A balloon is 200 ft. off the ground and rising vertically at the constant rate of 15 ft/sec. An automobile passes beneath it traveling along a straight road at the constant rate of 45 mph or 66 ft/sec. How fast is the distance between them changing 1 sec. later?

Answers

Answer 1

After 1 second has passed, the balloon will be 215 ft above the ground, and the automobile will be 66 ft away from its initial position directly below the balloon, forming a right triangle whose hypotenuse has length [tex]\sqrt{215^2+66^2}=\sqrt{50,581}[/tex] ft.

The distance between the balloon and automobile [tex]d[/tex] is related to the height of the balloon [tex]b[/tex] and the distance [tex]a[/tex] the automobile has moved away from its starting position by the Pythagorean formula,

[tex]d^2=a^2+b^2[/tex]

Differentiate both sides with respect to time [tex]t[/tex]:

[tex]2d\dfrac{\mathrm dd}{\mathrm dt}=2a\dfrac{\mathrm da}{\mathrm dt}+2b\dfrac{\mathrm db}{\mathrm dt}[/tex]

Plug in everything you know and solve for the rate you want:

[tex]2(\sqrt{50,581}\,\mathrm{ft})\dfrac{\mathrm dd}{\mathrm dt}=2(66\,\mathrm{ft})\left(66\dfrac{\rm ft}{\rm s}\right)+2(215\,\mathrm{ft})\left(15\dfrac{\rm ft}{\rm s}\right)[/tex]

[tex]\implies\dfrac{\mathrm dd}{\mathrm dt}\approx33.71\dfrac{\rm ft}{\rm s}[/tex]

Answer 2
Final answer:

To find the rate at which the distance between the balloon and the car changes after 1 second, we can use the Pythagorean theorem and differentiate the equation with respect to time.

Explanation:

To find the rate at which the distance between the balloon and the car changes, we can use the Pythagorean theorem. Let's call the distance between them D. We have D^2 = (200 + 15t)^2 + (66t)^2, where t is the time in seconds. To find how fast D is changing after 1 second, we can differentiate the equation with respect to t and substitute t = 1. Finally, we can solve for the rate at which D is changing.

Learn more about Rate of change here:

https://brainly.com/question/29181502

#SPJ2


Related Questions

A presidential candidate's aide estimates that, among all college students, the proportion who intend to vote in the upcoming election is at least . If out of a random sample of college students expressed an intent to vote, can we reject the aide's estimate at the level of significance?

Answers

Answer:

[tex]z=\frac{0.529 -0.6}{\sqrt{\frac{0.6(1-0.6)}{240}}}=-2.24[/tex]  

[tex]p_v =P(z<-2.24)=0.0125[/tex]  

If we compare  the p value and the significance level given [tex]\alpha=0.01[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 1% of significance the proportion college students expressed an intent to vote is not higher than 0.6

Step-by-step explanation:

Assuming the following question: A presidential candidate's aide estimates that, among all college students, the proportion p who intend to vote in the upcoming election is at least 60% . If 127 out of a random sample of 240 college students expressed an intent to vote, can we reject the aide's estimate at the 0.1 level of significance?

Data given and notation

n=240 represent the random sample taken

X=127 represent the college students expressed an intent to vote

[tex]\hat p=\frac{127}{240}=0.529[/tex] estimated proportion of college students expressed an intent to vote

[tex]p_o=0.6[/tex] is the value that we want to test

[tex]\alpha=0.01[/tex] represent the significance level

Confidence=99% or 0.99

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that at least 60% of students are intented to vote .:  

Null hypothesis:[tex]p \geq 0.6[/tex]  

Alternative hypothesis:[tex]p < 0.6[/tex]  

When we conduct a proportion test we need to use the z statistic, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.529 -0.6}{\sqrt{\frac{0.6(1-0.6)}{240}}}=-2.24[/tex]  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level provided [tex]\alpha=0.01[/tex]. The next step would be calculate the p value for this test.  

Since is a left tailed test the p value would be:  

[tex]p_v =P(z<-2.24)=0.0125[/tex]  

If we compare  the p value and the significance level given [tex]\alpha=0.01[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 1% of significance the proportion college students expressed an intent to vote is not higher than 0.6

Given an acceleration​ vector, initial velocity left angle u 0 comma v 0 right angle​, and initial position left angle x 0 comma y 0 right angle​, find the velocity and position vectors for tgreater than or equals0. a​(t)equalsleft angle 0 comma 12 right angle​, left angle u 0 comma v 0 right angleequalsleft angle 0 comma 6 right angle​, left angle x 0 comma y 0 right angleequalsleft angle 6 comma negative 1 right angle

Answers

Answer:

For the velocity vector, we have

V(t) = dR

dt = (1, 2t, 3t

2

).

For the acceleration vector, we get

A =

dV

dt = (0, 2, 6t).

The velocity vector at t = 1 is

V(1) = (1, 2, 3).

The speed at t = 1 is

kV(1)k =

p

1

2 + 22 + 32 =

14.

The Intelligence Quotient (IQ) test scores for adults are normally distributed with a mean of 100 and a population standard deviation of 15. What is the probability we could select a sample of 50 adults and find that the mean of this sample is between 98 and 103? Show your solution.

A.) 0.3264

B.) 0.9428

C.) 0.4702

D.) 0.7471

E.) 0.6531

Answers

Answer:

D.) 0.7471

Step-by-step explanation:

Mean=μ=100

Standard deviation=σ=15

We know that IQ score are normally distributed with mean 100 and standard deviation 15.

n=50

According to central limit theorem, if the population is normally distributed with mean μ and standard deviation σ then the distribution of sample taken from this population will be normally distributed with mean μxbar and standard deviation σxbar=σ/√n.

Mean of sampling distribution=μxbar=μ=100.

Standard deviation of sampling distribution=σxbar=σ/√n=15/√50=2.1213.

We are interested in finding the probability of sample mean between 98 and 103.

P(98<xbar<103)=?

Z-score associated with 98

Z-score=(xbar-μxbar)/σxbar

Z-score=(98-100)/2.1213

Z-score=-2/2.1213

Z-score=-0.94

Z-score associated with 103

Z-score=(xbar-μxbar)/σxbar

Z-score=(103-100)/2.1213

Z-score=3/2.1213

Z-score=1.41

P(98<xbar<103)=P(-0.94<Z<1.41)

P(98<xbar<103)=P(-0.94<Z<0)+P(0<Z<1.41)

P(98<xbar<103)=0.3264+0.4207

P(98<xbar<103)=0.7471

Thus, the probability that the sample mean is between 98 and 103 is 0.7471.

Find the perimeter and area of the regular polygon. Round your answer to the nearest tenth.

Answers

Answer:

Step-by-step explanation:

The given polygon is a square. To determine the apotherm which is the perpendicular line from the midpoint of the square, we would apply Pythagoras theorem which is expressed as

Hypotenuse² = opposite side² + adjacent side²

Let a represent the apotherm

Apotherm = length of each side of the square.

Therefore

8² = a² + a² = 2a²

64 = 2a²

a² = 64/2 = 32

a = √32

The formula for determining the area of a polygon is

Area of polygon is

area = a^2 × n ×tan 180/n

Where n is the number of sides

(n = 4)

Area = √32² × 4 × tan(180/4)

Area = 128 × 1

Area = 128

The formula for determining the perimeter of a regular polygon is

P = 2 × area/apotherm

Perimeter = 2 × 128/√32

Perimeter = 45.3

Once a customer fills the car with gas at one station, that customer cannot then go fill the same car with gas at another station right away. Are the outcomes E1, E2, E3, and E4 mutually exclusive? Explain.

Answers

Answer:

yes :- P ( Ei ∩ Ej ) = 0

Step-by-step explanation:

These are mutually exclusive events

that is, a customer can only go to a gas station to fill his car with gas par time

P(E1) = 1/4

P(E2) = 1/4

P(E3) = 1/4

P(E4) = 1/4

summation of the four probabilities give 1

Final answer:

The outcomes E1, E2, E3, and E4 are mutually exclusive due to the physical limitation of the car's gas tank being already full, which prevents multiple fill-ups in immediate succession.

Explanation:

The concept of mutually exclusive outcomes in the context of choosing a gas station to fill up a car is referring to the idea that a customer cannot fill their car with gas at one station and then immediately go and fill it at another station. This is because once the car's tank is full, there is no capacity to add more fuel until it has been used.

Therefore, the outcomes E1, E2, E3, and E4, if defined as filling up at station 1, station 2, station 3, and station 4 respectively, are indeed mutually exclusive. When a customer chooses one station, the other stations are no longer an option for fueling during that particular instance, as the car's tank can only be filled once until some gas is used.

In economics, understanding market dynamics like price elasticity and strategies employed by gas stations in an oligopoly to maintain profits can influence consumer behavior and competition. These concepts help in analyzing why a customer might not be able to take advantage of another gas station's prices immediately after filling their tank.

On a test with a population mean of 75 and standard deviation equal to 16, if the scores are normally distributed, what percentage of scores fall between 70 and 80?

Answers

Answer:

Percentage of scores that fall between 70 and 80 = 24.34%

Step-by-step explanation:

We are given a test with a population mean of 75 and standard deviation equal to 16.

Let X = Percentage of scores

Since, X ~ N([tex]\mu,\sigma^{2}[/tex])

The z probability is given by;

           Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)    where, [tex]\mu[/tex] = 75  and  [tex]\sigma[/tex] = 16

So, P(70 < X < 80) = P(X < 80) - P(X <= 70)

P(X < 80) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{80-75}{16}[/tex] ) = P(Z < 0.31) = 0.62172

P(X <= 70) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{70-75}{16}[/tex] ) = P(Z < -0.31) = 1 - P(Z <= 0.31)

                                              = 1 - 0.62172 = 0.37828

Therefore, P(70 < X < 80) = 0.62172 - 0.37828 = 0.24344 or 24.34%

A map uses the scale 1.5 cm = 25 mi. Two cities are 190 miles apart. How far apart are the cities on the map?

Please answer quickly and I will give brainiest to whoever is correct fastest.

Answers

Use simple unitary method:

∵ 1.5 cm on map = 25 miles in reality

∴ x cm on map = 190 miles in reality

[tex]\frac{1.5}{x} = \frac{25}{190}\\ x = 11.4 cm[/tex]

Thus, the two cities are 11.4 cm apart on the map

Final answer:

To determine the map distance between two cities that are 190 miles apart using the scale 1.5 cm = 25 miles, divide the actual distance by the scale ratio (16.67 miles/cm), resulting in 11.4 cm.

Explanation:

For the map with scale 1.5 cm = 25 miles, we first calculate how many miles one centimeter represents by dividing the miles by the centimeters in the scale:

25 miles / 1.5 cm = 16.67 miles/cm

Next, we find the map distance for 190 miles by dividing the actual distance by the distance one centimeter represents:

190 miles / 16.67 miles/cm = 11.4 cm

So, the two cities are 11.4 cm apart on the map.

These data can be approximated quite well by a N(3.4, 3.1) model. Economists become alarmed when productivity decreases. According to the normal model what is the probability that the percent change in worker output per hour from the previous quarter is more than 0.6 standard deviations below the mean? .0228 Incorrect: Your answer is incorrect. Question 3. What is the probability that the percent change in worker output from the previous quarter is between -1.715 and 7.12? Use the normal model mentioned at the beginning of question 2.

Answers

Answer:

First part

[tex] P(X< 3.4-0.6*3.1) = P(X<1.54)[/tex]

And for this case we can use the z score formula given by:

[tex] z = \frac{x- \mu}{\sigma}[/tex]

And using this formula we got:

[tex] P(X<1.54) = P(Z<\frac{1.54 -3.4}{3.1})= P(Z<-0.6)[/tex]

And we can use the normal standard table or excel and we got:

[tex]P(Z<-0.6) = 0.274[/tex]

Second part

For the other part of the question we want to find the following probability:

[tex] P(-1.715 <X< 7.12)[/tex]

And using the score we got:

[tex] P(-1.715 <X< 7.12)=P(\frac{-1.715-3.4}{3.1} < Z< \frac{7.15-3.4}{3.1}) = P(-1.65< Z< 1.210)[/tex]

And we can find this probability with this difference:

[tex]P(-1.65< Z< 1.210)=P(Z<1.210)-P(z<-1.65) = 0.887-0.049=0.837[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the data of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(3.4,3.1)[/tex]  

Where [tex]\mu=3.4[/tex] and [tex]\sigma=3.1[/tex]

First part

And for this case we want this probability:

[tex] P(X< 3.4-0.6*3.1) = P(X<1.54)[/tex]

And for this case we can use the z score formula given by:

[tex] z = \frac{x- \mu}{\sigma}[/tex]

And using this formula we got:

[tex] P(X<1.54) = P(Z<\frac{1.54 -3.4}{3.1})= P(Z<-0.6)[/tex]

And we can use the normal standard table or excel and we got:

[tex]P(Z<-0.6) = 0.274[/tex]

Second part

For the other part of the question we want to find the following probability:

[tex] P(-1.715 <X< 7.12)[/tex]

And using the score we got:

[tex] P(-1.715 <X< 7.12)=P(\frac{-1.715-3.4}{3.1} < Z< \frac{7.15-3.4}{3.1}) = P(-1.65< Z< 1.210)[/tex]

And we can find this probability with this difference:

[tex]P(-1.65< Z< 1.210)=P(Z<1.210)-P(z<-1.65) = 0.887-0.049=0.837[/tex]

(b) For those values of k, verify that every member of the family of functions y = A sin(kt) + B cos(kt) is also a solution. y = A sin(kt) + B cos(kt) ⇒ y' = Ak cos(kt) − Bk sin(kt) ⇒ y'' = −Ak2 sin(kt) − Bk2 cos(kt).

Answers

Answer:

Check attachment for complete question

Step-by-step explanation:

Given that,

y=Coskt

We are looking for value of k, that satisfies 4y''=-25y

Let find y' and y''

y=Coskt

y'=-kSinkt

y''=-k²Coskt

Then, applying this 4y'"=-25y

4(-k²Coskt)=-25Coskt

-4k²Coskt=-25Coskt

Divide through by Coskt and we assume Coskt is not equal to zero

-4k²=-25

k²=-25/-4

k²=25/4

Then, k=√(25/4)

k= ± 5/2

b. Let assume we want to use this

y=ASinkt+BCoskt

Since k= ± 5/2

y=A•Sin(±5/2t)+ B •Cos(±5/2t)

y'=±5/2ACos(±5/2t)-±5/2BSin(±5/2t)

y''=-25/4ASin(±5/2t)-25/4BCos(±5/2t

Then, inserting this to our equation given to check if it a solution to y=ASinkt+BCoskt

4y''=-25y

For 4y''

4(-25/4ASin(±5/2t)-25/4BCos(±5/2t))

-25A•Sin(±5/2t)-25B•Cos(±5/2t).

Then,

-25y

-25(A•Sin(±5/2t)+ B •Cos(±5/2t))

-25A•Sin(±5/2t) - 25B •Cos(±5/2t)

Then, we notice that, 4y'' is equal to -25y, then we can say that y=Coskt is a solution to y=ASinkt+BCoskt

Final answer:

The family of functions y = A sin(kt) + B cos(kt) and their derivatives can be verified as solutions to the second-order differential equation associated with a simple harmonic oscillator equation, regardless of the frequency 'k'. This is due to the periodic nature of the sine and cosine functions.

Explanation:

The subject of this question concerns the family of functions y = A sin(kt) + B cos(kt) and their derivatives. It seems the student is asked to verify that for any value of 'k', representing the frequency of the sine and cosine functions, each function in this family is indeed a solution of some differential equations.

To prove this, we first observe the time derivative of this function family: y' = Ak cos(kt) − Bk sin(kt). A second derivative will yield y'' = −Ak² sin(kt) − Bk² cos(kt). By comparing y'' with the original function (y), we see that y'' is equivalent to -k²*y with y as the original function, which verifies the solution to a simple harmonic oscillator equation. Represented as y''+k²*y=0.

Oscillations are an inherent property of these functions - occurring because sin(kt) and cos(kt) are periodic functions, meaning they repeat their values in regular intervals or periods. The values of 'A' and 'B' simply shift the oscillation up or down (amplitude), and don't change the periodic nature. Therefore, it can be concluded that every member of the family of functions y = A sin(kt) + B cos(kt) is indeed a solution for any picked value of 'k'.

Learn more about Mathematics here:

https://brainly.com/question/27235369

#SPJ3

Data collected at Toronto Pearson International Airport suggest that an exponential distribution with mean value 2,725 hours is a good model for rainfall duration. What is the probability that the duration of a particular rainfall event at this location is at least 2 hours?

Answers

Answer:

[tex] P(X >2) [/tex]

And we can calculate this with the complement rule like this:

[tex] P(X>2) = 1-P(X<2)[/tex]

And using the cdf we got:

[tex] P(X>2) = 1- [1- e^{-\lambda x}] = e^{-\lambda x} = e^{-\frac{1}{2.725} *2}= 0.480[/tex]

Step-by-step explanation:

Previous concepts

The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution". The probability density function is given by:

[tex]P(X=x)=\lambda e^{-\lambda x}, x>0[/tex]

And 0 for other case. Let X the random variable of interest:

[tex]X \sim Exp(\lambda=\frac{1}{2.725})[/tex]

Solution to the problem

We want to calculate this probability:

[tex] P(X >2) [/tex]

And we can calculate this with the complement rule like this:

[tex] P(X>2) = 1-P(X<2)[/tex]

And using the cdf we got:

[tex] P(X>2) = 1- [1- e^{-\lambda x}] = e^{-\lambda x} = e^{-\frac{1}{2.725} *2}= 0.480[/tex]

According to the United States Health and Human Services, the mean height for Americans is 1.757 meters for men and 1.618 meters for women. The standard deviation is 0.074 meters for men's height and 0.069 meters for women's height. Michelle’s height is 1.758 meters. What is her z-score?

Answers

Answer:

Her z-score is 2.03.

Step-by-step explanation:

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

Michelle’s height is 1.758 meters. What is her z-score?

Michelle's is a woman.

The average height of women is [tex]\mu = 1.618[/tex] and the standard deviation is [tex]\sigma = 0.069[/tex]

This is Z when X = 1.758. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{1.758 - 1.618}{0.069}[/tex]

[tex]Z = 2.03[/tex]

Her z-score is 2.03.

Final answer:

Michelle's z-score is approximately 2.03, which means her height is 2.03 standard deviations above the mean height for American women.

Explanation:

To calculate Michelle’s z-score for her height, we use the formula for the z-score:

Z = (X - μ) / σ

Where Z is the z-score, X is the value (Michelle's height), μ is the mean, and σ is the standard deviation. Since Michelle is a woman, we will use the mean and standard deviation for women. The mean height for American women, μ, is 1.618 meters, and the standard deviation, σ, is 0.069 meters.

Plugging in the values we get:

Z = (1.758 - 1.618) / 0.069

Z = 0.14 / 0.069

Z ≈ 2.029

Michelle's height is approximately 2.03 standard deviations above the mean height for American women.

Which expressions is equivalent to 7/10-2/10?

Answers

Answer:

5/10 & 1/2: anything that simplifies to 1/2 or .5

Final answer:

The expression 7/10-2/10 simplifies to 5/10, which can be further reduced to 1/2 by dividing both the numerator and denominator by their greatest common divisor, 5.

Explanation:

The expression 7/10-2/10 involves the subtraction of two fractions with the same denominator. When subtracting fractions with the same denominator, you simply subtract the numerators and keep the denominator the same. Thus, the calculation would be:

Numerator: 7 - 2 = 5

Denominator: 10 (remains the same)

Therefore, the expression 7/10-2/10 is equivalent to 5/10. This fraction can be further simplified by dividing the numerator and the denominator by their greatest common divisor, which in this case is 5. This gives us:

(5 ÷ 5) / (10 ÷ 5) = 1/2

So, 7/10-2/10 simplifies to 1/2, which is the equivalent fraction.

You pick two marbles at random out of a box that has 5 red and 5 blue marbles. If they are the same color, you win $1. If they are of different colors, you lose $1 (i.e. your payout is -$1). What is the expected value of your payout

Answers

Answer:

[tex] E(X) =sum_{i=1}^n X_i P(X_i)[/tex]

And we know that each time that we win we recieve $1 and each time we loss we need to pay $1, so then the expected value would be given by:

[tex] E(X) = 1*\frac{4}{9} -1 \frac{5}{9} = -\frac{1}{9} =-0.11[/tex]

[tex] E(X^2) =sum_{i=1}^n X^2_i P(X_i)[/tex]

[tex] E(X^2) = 1^2*\frac{4}{9}+ (-1)^2 \frac{5}{9} = 1[/tex]

And the variance is defined as:

[tex] Var(X) = E(X^2) -[E(X)]^2 = 1 -[-\frac{1}{9}]^2 = \frac{80}{81}[/tex]

Step-by-step explanation:

For this case we know that we can win if we select 2 balls of the same color, so we can find the probability of win like this:

[tex] p = \frac{Possible}{ Total}= \frac{2C1 * (5C2)}{10C2}= \frac{2*10}{45}= \frac{4}{9}[/tex]

So then the probability of no win would be given by the complement:

[tex] q = 1-p = 1- \frac{4}{9}= \frac{5}{9}[/tex]

We can define the random variable X who represent the amount of money that we can win.

And we can use the definition of expected value given by:

[tex] E(X) =sum_{i=1}^n X_i P(X_i)[/tex]

And we know that each time that we win we recieve $1 and each time we loss we need to pay $1, so then the expected value would be given by:

[tex] E(X) = 1*\frac{4}{9} -1 \frac{5}{9} = -\frac{1}{9} =-0.11[/tex]

We can calculate the second monet like this:

[tex] E(X^2) =sum_{i=1}^n X^2_i P(X_i)[/tex]

[tex] E(X^2) = 1^2*\frac{4}{9}+ (-1)^2 \frac{5}{9} = 1[/tex]

And the variance is defined as:

[tex] Var(X) = E(X^2) -[E(X)]^2 = 1 -[-\frac{1}{9}]^2 = \frac{80}{81}[/tex]

A part of the question is missing and it says;

b) Calculate the variance of the amount you win.

Answer:

A) Expected value of Pay out;

(E(Y)) = - 0.11

B) Variance of the amount won; Var(Y) = 0.9879

Step-by-step explanation:

A) From the question, we have;

X ∈ {0,1,2} and by the nature of the question, X has a hypergeometric distribution as;

P(X =i) = [(5,i) (5, 2 - i)] / (10,2)

Furthermore, when we consider the random variable Y that marks the amount of money that we win, we'll get a function of X as;

Y = 1X [x∈{0,2}] - [1X(x=1)]

If we now use the linearity of expectation, we'll get;

E(Y) = E [X(x∈{0,2}) ] - [E(X(x=1))]

= P(X = 0) + P(X = 2) - P(X = 1)

For 2 balls with probability of a win, P = (possible outcome) /(total outcome) =

{(2C1) (5C2)}/(10C2) = (2 x 10)/45 = 20/45

While, for probability of no win;

P = 1 - (20/25) = 25/25

So, E(Y) =20/45 - 25/45 = - 5/45 =

- 0.11

B) Now let's calculate for the variance;

Var(Y) = E(Y(^2)) - E(Y)^(2)

Now, from question a, using the equation of Y, we can say;

(Y)^(2) = (1^2)X [x∈{0,2}] - [(1^2)X(x=1)]

And so;

E(Y^(2)) = P(X = 0) + P(X = 2) + P(X = 1) = (1^2)(20/45) + (-1^2)(25/45) = 45/45 = 1

So, Var(Y) = 1 - (-0.11)^2 = 0.9879

A survey found that​ women's heights are normally distributed with mean 63.4 in and standard deviation 2.4 in. A branch of the military requires​ women's heights to be between 58 in and 80 in. a. Find the percentage of women meeting the height requirement. Are many women being denied the opportunity to join this branch of the military because they are too short or too​ tall? b. If this branch of the military changes the height requirements so that all women are eligible except the shortest​ 1% and the tallest​ 2%, what are the new height​ requirements?

Answers

Correct Answer: 98.78

A. 98. 78

A) Part 2:  ​No, because only a small percentage of women are not allowed to join this branch of the military because of their height.

B. 57.8 ,    68.3

Final answer:

Approximately 98.8% of women meet the current military height requirement of 58-80 inches. If the military change to exclude the shortest 1% and tallest 2%, the height requirements change to approximately 58.11 to 68.38 inches.

Explanation:

To answer part (a) of your question, we must utilize the notion of a Z-score. A Z-score standardizes or normalizes a data point in terms of how many standard deviations away it is from the mean. A standard deviation of 2.4 and a mean of 63.4 inches would be the reference points. Using the formula ((X - Mean) / Std Deviation) we calculate the Z-score which gives us the percentage.

For 58 inches, we get a Z-score of -2.25, and using a Z-score table, this corresponds approximately to 1.2%. For 80 inches, the Z-score is 6.92, which is practically at the extreme end of the curve, so we can take this as 100%. Hence, almost 98.8% of women fall within the height requirements of 58 inches to 80 inches.

Coming to part (b) we need to find the height that represents the shortest and tallest 1% and 2% respectively. Using the Z-score table, the Z-score for 1% is -2.33 and for 2%, it's 2.05. Hence, the height cut-off for the shortest 1% will be Mean - 2.33*Std Deviation = 58.11 inches approx, and the tallest 2% will be Mean + 2.05*Std Deviation = 68.38 inches approx. This means, if the military changes their requirements to exclude the shortest 1% and tallest 2%, their new height requirements would approximately be from 58.11 inches to 68.38 inches.

Learn more about Normal Distribution here:

https://brainly.com/question/34741155

#SPJ3

19) If an average of 12 customers are served per hour, what is the probability that the next customer will arrive in 3 minutes or less? Note: λ = 12/60

Answers

Answer:

The probability that the next customer will arrive in 3 minutes or less is 0.45.

Step-by-step explanation:

Let N (t) be a Poisson process with arrival rate λ. If X is the time of the next arrival then,

[tex]P(X>t)=e^{-\lambda t}[/tex]

Given:

[tex]\lambda=\frac{12}{60}[/tex]

t = 3 minutes

Compute the probability that the next customer will arrive in 3 minutes or less as follows:

P (X ≤ 3) = 1 - P (X > 3)

              [tex]=1-e^{-\frac{12}{60}\times3}\\=1-e^{-0.6}\\=1-0.55\\=0.45[/tex]

Thus, the probability that the next customer will arrive in 3 minutes or less is 0.45.

The probability that the next customer will arrive in 3 minutes or less is; 0.4512

This is a Poisson distribution problem with the formula;

P(X > t) = e^(-λt)

Where;

λ is arrival rate

t is arrival time

We are given;

λ = 12/60

t = 3 minutes

We want to find the probability that the next customer will arrive in 3 minutes or less. This is expressed as;

P (X ≤ 3) = 1 - (P(X > 3))

Thus;

P (X ≤ 3) = 1 - e^((12/60) × 3)

P (X ≤ 3) = 1 - 0.5488

P (X ≤ 3) = 0.4512

Read more about Poisson distribution at; https://brainly.com/question/7879375

A group of researchers conducted a study to determine whether the final grade in an honors section of introductory psychology was related to a student’s performance on a test of math ability administered for college entrance. The researchers looked at the test scores of 200 students (n= 200) and found a correlation of r= .45 between math ability scores and final course grade. The proportion of the variability seen in final grade performance that can be predicted by math ability scores is ____.

Answers

Answer:

[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]

And for this case [tex] r =0.45[/tex]

The % of variation is given by the determination coefficient given by [tex]r^2[/tex] and on this case [tex]0.45^2 =0.2025[/tex], so then the % of variation explained is 20.25%.

The proportion of the variability seen in final grade performance that can be predicted by math ability scores is 20.25%.

Step-by-step explanation:

For this case we asume that we fit a linear model:

[tex] y = mx+b[/tex]

Where y represent the final grade and x the math ability scores

[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]  

Where:  

[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]  

[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]  

[tex]\bar x= \frac{\sum x_i}{n}[/tex]  

[tex]\bar y= \frac{\sum y_i}{n}[/tex]  

And we can find the intercept using this:  

[tex]b=\bar y -m \bar x[/tex]  

The correlation coeffcient is given by:

[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]

And for this case [tex] r =0.45[/tex]

The % of variation is given by the determination coefficient given by [tex]r^2[/tex] and on this case [tex]0.45^2 =0.2025[/tex], so then the % of variation explained is 20.25%.

The proportion of the variability seen in final grade performance that can be predicted by math ability scores is 20.25%.

What length is the shortest path from A to G in the graph below?

Answers

Answer:

graph a

Step-by-step explanation:

The required shortest length to go from A to G is given as 8. Option C is correct.

What is simplification?

The process in mathematics to operate and interpret the function to make the function or expression simple or more understandable is called simplifying and the process is called simplification.

Here,
The shortest distance from the figure can be given as,
= AE + EG
= 1 + 7
= 8

Thus, the required shortest length to go from A to G is given as 8. Option C is correct.

Learn more about simplification here:

https://brainly.com/question/12501526

#SPJ6

A multiple-choice test has 27 questions. Each question has 5 possible answers, of which only one is correct. What is the probability that sheer guesswork will yield exactly 18 correct answers?

Answers

Final answer:

The probability of guessing exactly 18 out of 27 questions correctly is calculated using the binomial probability formula. Use the formula: P(x=k) = (n choose k) * (p^k) * (1-p)^(n-k), where n is the number of trials (27), p is the probability of success (1/5), and k is the number of successes (18). The answer will be a very small number.

Explanation:

The problem involves the use of binomial probability because we have a fixed number of trials (27 questions), each of which is independent and has only two outcomes (correct or incorrect) with constant probabilities. In this case, the probability of a success (choosing the correct answer) is 1/5 and the probability of a failure (choosing an incorrect answer) is 4/5.

We wish to find P(x=18), the probability of having exactly 18 successes. Using the formula for the probability of a binomial distribution:

P(x=k) = (n choose k) * [(p)^(k)] * [(1-p)^(n-k)]

Where:
- (n choose k) = n! / (k!(n-k)!)
- p is the probability of success
- k is the number of successes
- n is the number of trials.

Substituting the values:

P(x=18) = (27 choose 18) * ((1/5)^18) * ((4/5)^(27-18))

You can use a calculator to solve for the answer. Please note that the probability would be very small, as expected, because guessing 18 questions correctly out of 27 is not a very likely occurrence when each question has 5 choices.

Learn more about Binomial Probability here:

https://brainly.com/question/39666605

#SPJ11

what is f(x)=8x^2+4x written in vertex form

Answers

Answer:

f(x) = 8 (x + ¼)² − ½

Step-by-step explanation:

f(x) = 8x² + 4x

Divide both sides by 8.

1/8 f(x) = x² + 1/2 x

Take half of the second coefficient, square it, then add to both sides.

(½ / 2)² = (1/4)² = 1/16

1/8 f(x) + 1/16 = x² + 1/2 x + 1/6

Factor the perfect square.

1/8 f(x) + 1/16 = (x + 1/4)²

Multiply both sides by 8.

f(x) + 1/2 = 8 (x + 1/4)²

Subtract 1/2 from both sides.

f(x) = 8 (x + 1/4)² − 1/2

The graph shows the relationship between the number of months different students practiced baseball and the number of games they won:

The title of the graph is Baseball Games. On x axis, the label is Number of Months of Practice. On y axis, the label is Number of Games Won. The scale on the y axis is from 0 to 22 at increments of 2, and the scale on the x axis is from 0 to 12 at increments of 2. The points plotted on the graph are the ordered pairs 0, 1 and 1, 3 and 2, 5 and 3, 9 and 4, 10 and 5, 12 and 6, 13 and 7, 14 and 8,17 and 9, 18 and 10,20. A straight line is drawn joining the ordered pairs 0, 1.8 and 2, 5.6 and 4, 9.2 and 6, 13 and 8, 16.5 and 10, 20.5.

Part A: What is the approximate y-intercept of the line of best fit and what does it represent? (5 points)

Part B: Write the equation for the line of best fit in slope-intercept form and use it to predict the number of games that could be won after 13 months of practice. Show your work and include the points used to calculate the slope.

Answers

Answer:

A) from the line of best fit, the approximately y-intercept is (0,1.8). This means without any practice, 1h.8 games are won.

B) slope: (5.6-1.8)/(2-0) = 1.9

y = 1.9x + 1.8

(Line of best fit)

x = 13,

y = 1.9(13) + 1.8 = 26.5

Predicted no. of games won after 13 months of practice is 26.5

Final answer:

The y-intercept, representing initial games won and the equation for line of best fit predicting future games won, are determined from the graph data.

Explanation:

Part A:

The y-intercept of the line of best fit is approximately 1.8.It represents the initial number of games won when the number of months of practice is zero.

Part B:

The equation for the line of best fit in slope-intercept form is y = 1.4x + 1.8.

To predict the number of games won after 13 months of practice, substitute x = 13 into the equation:

y = 1.4(13) + 1.8 = 19.5

So, the predicted number of games that could be won after 13 months of practice is 19.5.

Suppose X is a normal distribution with N(210, 32). Find the following: a. P( X < 230) b. P(180 < X < 245) c. P( X >190) d. Find c such that P( X < c) = 0.0344 e. Find c such that P( X > c) = 0.7486

Answers

Using the normal distribution, it is found that:

a) P(X < 230) = 0.734.

b) P(180 < X < 245) = 0.6885.

c) P( X >190) = 0.734.

d) X = 151.76.

e) X = 188.56.

Normal Probability Distribution

In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.

In this problem:

The mean is of [tex]\mu = 210[/tex].The standard deviation is of [tex]\sigma = 32[/tex].

Item a:

This probability is the p-value of Z when X = 230, hence:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{230 - 210}{32}[/tex]

[tex]Z = 0.625[/tex]

[tex]Z = 0.625[/tex] has a p-value of 0.734.

Hence:

P(X < 230) = 0.734.

Item b:

This probability is the p-value of Z when X = 245 subtracted by the p-value of Z when X = 180, hence:

X = 245

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{245 - 210}{32}[/tex]

[tex]Z = 1.09[/tex]

[tex]Z = 1.09[/tex] has a p-value of 0.8621.

X = 180

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{180 - 210}{32}[/tex]

[tex]Z = -0.94[/tex]

[tex]Z = -0.94[/tex] has a p-value of 0.1736.

0.8621 - 0.1736 = 0.6885.

Then:

P(180 < X < 245) = 0.6885.

Item c:

This probability is 1 subtracted by the p-value of Z when X = 190, hence:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{190 - 210}{32}[/tex]

[tex]Z = -0.625[/tex]

[tex]Z = -0.625[/tex] has a p-value of 0.266.

1 - 0.266 = 0.734.

Hence:

P( X >190) = 0.734.

Item d:

This is X = c when Z has a p-value of 0.0344, hence X when Z = -1.82.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.82 = \frac{X - 210}{32}[/tex]

[tex]X - 210 = -1.82(32)[/tex]

[tex]X = 151.76[/tex]

Item e:

This is X when Z has a p-value of 1 - 0.7486 = 0.2514, hence X when Z = -0.67.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-0.67 = \frac{X - 210}{32}[/tex]

[tex]X - 210 = -0.67(32)[/tex]

[tex]X = 188.56[/tex]

More can be learned about the normal distribution at https://brainly.com/question/24663213

Final answer:

The question involves calculating probabilities and specific values (c) for a given normal distribution with mean 210 and standard deviation 32. The probabilities for certain ranges and tail ends are computed using the normal cumulative distribution function and its inverse.

Explanation:

The question pertains to finding probabilities and specific values associated with a normal distribution X which is denoted as N(210, 32), meaning it has a mean (μ) of 210 and a standard deviation (σ) of 32.

P(X < 230) can be found using a z-score calculation or a normal cumulative distribution function. Since this is a left-tail probability, we're interested in the area under the curve to the left of X=230.P(180 < X < 245) is the probability that X falls between these two values. We look at the area under the normal curve between these two points.P(X > 190) represents the right-tail probability, meaning the area under the curve to the right of X=190.To find c such that P(X < c) = 0.0344, we'd use the inverse of the normal cumulative distribution function, often denoted as the quantile or the percentile function.Finding the value c such that P(X > c) = 0.7486 again involves the use of the inverse normal function, but this time looking at the right-tail probability.

Suppose that the waiting time for an elevator at a local shopping mall is uniformly distributed from 0 to 90 seconds.
What is the probability that a customer waits for more than 60 seconds?

Answers

Answer:

1/3

Step-by-step explanation:

60-90 is 30 numbers, right? So it is 30/90, or 1/3

14 logs are shipped to a saw mill. The decision must be made on whether they will be classified as Prime, Good, Acceptable, or Not Acceptable. The usual counts are 3 Prime, 5 Good, and 4 Acceptable. In how many ways can these logs be classified so as to match the usual counts

Answers

Answer:

2522520

Step-by-step explanation:

Number of ways logs can be classified = 14C5* 9C4*5C3

= 2002*126*10

= 2522520

Number of ways to select 5 good = 14C5, out of remaining 9, number of ways to select acceptable log = 9C4, out of remaining 5, number of ways to select prime log = 5C3 and remaking two unacceptable in 2C2 ways

Final answer:

To find how many ways 14 logs can be classified into categories to match the usual counts, use the multinomial coefficient formula based on the given category counts, resulting in a single calculations. to be 54.6.

Explanation:

The question asks in how many ways 14 logs can be classified into four categories (Prime, Good, Acceptable, Not Acceptable) if we know the usual counts for three of these categories are 3 Prime, 5 Good, 4 Acceptable, and the rest are Not Acceptable. This is a combinatorial problem that can be solved using combinations.

First, we distribute the logs into the Prime, Good, and Acceptable categories as given. This leaves us with 14 - (3 + 5 + 4) = 2 logs to be classified as Not Acceptable. Hence, all of the logs are accounted for with the specified counts.

The number of ways to classify the logs can thus be calculated as the number of ways to choose 3 out of 14 for Prime, then 5 out of the remaining 11 for Good, then 4 out of the remaining 6 for Acceptable. The remaining 2 are automatically classified as Not Acceptable. However, since we're simply fulfilling given counts, and the categories are distinct without overlap, we actually approach this as a partition of 14 objects into parts of fixed sizes, which is a straightforward calculation given by the multinomial coefficient:

The formula for the calculation is: 14! / (3! × 5! × 4! × 2!)

Which simplifies to the total number of ways these logs can be classified according to the specified counts

= 54.6

A sorority has 38 members, 28 of whom are full members and 10 are pledges. Two persons are selected at random from the membership list of the sorority. Find the requested probabilities. (Enter the probabilities as fractions.)

Answers

Final answer:

The student's question pertains to calculating the probability of selecting two individuals from a sorority consisting of full members and pledges. The calculation involves using combinatorial formulas to determine the likelihood of different types of selections.

Explanation:

The student is asking about finding the probability of selecting two persons at random from a group consisting of full members and pledges in a sorority. With 38 members in total, 28 full members and 10 pledges, we need to calculate the probability of different pairs of members being selected. This is a combinatorial probability question.

In such problems, if there is no specific requirement about who needs to be picked (like how many full members or pledges), the total number of ways to select two members from the group without regard to order is calculated using the combination formula C(n, k) = n! / [k!(n-k)!], where 'n' is the total number of items, and 'k' is the number of items to choose.

For instance, the probability of selecting two full members can be calculated by finding the number of ways to choose two full members from the 28 available, divided by the number of ways to choose any two members from the entire group of 38.

Mrs. Porcelli's classroom bulletin board is 2 % feet long. Ms. Smith's bulletin board is 3
| times as long as Mrs. Porcelli's. How long is Ms. Smith's bulletin board.

Answers

Answer: 0.06 ft long

Step-by-step explanation:

Porcelli's board = 2% feet long; to convert 2% into fraction, divide by 100= 2/100 = 0.02 ft

Smith's board, from the question is 3 times porcelli's board = 3 x 0.02= 0.06 ft

I hope this helps.

A cylinder shaped can needs to be constructed to hold 600 cubic centimeters of soup. The material for the sides of the can costs 0.03 cents per square centimeter. The material for the top and bottom of the can need to be thicker, and costs 0.05 cents per square centimeter. Find the dimensions for the can that will minimize production cos

Answers

Answer:

the dimensions that minimize the cost of the cylinder are R= 3.85 cm and L=12.88 cm

Step-by-step explanation:

since the volume of a cylinder is

V= π*R²*L → L =V/ (π*R²)

the cost function is

Cost = cost of side material * side area  + cost of top and bottom material * top and bottom area

C = a* 2*π*R*L + b* 2*π*R²

replacing the value of L

C = a* 2*π*R* V/ (π*R²) + b* 2*π*R²  = a* 2*V/R + b* 2*π*R²

then the optimal radius for minimum cost can be found when the derivative of the cost with respect to the radius equals 0 , then

dC/dR = -2*a*V/R² + 4*π*b*R = 0

4*π*b*R = 2*a*V/R²

R³ = a*V/(2*π*b)

R=  ∛( a*V/(2*π*b))

replacing values

R=  ∛( a*V/(2*π*b)) = ∛(0.03$/cm² * 600 cm³ /(2*π* 0.05$/cm²) )= 3.85 cm

then

L =V/ (π*R²) = 600 cm³/(π*(3.85 cm)²) = 12.88 cm

therefore the dimensions that minimize the cost of the cylinder are R= 3.85 cm and L=12.88 cm

The dimensions of the cylinder that minimize production costs are approximately a radius of 3.64 cm and a height of 14.41 cm. These values are derived by expressing the height in terms of the radius, calculating the surface area, and optimizing the cost function. The minimized cost is achieved with these optimal dimensions.

To minimize the production cost for a cylindrical can holding 600 cubic centimeters of soup, we need to find the optimal dimensions (radius and height) considering cost constraints of the materials.

The volume of the cylinder is given by the formula:

V = πr²h

Given V = 600 cm³, we can express the height in terms of the radius:

h = 600 / (πr²)

Next, we calculate the surface area, because the cost is based on the material's surface area. The surface area A includes the area of the side, and the top and bottom:

A = 2πrh + 2πr²

Substitute h from the volume equation:

A = 2πr(600 / (πr²)) + 2πr²
A = 1200/r + 2πr²

The total cost is calculated by multiplying the areas by their respective costs:

Cost = 0.03(2πrh) + 0.05(2πr²)
Substitute h:

Cost = 0.03(2πr(600 / (πr²))) + 0.05(2πr²)
Cost = 0.03(1200/r) + 0.1πr²
Cost = 36/r + 0.1πr²

We find the minimum cost by differentiating the cost function with respect to r and setting it to zero:

d(Cost)/dr = -36/r² + 0.2πr = 0
0.2πr = 36/r²
0.2πr³ = 36
r³ = 180/π
r ≈ 3.64 cm

Finally, we calculate the height h:

h ≈ 600 / (π(3.64)²)

≈ 14.41 cm

Therefore, the dimensions that minimize the production cost are approximately a radius of 3.64 cm and a height of 14.41 cm.

Derive the validity of universal form of part(a) of the elimination rule from the validity of universal instantiation and the valid argument called elimination in Section 2.3.

Answers

Answer:

Step-by-step explanation:

Derive the validity of universal form of part(a) of the elimination rule from the validity of universal instantiation and the valid argument called elimination in Section 2.3.

P(x)∨Q(x)

~Q(x)

∵ P(x)

Universal Instantiation has the following argument form

∀ x ∈ D, P (x)

P(a) for a particular a∈D

Universal Elimination Rule:

∀x, P(x)

∵~ P(a)

Here is a particular value.

P(a) For a particular  a∈D

Since the universal elimination is same as universal instantiation.

Therefore, Universal elimination is valid when universal instantiation and elimination rule are  valid

Suppose you are repeating a classic study of starfish and their impact on the ecosystems of tide pools. Using historic data collected by you colleagues, you know that the mean number of starfish in the tide pool you are studying is 6.4. You are worried that a recent decline in starfish numbers in nearby pools may indicate a coming problem for your tide pool. If you estimate that the ecosystem of your tide pool will face significant negative consequences if the number of starfish in it drops below 3, calculate the probability of this occurring.

Answers

Answer:

The probability of the number of starfish dropping below 3 is 0.0463.

Step-by-step explanation:

Let X represent the number of starfish in the tide pool.

X follows a Poisson distribution with mean 6.4.

The formula for Poisson distribution is as follows.

[tex]P(X=x) = e^{-6.4} * [6.4^{x} / x!] when x = 0, 1, ...[/tex]

[tex]P(X = x) = 0[/tex] otherwise

We need to find the probability that the number of starfish in the tide pool drops below 3.

Therefore, the required probability is:

P(X < 3) = P(X = 0) + P(X = 1) + P(X=2)

[tex]P(X < 3) = e^{-6.4} + (e^{-6.4}*6.4) + (e^{-6.4}*6.4^{2}/2)[/tex]

P(X < 3) = 0.00166 + 0.01063 + 0.03403

P (X < 3) = 0.0463

According to a recent​ study, 23% of U.S. mortgages were delinquent last year. A delinquent mortgage is one that has missed at least one payment but has not yet gone to foreclosure. A random sample of twelve mortgages was selected. What is the probability that greater than 5 of these mortgages are delinquent?

Answers

Answer:

P ( X > 5) = 0.0374

Step-by-step explanation:

Given:

n = 12

p = 0.23

Using Binomial distribution formula,

X ~ Binomial ( n = 12, p = 0.23)

[tex]=\frac{n!}{(n-x)! x!}. p^{x} q^{n-x}[/tex]

Substitute for n = 12, p = 0.23, q = 1-0.23 for  x = 6,7,8,9,10,11 and 12

P (X > 5)  = P(X=6) + P(X=7) + P(X=8) + P(X=9) + P(X=10) + P(X=11) + P(X=12)

P ( X > 5 ) = 0.0285 + 0.007299 + 0.00136 + 0.000181 + 0.0000162 + 1E-6 + 1E-6

P ( X > 5) = 0.0374

Delta Airlines quotes a flight time of 2 hours for its flights from Cincinnati to Tampa, meaning that an on-time flight would arrive in 2 hours. Suppose we believe that actual flight times are uniformly distributed between 1 hour 50min minutes and 135 minutes.a. Show the graph of the probability density function for flight time.b. What is the probability that the flight will be no more than 5 minutes late?c. What is the probability that the flight will be more than 10 minutes late?d. What is the expected flight time?

Answers

Answer:

a) Attached

b) P=0.60

c) P=0.80

d) The expected flight time is E(t)=122.5

Step-by-step explanation:

The distribution is uniform between 1 hour and 50 minutes (110 min) and 135 min.

The height of the probability function will be:

[tex]h=\frac{1}{Max-Min}=\frac{1}{135-110} =\frac{1}{25}[/tex]

Then the probability distribution can be defined as:

[tex]f(t)=\frac{1}{25}=0.04 \,\,\,\,\\\\t\in[110,135][/tex]

b) No more than 5 minutes late means the flight time is 125 or less.

The probability of having a flight time of 125 or less is P=0.60:

[tex]F(T<t)=0.04(t-min)\\\\F(T<125)=0.04*(125-110)=0.04*15=0.60[/tex]

c) More than 10 minutes late means 130 minutes or more

The probability of having a flight time of 130 or more is P=0.80:

[tex]F(T>t)=1-0.04(t-110)\\\\F(T>130)=1-0.04*(130-110)=1-0.04*20=1-0.8=0.2[/tex]

d) The expected flight time is E(t)=122.5

[tex]E(t)=\frac{1}{2}(max+min)= \frac{1}{2}(135+110)=\frac{1}{2}*245=122.5[/tex]

Other Questions
You are given three iron rods. Two of the rods are magnets but the third one is not. How could you use the three rods to definitively identify the unmagnetized rod? a. Test the rods a pair at a time in all possible orientations to determine which two rods have the strongest force between them; the leftover rod is unmagnetized. b. Find one pair of rods that attract when placed endtoend, regardless of orientation; the leftover rod is unmagnetized. c. Test different pairs of rods in all possible orientations to find a rod that is not attracted to either of the other two rods; that rod is unmagnetized. d. Test the rods one pair at a time in each possible endtoend orientation until finding a pair that repels; the leftover rod is unmagnetized. 7. Explain what happens at a microscopic level inside a muscle fiber duringbeginning with the nerve impulse.O EEnter veuresponse hereHERSHESHEETS name two contries in which mestizos makeUp a majority of the population A table representing the function f(x) = 2(three-halves) Superscript x is shown below. A 2-column table has 4 rows. The first column is labeled x with entries (0, 1, 2, 3). The second column is labeled f (x) with entries 2, 3, 4.5, 6.75. What is true of the given function? The function increases at a constant additive rate. The function increases at a constant multiplicative rate. The function has an initial value of 0. As each x value increases by 1, the y values increase by 1. Calculate the time required (in years) for water to penetrate a layer of clay that is 40 cm deep when exposed to a hydraulic gradient of 1 cm/cm. The permeability of clay is 1x10-8 cm/sec. If there is 30 cm static head of water on the clay layer, how long will it take for moisture to penetrate the 40 cm clay layer (in years)? A client with a head injury is being monitored for increased intracranial pressure (ICP). The client's blood pressure is 90/60 mm Hg and the ICP is 18 mm Hg; therefore their cerebral perfusion pressure (CPP) is what part of Texas are the 4 national forests that were astablished during the Great Depression Let y be a random variable with a known distribution, and consider the square loss function `(a; y) = (a????y)2. We want to find the action a that has minimal risk, namely, to find a = arg mina E(a ???? y)2, where the expectation is with respect to y. Show that a = Ey, and the Bayes risk (i.e. the risk of a) is Var(y). In other words, if you want to try to predict the value of a random variable, the best you can do (for minimizing expected square loss) is to predict the mean of the distribution. Your expected loss for predicting the mean will be the variance of the distribution. You should use the fact that Var(y) = Ey2 ???? (Ey)2. a bakery uses 3/5 a cup of sugar for each cookies.How many batches of cookies can they make with 9 cups of sugar? tan x= 35 nearest tenth A line goes through the points (-1,9) and (1,1).Write the equation of this line in point slope form using one of these points. You can find a rectangle's perimeter by ________. A multiplying its length by its width B multiplying its length by 2 and multiplying its width by 2 and adding the products C subtracting its length from its width D dividing its length by 2 and dividing its width by 2 and adding the quotients Which expressions are equivalent to_____? Check all that apply. Norepinephrine acts on the heart by ________. A) decreasing heart contractility B) causing a decrease in stroke volume C) blocking the action of calcium D) causing threshold to be reached more quickly A 25-year old client with a low risk tolerance wishes to invest in bonds. The client has invested in equities before, but has no experience investing in bonds. The BEST recommendation would be:A. BB-rated short-term bondsB. BB-rated intermediate-term bondsC. AA-rated short-term bondsD. AA-rated long-term bonds What is the meaning of the word pleaded A golfer's bag contains 24 golf balls, 18 of which are ProFlight brand and the other 6 are DistMax brand. Find the probability that he reaches in his bag and randomly selects 5 golf balls and 4 of them are ProFlights and the other 1 is DistMax. Thomas Brothers is expected to pay a $0 50 per share dividend at the end of the year (i.s., D1=$0.50). The dividend is expected to grow at a constant rate of 7% a year. The required rate of return on the stock, rs, is 15%. What is the stocks current value per share? What is the main idea of Thurgood marshal Brad and Tom are studying for their child development exam. Brad claims that basic parts of the information-processing theory include content knowledge, assimilation, strategies, and basic processes. Tom tells Brad that one of these parts is not correct. Which part should Tom identify as not correct Steam Workshop Downloader