solve this, we need to use principles of circular motion and friction.

To find the maximum speed (v), we can use the following equation that balances gravitational, frictional, and centripetal forces:

F_{friction} = μ_s × N

N = m × g × cos(θ)

F_{centripetal} = m × v^2 / r

Where μ_s is the static coefficient of friction (1.0), N is the normal force, m is the mass of the car (1400 kg), g is the acceleration due to gravity (9.8 m/s^2), θ is the banking angle (19.0 degrees), v is the maximum speed, and r is the radius of the curve (60.0 m). The forces due to friction and centripetal need to equal for the car to navigate the curve without sliding.

After applying trigonometry and mechanics principles, we can solve for v which gives us the maximum speed without sliding.

Learn more about Maximum speed on a banked curve here:

https://brainly.com/question/28810616

#SPJ12

You heat a 5.2 gram lead ball (specific heat capacity = 0.128 Joules/g-deg) to 183. ∘ C. You then drop the ball into 34.5 milliliters of water (density 1 g/ml; specific heat capacity = 4.184 J/g-deg ) at 22.4 ∘ C. What is the final temperature of the water when the lead and water reach thermal equilibrium?

Answers

Answer:

The final temperature when the lead and water reach thermal equilibrium is [tex]23.14^{o} C[/tex]

Explanation:

Using the law of conservation of energy the heat lost by the lead ball is gained by the water.

[tex]-q_{L} =+q_{w}[/tex] .............................1

where

[tex]q_{L}[/tex] is the heat energy of the lead ball;

[tex]q_{w}[/tex] is the heat energy of water;

but q = msΔ

T...............................2

substituting expression in equation 2 into the equation 1;

Δ

T =Δ

T .............................3

where [tex]m_{L}[/tex] is the mass of the lead ball = 5.2 g

[tex]s_{L}[/tex] is the specific heat capacity of the lead ball = 0.128 Joules/g-deg

[tex]m_{w}[/tex] is the mass of water = volume x density = 34.5 ml x 1 g/ml = 34.5 g

[tex]s_{w}[/tex] is the specific heat capacity of water = 4.184 J/g-deg

Δ

T is the temperature changes encountered by the lead ball and water   respectively

inputting the values of the parameters into equation 3

5.2 g x 0.128 Joules/g-deg x (183-22.4) = 34.5 g x 4.184 J/g-deg x ([tex]T_{2}[/tex] -22.4)

[tex]T_{2}[/tex] -22.4 = [tex]\frac{106.9}{144.3}[/tex]

[tex]T_{2}[/tex] -22.4 = 0.7408

[tex]T_{2}[/tex] = [tex]23.14^{o} C[/tex]

Therefore the final temperature  when the lead and water reach thermal equilibrium is [tex]23.14^{o} C[/tex]

If a car is taveling with a speed 6 and comes to a curve in a flat road with radius ???? 13.5 m, what is the minumum value the coefficient of friction must be so the car doesn’t slide of the road?

Answers

Answer:

[tex]\mu_s \geq 0.27[/tex]

Explanation:

The centripetal force acting on the car must be equal to mv²/R, where m is the mass of the car, v its speed and R the radius of the curve. Since the only force acting on the car that is in the direction of the center of the circle is the frictional force, we have by the Newton's Second Law:

[tex]f_s=\frac{mv^{2}}{R}[/tex]

But we know that:

[tex]f_s\leq \mu_s N[/tex]

And the normal force is given by the sum of the forces in the vertical direction:

[tex]N-mg=0 \implies N=mg[/tex]

Finally, we have:

[tex]f_s=\frac{mv^{2}}{R} \leq \mu_s mg\\\\\implies \mu_s\geq \frac{v^{2}}{gR} \\\\\mu_s\geq \frac{(6\frac{m}{s}) ^{2}}{(9.8\frac{m}{s^{2}})(13.5m) }\\\\\mu_s\geq0.27[/tex]

So, the minimum value for the coefficient of friction is 0.27.

List the number of sigma bonds and pi bonds in a double bond.

Answers

Yo sup??

a double bond has

1 Sigma bond

1 pi bond

and in total 2 bonds

Hope this helps

Final answer:

In a double bond, there is one sigma bond, which allows for free rotation, and one pi bond, which restricts rotation due to side-to-side overlap of orbitals.

Explanation:

In a double bond, there is always one sigma bond (sigma bond) and one pi bond (pi bond). The sigma bond is formed by the head-on overlap of orbitals, such as those that occur between s-s orbitals, s-p orbitals, or p-p orbitals. This type of bond allows for the free rotation of atoms around the bond axis. On the other hand, a pi bond arises from the side-to-side overlap of p-orbitals, creating electron density above and below the plane of the nuclei of the bonding atoms. This pi bond restricts the rotation of atoms around the bond axis due to the electron cloud above and below the bond plane.

In fireworks displays, light of a given wavelength indicates the presence of a particular element. What are the frequency and color of the light associated with each of the following?

Answers

Answer:

The four wavelengths of the problem are not given. Here they are:

a) [tex]Li^+,\lambda=671 nm[/tex]

b) [tex]Cs^+, \lambda=456 nm[/tex]

c) [tex]Ca^{2+}, \lambda=649 nm[/tex]

d) [tex]Na^+, \lambda=589 nm[/tex]

The relationship between wavelength and frequency of light wave is

[tex]f=\frac{c}{\lambda}[/tex]

where

f is the frequency

[tex]c=3.0\cdot 10^8 m/s[/tex] is the speed of light

[tex]\lambda[/tex] is the wavelength

For case a), [tex]\lambda=671 nm = 6.71\cdot 10^{-7}m[/tex] (corresponds to red color), so its frequency is

[tex]f=\frac{3\cdot 10^8}{6.71\cdot 10^{-7}}=4.47\cdot 10^{14}Hz[/tex]

For case b), [tex]\lambda=456 nm = 4.56\cdot 10^{-7}m[/tex] (corresponds to blue color), so its frequency is

[tex]f=\frac{3\cdot 10^8}{4.56\cdot 10^{-7}}=6.58\cdot 10^{14}Hz[/tex]

For case c), [tex]\lambda=649 nm = 6.49\cdot 10^{-7}m[/tex] (corresponds to red color), so its frequency is

[tex]f=\frac{3\cdot 10^8}{6.49\cdot 10^{-7}}=4.62\cdot 10^{14}Hz[/tex]

For case d), [tex]\lambda=589 nm = 5.89\cdot 10^{-7}m[/tex] (corresponds to yellow color), so its frequency is

[tex]f=\frac{3\cdot 10^8}{5.89\cdot 10^{-7}}=5.09\cdot 10^{14}Hz[/tex]

Final answer:

In fireworks displays, the color of light is determined by its wavelength and frequency. The color red has the longest wavelength and the lowest frequency, while the color violet has the shortest wavelength and the highest frequency. Therefore, the order of the given colors from shortest wavelength to longest wavelength is blue, yellow, and red. Similarly, the order of the given colors from lowest frequency to highest frequency is also blue, yellow, and red.

Explanation:

The colors of light in a fireworks display indicate the presence of different elements. The wavelength and frequency of the light determines its color. Within the visible range, our eyes perceive radiation of different wavelengths as light of different colors. The color red corresponds to the longest wavelength and the lowest frequency, while the color violet corresponds to the shortest wavelength and the highest frequency. Therefore, the order of the given colors from shortest wavelength to longest wavelength would be blue, yellow, and red. Similarly, the order of the given colors from lowest frequency to highest frequency would also be blue, yellow, and red.

Learn more about Colors of light in fireworks displays here:

https://brainly.com/question/30183969

#SPJ3

If an object in space is giving off a frequency of 10^13 wavelength of 10^-6 what will scientist be looking for?

Answers

Answer:

The scientist will be looking for the velocity of the wave in air which is equivalent to 10^7m/s

Explanation:

If an object in space is giving off a frequency of 10^13Hz and wavelength of 10^-6m then the scientist will be looking for the velocity of the object in air.

The relationship between the frequency (f) of a wave, the wavelength (¶) and the velocity of the wave in air(v) is expressed as;

v = f¶

Given f = 10^13Hz and ¶ = 10^-6m,

v = 10¹³ × 10^-6

v = 10^7 m/s

The value of the velocity of the object in space that the scientist will be looking for is 10^7m/s

Three resistors connected in series have potential differences across them labeled /\V1 , /\V2 , and /\V3. What expresses the potential difference taken over the three resistors together

Answers

Answer:

[tex]\Delta V=\Delta V_1+\Delta V_2+\Delta V_3[/tex]

Explanation:

We are given that three resistors R1, R2 and R3 are connected in series.

Let

Potential difference across [tex]R_1=\Delta V_1[/tex]

Potential difference across [tex]R_2=\Delta V_2[/tex]

Potential difference across [tex]R_3=\Delta V_3[/tex]

We know that in series  combination

Potential difference ,[tex]V=V_1+V_2+V_3[/tex]

Using the formula

[tex]\Delta V=\Delta V_1+\Delta V_2+\Delta V_3[/tex]

Hence, this is required expression for potential difference.

A boy and a girl are riding a merry- go-round which is turning ata constant rate. The boy is near the outer edge, while a girl is closer to the center. Who has the greater tangential acceleration? 1. the boy 2. the girl 3. both have zero tangential 25% try penalty acceleration Hints: 0,0 4. both have the same non-zero tangential acceleration

Answers

Answer:

The correct answer is

1. the boy 2.

Explanation:

Since Tangential acceleration = v²/r  then the

v = ωr and v² =  ω²r² then the tangential acceleration = ω²r²/r = ω²r

This shows that  since ω is the same for both of them, the boy with greater r has the most acceleration.

The tangential acceleration [tex]a_t =[/tex] α·r

Suppose that in a lightning flash the potential difference between a cloud and the ground is 1.0*109 V and the quantity of charge of the charge transferred I s30 C? (a )What is the charge in energy of that transferred charge? (b) If all the energy released could be used to accelerate a 1000kg car from rest. What would be its final speed?

Answers

Answer:

a) [tex]U_{e} = 3 \times 10^{10}\,J[/tex], b) [tex]v \approx 7745.967\,\frac{m}{s}[/tex]

Explanation:

a) The potential energy is:

[tex]U_{e} = Q \cdot \Delta V[/tex]

[tex]U_{e} = (30\,C)\cdot (1.0\times 10^{9}\,V)[/tex]

[tex]U_{e} = 3 \times 10^{10}\,J[/tex]

b) Maximum final speed:

[tex]U_{e} = \frac{1}{2}\cdot m \cdot v^{2}\\v = \sqrt{\frac{2\cdot U_{e}}{m} }[/tex]

The final speed is:

[tex]v=\sqrt{\frac{2\cdot (3 \times 10^{10}\,J)}{1000\,kg} }[/tex]

[tex]v \approx 7745.967\,\frac{m}{s}[/tex]

The change in the energy transferred or potential energy is 3 x 10¹⁰ J.

The final speed of the charge released is 7745.97 m/s.

Change in energy transferred

The change in the energy transferred or potential energy is calculated as follows;

U = QV

U = 30 x 1 x 10⁹

U = 3 x 10¹⁰ J

Speed of the charge released

The speed of the charge released is calculated by applying law of conservation of energy.

[tex]K.E = U\\\\\frac{1}{2} mv^2 = U\\\\v= \sqrt{\frac{2U}{m} } \\\\v = \sqrt{\frac{2\times 3\times 10^{10} }{1000} }\\\\v = 7745.97 \ m/s[/tex]

Learn more about potential energy here: https://brainly.com/question/1242059

The number density of an ideal gas at stp is called the loschmidt number. True or False

Answers

Answer:

True

Explanation:

The number density of an ideal gas at stp is called the loschmidt number, being named after the Austrian physicist Johann Josef Loschmidt who first estimated this quantity in 1865

n = [tex]\frac{P}{K_{B}T }[/tex]

where [tex]K_{B}[/tex] is the Boltzman constant

T is the temperature

P is the pressure

Loschmidt Number is the number of molecules of gas present in one cubic centimetre of it at STP conditions.Loschmidt constant is also used to define the amagat, which is a practical unit of number density for gases and other substances:

   1 amagat = n = 2.6867811×1025 m−3,

Answer:

True.

Explanation:

The Loschmidt number, n is defined as the number of particles (atoms or molecules) of an ideal gas in a given volume (the number density).

It is also the number of molecules in one cubic centimeter of an ideal gas at standard temperature and pressure which is equal to 2.687 × 10^19.

We will use a video to analyze the dependence of the magnitude of the Coulomb force between two electrically-charged spheres on the distance between the centers of the spheres. The electrical interaction is one of the fundamental forces of nature and acts between any pair of charged objects, therefore it is important to understand how precisely the separation distance affects the corresponding force between them. Specifically, we will:______. A. Study conceptually the nature of electric charge and force.B. Take measurements of the force exerted between two electrically-charged spheres as the distance between them is varied.C. Determine graphically the relationship between electric force and distance.

Answers

Answer: A. Study conceptually the nature of the electric charge and force

Explanation: Since the electrons are the mobile charge carriers, they will therefore be the particles that are transferred. For this case, since the electrophorus is positively- charged, the electrons from the sphere will be attracted to the electrophorus and thus will be transfer there.

A power plant produces 1000 MW to supply a city 40 km away. Current flows from the power plant on a single wire of resistance 0.050Ω/km, through the city, and returns via the ground, assumed to have negligible resistance. At the power plant the voltage between the wire and ground is 115 kV.What is the current in the wire?What fraction of the power is lost in transmission?

Answers

Answer:

Current = 8696 A

Fraction of power lost = [tex]\dfrac{80}{529}[/tex] = 0.151

Explanation:

Electric power is given by

[tex]P=IV[/tex]

where I is the current and V is the voltage.

[tex]I=\dfrac{P}{V}[/tex]

Using values from the question,

[tex]I=\dfrac{1000\times10^6 \text{ W}}{115\times10^3\text{ V}} = 8696 \text{ A}[/tex]

The power loss is given by

[tex]P_\text{loss} = I^2R[/tex]

where R is the resistance of the wire. From the question, the wire has a resistance of [tex]0.050\Omega[/tex] per km. Since resistance is proportional to length, the resistance of the wire is

[tex]R = 0.050\times40 = 2\Omega[/tex]

Hence,

[tex]P_\text{loss} = \left(\dfrac{200000}{23}\right)^2\times2[/tex]

The fraction lost = [tex]\dfrac{P_\text{loss}}{P}=\left(\dfrac{200000}{23}\right)^2\times2\div (1000\times10^6)=\dfrac{80}{529}=0.151[/tex]

Laboratory measurements show hydrogen produces a spectral line at a wavelength of 486.1 nanometers (nm). A particular star's spectrum shows the same hydrogen line at a wavelength of 486.0 nm. What can we conclude

Answers

Answer: we can conclude that the wavelength is decreasing. This means that the star is moving towards the observer on earth.

Explanation:

Since light has a constant speed of 3 x 10^8m/s, and this speed is a product of its wavelength and its frequency c = f¥

Where f is the frequency and ¥ is the wavelnght.

For a decreasing wavelength, it is seen that the frequency is increasing.

According to the doppler's effect, a moving body that is a source of a wave of frequency f, moving relatively towards an observer, the frequency will increase as they move closer to a frequency f' which is greater than f. This is known as the doppler shift of light wave.

Suppose that you are holding a pencil balanced on its point. If you release the pencil and it begins to fall, what will be the angular acceleration when it has an angle of 10.0 degrees from the vertical

Answers

The angular acceleration of the pencil is 17 rad/sec^2

Explanation:

When the object is balanced at its center of mass then it is said to be motionless because the net force acts through the center of mass. If we shift the location of the net force then which results in the rotation of the object about the center of mass. The angular acceleration possessed by the object is proportional to the torque generated by the net force about the center of mass.

τ [tex]= I \alpha[/tex]

[tex]I[/tex] is the moment of inertia of a body

α  is the angular acceleration

Length of the pencil   L  =  15  c m  =  0.15  m

Mass of the pencil  = 10 g = 10 [tex]\times 10^{-3}[/tex] kg

Let  α be the angular acceleration of pencil

θ  be the inclination pencil from vertical

θ  =  10 °

Assume the pencil as thin rod and moment of inertia of the thin rod with the axis of rotation at one end is

[tex]I = \frac{mL^{2} }{3}[/tex]

When the pencil is balanced then the net torque acting on the pencil is zero and when we release the pencil and begin to fall then net torque acts on the pencil due to the weight of the pencil.

τ [tex]= F \times d[/tex]

τ [tex]= mgsin\theta \times \frac{L}{2}[/tex]

τ [tex]= 10 \times 10^{-3} \times 9.81 \times sin10 \times \frac{0.15}{2}[/tex]

τ [tex]= 1.277 \times 10^{-3} Nm[/tex]

We know that relation between torque and angular acceleration

τ [tex]= I\alpha[/tex]

[tex]\alpha = \frac{\tau}{I}[/tex]

[tex]\alpha = \frac{\tau}{\frac{mL^{2} }{3} }[/tex]

[tex]\alpha = \frac{1.277 \times 10^{-3} \times 3 }{10 \times 10^{-3} \times 0.15^{2} }[/tex]

[tex]\alpha = 17.02[/tex]

[tex]\alpha \approx 17 rad/sec^{2}[/tex]

The angular acceleration of the pencil is 17 rad/sec^2

Low-frequency vertical oscillations are one possible cause of motion sickness, with 0.30 Hz having the strongest effect. Your boat is bobbing in place at just the right frequency to cause you the maximum discomfort. The water wave that is bobbing the boat has crests that are 30 m apart. What will be the boat’s vertical oscillation frequency if you drive the boat at 5.0 m/s in the direction of the oncoming waves?.

Answers

Answer:

0.467 Hz

Explanation:

Wave properties are related thus

v = fλ

v = velocity of the wave = ?

f = 0.30 Hz

λ = wavelength = 30 m

v = 0.3×30 = 9.0 m/s

But if the boat is now moving at 5.0 m/s in the direction of the oncoming wave,

The speed of the wave relative to the boat = 9 - (-5) = 14.0 m/s

f = (v/λ) = (14/30) = 0.467 Hz

Hope this helps!

Answer:

The answer to the question is;

The boat’s vertical oscillation frequency if you drive the boat at 5.0 m/s in the direction of the oncoming waves moving at 9 m/s in the opposite direction is  0.467 Hz.

Explanation:

We note the frequency of the water wave = 0.3 Hz

Distance between crests or wavelength of water wave  = 30 m

Speed v of a wave is given by Frequency f × Wavelength λ

Therefore the speed of the wave = f·λ = 0.3 × 30 = 9 m/s

(b)  Distance between crests = 30 m = wavelength λ

     Boat speed                       = 5.0 m/s v

Speed of the wave with respect to the boat = 5 + 9 = 14 m/s

From the wave speed relationship, we have

v = fλ    f = [tex]\frac{v}{\lambda}[/tex] =[tex]\frac{14}{30} = \frac{7}{15}[/tex] = 0.467 Hz which is high.

Two 4.0-Ω resistors are connected in parallel, and this combination is connected in series with 3.0 Ω. What is the effective resistance of this combination?

Answers

Answer

given,

R₁= 4 Ω

R₂ = 3 Ω

When two resistors are connected in series

R = R₁ + R₂

R = 4 + 3

R = 7 Ω

When two resistors are connected in series then their effective resistance is equal to 7 Ω .

When two resistors are connected in parallel.

[tex]\dfrac{1}{R}=\dfrac{1}{R_1}+\dfrac{1}{R_2}[/tex]

[tex]\dfrac{1}{R}=\dfrac{1}{3}+\dfrac{1}{4}[/tex]

[tex]\dfrac{1}{R}=\dfrac{7}{12}[/tex]

[tex]R = 1.714 \Omega[/tex]

Hence, the equivanet resistance in parallel is equal to [tex]R = 1.714 \Omega[/tex]

Answer:

5.0 Ω

Explanation:

[tex]R_{1}[/tex] = 4.0 Ω,     [tex]R_{2}[/tex] = 4.0 Ω,     [tex]R_{3}[/tex] = 3.0 Ω

[tex]\frac{1}{R_{parallel}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \\\frac{1}{R_{parallel}} = \frac{1}{4.0} + \frac{1}{4.0}\\\frac{1}{R_{parallel}} = \frac{2}{4.0}\\\frac{1}{R_{parallel}} = 0.5\\R_{parallel} = (0.5)^{-1} \\R_{parallel} = 2.0[/tex]

[tex]R_{T} = R_{parallel} + R_{3} \\R_{T} = 2.0 + 3.0\\R_{T} = 5.0[/tex]

Therefore, the effective resistance of this combination is 5.0 Ω.

If we instead connect this headlight and starter in series with the 12.0 V battery, how much total power in W would the headlight and starter consume? (You may neglect any other resistance in the circuit and any change in resistance in the two devices.)

Answers

Answer:

If [tex]\large{P_{H}}[/tex] and [tex]\large{P_{S}}[/tex] be the power consumed by the headlight and starter respectively, then the total power consumed will be [tex]\large{P = \dfrac{P_{H}P_{S}}{P_{H} + P_{S}}}[/tex]

Explanation:

We know that electric power ([tex]P[/tex]) is given by

[tex]\large{P = \dfrac{V^{2}}{R}}[/tex]

where '[tex]V[/tex]' is the applied voltage and '[tex]R[/tex]' is the resistance.

If we consider that '[tex]\large{P_{H}}[/tex]' and '[tex]\large{P_{S}}[/tex]' be the power consumed by the headlight and starter respectively, then the resistance ([tex]\large{R_{H}}[/tex]) of the headlight and the resistance ([tex]\large{R_{S}}[/tex]) of the starter can be written as

[tex]&&\large{R_{H} = \dfrac{V^{2}}{P_{H}} = \dfrac{12^{2}}{P_{H}}}\\&and,& \large{R_{S} = \dfrac{V^{2}}{P_{S}} = \dfrac{12^{2}}{P_{S}}}[/tex]

If the headlight and the starter in connected in series, then equivalent resistance ([tex]\large{R_{eq}}[/tex]) will be

[tex]\large{R_{eq} = R_{H} + R_{S} = 12^{2}(\dfrac{1}{P_{H} + P_{S}})}[/tex]

So the total power ([tex]P[/tex]) consumed will be given by

[tex]\large{P = \dfrac{12^{2}}{R_{eq}} = \dfrac{1}{(\dfrac{1}{P_{H}} + \dfrac{1}{P_{S}})} = \dfrac{P_{H}P_{S}}{P_{H} + P_{S}}}[/tex]

When the 30.0-W headlight and the 2.40-kW starter are connected in series to a 12.0-V battery, they consume a total power of 2430 W.

The total power consumed by the headlight and starter when connected in series to a 12.0-V battery can be calculated by adding the individual powers.

Power of headlight = 30.0 WPower of starter = 2.40 kW = 2400 WTotal power = 30.0 W + 2400 W = 2430 W

Three identical balls are thrown from the top of a building, all with the same initial speed but at different angles. Neglecting air resistance, rank the speeds of the balls at the instant each hits the ground.

Answers

Answer:

The speed of each ball would be same at the instant each hits the ground.

Explanation:

From the principle of conservation of energy we know that

PE₁ + KE₁ = PE₂ + PE₂

where PE = mgh

The initial and final potential energies would be same for each ball since all the balls are thrown from the same height.

Now what about KE ?

We know that each ball is thrown with the same initial speed so their initial kinetic energies would be same and in turn their final kinetic energies must be same in order to satisfy th e conservation of energy principle. Therefore, we can conclude that the speed of each ball would be same at the instant they hit the ground. The initial angle of ball doesn't have any impact on the speed of the ball.

A physics student is driving home after class. The car is traveling at 14.7 m/s when it approaches an intersection. The student estimates that he is 20.0 m from the entrance to the intersection when the traffic light changes from green to yellow and the intersection is 10.0 m wide. The light will change from yellow to red in 3.00 s. The maximum safe deceleration of the car is 4.00 m/s2 while the maximum acceleration of the car is 2.00 m/s2. Should the physics student decelerate and stop or accelerate and travel through the intersection?

Answers

The student should accelerate and travel through the intersection.

Explanation:

As per the given problem, the velocity with which the car of the student is moving is 14.7 m/s and he is 20 m away from intersection. Also the width of intersection is 10 m. It is also stated that traffic lights will change from yellow to red in 3 s. So totally , the student has to cover a distance of 30 m in 3 s to avoid getting stopped in intersection.

The velocity or speed required by the car to cover 30 m in 3 s is 30/3 = 15 m/s.

And the car is moving with initial velocity of 14.7 m/s. The student has two options either to decelerate at 4m/s² rate or to accelerate at the rate of 2 m/s².

So the velocity or speed of the car in 3 s with acceleration of 2 m/s² will be

Velocity = Acceleration × Time = 2 × 3 =6 m/s.

Thus on accelerating the car by 2 m/s² in 3 s, it will have the speed of 6 m/s and it can cover a distance of 6 × 3 = 18 m.

And the time taken by the car to reach from 20 m to intersection point with speed of 14.7 m/s is 20/14.7 = 1.36 s.

So, the car will take 1.36 s to reach the entrance of intersection with the speed of 14.7 m/s. But if it gets accelerated to 2 m/s², then it will have an increase in speed which will make the car to cover the complete intersection without stopping. So the student should accelerate the car.

The specific heat of water is 4.184 J g—1 K—1. A piece of iron (Fe) weighing 40 g is heated to 80EC and dropped into 100 g of water at 25EC. (Specific heat of Fe is 0.446 J g—1 K—1) What is the temperature when thermal equilibrium has been reached

Answers

Explanation:

Below is an attachment containing the solution.

A heavy steel ball is hung from a cord to make a pendulum. The ball is pulled to the side so that the cord makes a 4 ∘ angle with the vertical. Holding the ball in place takes a force of 20 N . If the ball is pulled farther to the side so that the cord makes a 8 ∘ angle, what force is required to hold the ball? Express your answer to two significant figures and include the

Answers

Answer:40.19 N

Explanation:

Given

Force needed to hold the ball at [tex]\theta =4^{\circ}\ is\ F_1=20\ N[/tex]

From FBD we can write

[tex]F\cos \theta =mg\sin \theta [/tex]

[tex]\tan \theta =\dfrac{F}{mg}[/tex]

For [tex]\theta =4^{\circ}[/tex]

[tex]F_1=20\ N[/tex]

[tex]\tan (4)=\dfrac{20}{mg}----1[/tex]

for [tex]\theta =8^{\circ}[/tex]

Force is [tex]F_2[/tex]

[tex]\tan (8)=\dfrac{F_2}{mg}---2[/tex]

Divide 1 and 2 we get

[tex]\dfrac{\tan (4)}{\tan (8)}=\dfrac{F_1}{F_2}[/tex]

[tex]F_2=20\times \dfrac{\tan 8}{\tan 4}[/tex]

[tex]F_2=20\times 2.009[/tex]

[tex]F_2=40.19\ N[/tex]

   

A large steel water storage tank with a diameter of 20 m is filled with water and is open to the atmosphere (1 atm = 101 kPa) at the top of the tank. If a small hole rusts through the side of the tank, 5.0 m below the surface of the water and 20.0 m above the ground, assuming wind resistance and friction between the water and steel are not significant factors, how far from the base of the tank will the water hit the ground?

Answers

Answer:

Explanation:

Their explanation is: We first need to determine the velocity of the water that comes out of the hole, using Bernoulli's equation.

P1+ρgy1 + ½ρv1² = P2+ρgy2+½ρv2²

The atmospheric pressure exerted on the surface of the water at the top of the tank and at the hole are essentially the same.

Then, P1-P2 = 0

. Additionally, since the opening at the top of the tank is so large compared to the hole on the side, the velocity of water at the top of the tank will be essentially zero. We can also set y1 as zero, simplifying the equation to:

0 = ρgy2 + ½ρv2²

Divide through by density

-gy2 = ½ v2²

y2= 5m and g =-9.81

-•-9.81×5 = ½v2²

9.81×5×2 = v2²

98.1 = v2²

v2 = √98.1

v2 = 9.9m/s

Using equation of motion to know the time of fall

We assume that the initial vertical velocity of the water is zero and the displacement of the water is -20 m

y-yo = ut + ½gt²

0-20 = 0•t -½ ×9.81 t²

-20 = -4.905t²

t² = -20÷-4.905

t² = 4.07747

t =√4.07747

t = 2.02secs

Using range formula

Then, R=Voxt

R= 9.9 × 2.02

R =19.99m

R ≈20m

Answer:

The distance from the base of the tank to the ground is 20 m

Explanation:

From Bernoulli equation where P is pressure, V is velocity, ρ is density, g is acceleration due to gravity and y is the height

P₁ + 1/2ρV₁² + ρgy₁ = P₂ + 1/2ρV₂² + ρgy₂

The pressure on the surface of the water on the top of the tank and that in the hole is the same (P₁ = P₂). Since the opening at the top of the tank is large compared to the hole at the side of the tank, the velocity at the top of the tank is 0 and y₁ is 0

Therefore: 0 =  1/2ρV₂² + ρgy₂

1/2ρV₂² = -ρgy₂      g = -10 m/s²

-10(5) = -1/2V₂²

V₂ = 10 m/s

The time it would take the water to fall on the ground is given as:

d = ut + 1/2gt²

u is the initial velocity = 0 , g = -10 m/s² and the displacement (d) = - 20 m

Therefore: -20 = 1/2(10)t²

t = 2 sec

The horizontal displacement (d) can be gotten from

d = V₂t

d = 10(2) = 20 m

The distance from the base of the tank to the ground is 20 m

in a phenomenon known as ________, many incoming signals produce progressively larger graded potentials in a cell−larger than any single impulse would produce alone.

Answers

Answer:

neurotransmitters

Explanation:

Neurotransmitters are endogenous chemicals that enable neurotransmission. It is a type of chemical messenger which transmits signals across a chemical synapse, such as a neuromuscular junction, from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell.

Other Questions
A 0.10 M imidazole solution has a pH of 6.6. To the nearest hundredth of a unit, what fraction of the molecules are in the neutral (imidazole) form? (The pKa of the imidazolium ion is 6.0.) A hollow aluminum cylinder 19.0 cm deep has an internal capacity of 2.000 L at 23.0C. It is completely filled with turpentine at 23.0C. The turpentine and the aluminum cylinder are then slowly warmed together to 91.0C. (The average linear expansion coefficient for aluminum is 2.4 x10^-5/C, and the average volume expansion coefficient for turpentine is 9.0 x10^-4/C.)(a) How much turpentine overflows?in cm^3?(b) What is the volume of turpentine remaining in the cylinder at 91.0C? (Give you answer to four significant figures.)in cm^3?(c) If the combination with this amount of turpentine is then cooled back to 23.0C, how far below the cylinder's rim does the turpentine's surface recede?in cm? Hans was locked in a large closet for the first four years of his life. A caretaker would bring him food and water and an occasional clean blanket. When Hans was rescued, how would his brain compare to that of a child raised in normal circumstances An architect build a scale model of a sports stadium that was 12 inches. The actual height of the building was 180 feet.Which scale did the architect use to create the scale of the sports stadium? Patrick received a $98 gift card for a coffee shop. Patrick used it to buy coffee that cost $1.64 per pound. Patrick has $81.68 left on the gift card how many pounds of coffee did Patrick by? Round to the nearest hundredth. Coach Martinez will order 2 pairs of shorts and 3 shirts for each player. There are 12 members on the team. If each pair of shorts costs x dollars and each shirt costs y dollars, which expression represents the total cost of his order? 2. A ride in a taxicab costs $2.50 for the first mile and $1.50for each additional mile or part of a mile.Write an equationand make a graph that represents the total cost. PLLSS ANSWER QUICKLY I WILL GIVE BRAINLIEST!Question 4(Multiple Choice Worth 5 points) (05.02 LC) Which of the following possibilities will form a triangle? Side = 15 cm, side = 7 cm, side = 7 cm Side = 15 cm, side = 7 cm, side = 9 cm Side = 14 cm, side = 6 cm, side = 7 cm Side = 14 cm, side = 6 cm, side = 8 cm According to the United Nations, the majority of changes made worldwide between 1992 and 2009 in the laws governing foreign direct investment have created a more favorable environment for FDI. A. True B. False Dollar General uses a cost leadership strategy. The Dollar General slogan is "Save time. Save money. Every day!" Dollar General will be more effective if it has a mechanistic structure. Which of the following reasons explain this? Check all that apply.-Narrow spans of management ensure that employees operate efficiently.-Centralized decision making allows the organization to place tighter controls on the way work is done and, in the process, achieve economies of scale what might a conversation between a roman child from the upper class and a roman child from a lower class look like.the text message conversation must: have a total of 10 text messages each at least two complete sentences. describe the differences in the daily lives of upper class and lower class citizens. describe the opportunities for children in general in Rome. compare how life differed from female and male children in Rome. explain the effect of social status on one's future in the Roman Republic. Write a real-worldsolved by first adding 24 and 36 and then dividing by 1/4. Find the solution to your problem and explain your answer. 3.30 Survey response rate. Pew Research reported in 2012 that the typical response rate to their surveys is only 9%. If for a particular survey 15,000 households are contacted, what is the probability that at least 1,500 will agree to respond Crane Corp. has a gross profit margin of 30.00 percent, sales of $36,000,000, and inventory of $15,000,000. What is its inventory turnover ratio? (Round answer to 2 decimal places, e.g. 15.25.) A one-dimensional plane wall of thickness 2L=100mm experiences uniform thermal energy generation of q dot=1000 W/m^3 and is convectively cooled at x=+-50mm by an ambient fluid characterized by T infinity=20degreesC. If the steady-state temperature distribution within the wall is T(x)=a(L^2-x^2)+b where a=10 degrees C/m^2 and b=30 degrees C, what is the thermal conductivity of the wall? What is the value of the convection heat transfer coefficient, h? Sharing a workbook enables multiple users to access the workbook. What are the benefits of using a shared workbook? Assume that the Poisson distribution applies and that the mean number of hurricanes in a certain area is 6.9 per year. a. Find the probability that, in a year, there will be 4 hurricanes. b. In a 45-year period, how many years are expected to have 4 hurricanes? c. How does the result from part (b) compare to a recent period of 45 years in which 4 years had 4 hurricanes? Does the Poisson distribution work well here? a. The probability is nothing. (Round to three decimal places as needed.) The sum of two numbers is 11 and their product is 18. Find the numbers. Bob has to pack 192 boxes. This morning, he packed 84 boxes in 3.5 hours. If Bob continues at the same rate, how long will it take him to pack the remaining boxes? A child has the same number of chromosomes as each of his parents. This is because the gametes that combined when that child was conceived each contained ________ chromosomes. Steam Workshop Downloader