A 1.60-m-long barbell has a 25.0 kg weight on its left end and a 37.0 kg weight on its right end. you may want to review ( pages 204 - 205) . part a if you ignore the weight of the bar itself, how far from the left end of the barbell is the center of gravity

Answers

Answer 1
Refer to the diagram shown below.

The weight at the left end is
W₁ = (25.0 kg)*(9.8 m/s²) = 245 N
The weight at the right end is
W₂ = (37.0 kg)*(9.8 m/s²) = 362.6 N
The reaction at the fulcrum is
R = W₁ + W₂

Let x =  distance of the fulcrum (c.g.) from the left end.
For equilibrium, take moments about the center of gravity (c.g).
(245 N)*(x m) - (362.6 N)*(1.6-x m) = 0
245x - 580.16 + 362.6x = 0
607.6x = 580.16
x = 0.955 m

Answer: 0.955 m

A 1.60-m-long Barbell Has A 25.0 Kg Weight On Its Left End And A 37.0 Kg Weight On Its Right End. You

Related Questions

The manometer shown in fig. 2 contains water and kerosene. with both tubes open to the atmosphere, the free-surface elevations differ by h = 20.0 mm. determine the elevation difference when a pressure of 98.0 pa (gage) is applied to the right tube. (hint: when the gage pressure is applied to the right tube, the water in the right tube is displaced downward by the same distance that the kerosene in the left tube is displaced upward)

Answers

The elevation difference is 55.3 mm when a pressure of 98.0 Pa (gage) is applied to the right tube of the manometer, displacing water downward and kerosene upward.

When a pressure of 98.0 Pa (gage) is applied to the right tube of the manometer, the water in the right tube is displaced downward by the same distance that the kerosene in the left tube is displaced upward, maintaining equilibrium.

To find the elevation difference, we can use the hydrostatic pressure formula:

P = ρgh

Where:

P = pressure difference (98.0 Pa in this case)

ρ = density of the fluid (for water, ρ_water ≈ 1000 kg/m³, for kerosene, ρ_kerosene ≈ 820 kg/m³)

g = acceleration due to gravity (approximately 9.81 m/s²)

h = elevation difference

Since the water and kerosene columns have opposite elevation changes, we can write:

98.0 Pa = (ρ_water * g * h) - (ρ_kerosene * g * h)

Now, solve for h:

98.0 Pa = (1000 kg/m³ * 9.81 m/s² * h) - (820 kg/m³ * 9.81 m/s² * h)

98.0 Pa = (9810 h) - (8034 h)

98.0 Pa = 1776 h

h = 98.0 Pa / 1776 = 0.0553 meters = 55.3 mm

So, when a pressure of 98.0 Pa (gage) is applied to the right tube, the elevation difference between the two free surfaces in the manometer is 55.3 mm.

For more question on manometer visit:

https://brainly.com/question/17209103

#SPJ11

A rare and valuable antique chest is being moved into a truck using a 4.00 m long ramp. the kj weight of the chest plus packing material is 1,500 n. if the truck bed is 1.00 m above the ground, find the work done by the movers as they slide the chest up the ramp if the coefficient of friction between the chest and the ramp is 0.200.

Answers

First let us calculate for the angle of inclination using the sin function,

sin θ = 1 m / 4 m

θ = 14.48°

 

Then we calculate the work done by the movers using the formula:

W = Fnet * d

 

So we must calculate for the value of Fnet first. Fnet is force due to weight minus the frictional force.

Fnet = m g sinθ – μ m g cosθ

Fnet = 1,500 sin14.48 – 0.2 * 1,500 * cos14.48

Fnet = 84.526 N

 

So the work exerted is equal to:

W = 84.526 N * 4 m

W = 338.10 J

________ occurs when an object in the outer reaches of the solar system passes between earth and a far distant star, temporarily blocking light from the star.

Answers

Occulation occurs when an object in outer space reaches the solar system and passes between earth and a far distant star, temporarily blocking light from the star. Occulation is an astronomy term referring to when an object in the foreground blocks the view of an object in the background.

Answer:

Occulation

Explanation:

what approximately is the percent uncertainty for the measurement 5.2

Answers

Final answer:

The percent uncertainty of a 5 lb bag with an uncertainty of ±0.4 lb is calculated using the formula (SA / A) x 100%, resulting in a percent uncertainty of 8%.

Explanation:

To calculate the percent uncertainty for a 5 lb bag with an uncertainty of ±0.4 lb, you would use the following formula:

% uncertainty = (SA / A) × 100%

Where A is the expected value (5 lb in this case) and SA is the uncertainty in the value (0.4 lb). Plugging in the numbers:

% uncertainty = (0.4 lb / 5 lb) × 100% = 8%

This means the percent uncertainty of the bag's weight is 8%.

Learn more about Percent Uncertainty here:

https://brainly.com/question/30298257

#SPJ12

Some planetary scientists have suggested that the planet mars has an electric field somewhat similar to that of the earth, producing a net electric flux of 3.66×1016 n⋅m2/c into the planet's surface. part a calculate the total electric charge on the planet.

Answers

see attached file for the solution.

Answer:

Electric charge, q = 323910 C

Explanation:

It is given that,

Net electric flux, [tex]\phi=3.66\times 10^{16}\ Nm^2/C[/tex]

We have to find the total electric charge on the planet. We can find it using Gauss's law. It is as follows :

[tex]\phi=\dfrac{q}{\epsilon_0}[/tex]

where

q is the net electric charge

[tex]\epsilon_0[/tex] is the electric permeability

So, net electric charge is given by :

[tex]q=\phi\times \epsilon_0[/tex]

[tex]q=3.66\times 10^{16}\ Nm^2/C\times 8.85\times 10^{-12}\ F/m[/tex]

[tex]q=323910\ C[/tex]

Hence, this is the required solution.

What is the mass of a baseball clocked moving at a speed of 105 mph or 46.9 m/s and wavelength 9.74 × 10-35m?

Answers

For this problem to be solved, we make use of the de Broglie formula which is written below as follows:

λ = h/mv
where h is 6.626×10⁻³⁴ J·s

9.74 × 10⁻³⁵ m = 6.626×10⁻³⁴ J·s/ (m)(46.9 m/s)
Solving for m,
m = 0.145kg

A hardworking ant must supply 0.00805 n to pull a small piece of fruit at constant velocity over a distance of 9.80 cm up a small hill to the entrance of the colony. if the coefficient of kinetic friction between the piece of fruit and the 15.8° sloped hill is 0.400, calculate the work done by the ant by pulling the piece of fruit up the hill.

Answers

In physics, the definition of work is simply the product of force exerted and the displacement. Therefore in this case, work done by the ant is:

Work = 0.00805 N * 9.80 cm * (1 m / 100 cm)

Work = 7.889 x 10^-4 J

Why are the sedimentary layers at capitol reef tilted?

Answers

Capitol Reef National Park is located in south-central Utah. The sedimentary layers are tilted because of tectonic activity. All sedimentary rocks are laid down horizontally in a basin. The layers become tilted because of tectonic processes such as folding and faulting and compression and tension. The sedimentary layers are made of sandstone, limestone and some volcanic ash. 
Final answer:

The sedimentary layers at Capitol Reef are tilted due to the Waterpocket Fold, a monocline formed by the Laramide Orogeny, which caused an ancient buried fault to reactivate and the west side to shift upwards, tilting the layers.

Explanation:

The sedimentary layers at Capitol Reef are tilted due to geological activity associated with the Waterpocket Fold, a classic monocline formed during the Laramide Orogeny. This major mountain-building event reactivated an ancient buried fault, causing movement along the fault which shifted the west side upwards relative to the east side. This process lifted the sedimentary rock layers and created a distinctive tilt. Other regions like the Grand Canyon, Zion National Park, and the Colorado Plateau were also affected by uplift, but they often display a more uniform 'layer cake' appearance because their uplift was relatively even, unlike the dramatic tilting observed at Capitol Reef.

Consider a sign suspended on a boom that is supported by a cable, as shown. What is the proper equation to use for finding the net force in the y direction?
Fnety = (FT)(sin 32°) + Fg
Fnety = (FT)(sin 32°) – Fg
Fnety = (FT)(cos 32°) + Fg
Fnety = (FT)(cos 32°) – Fg

Answers

Fnety = (FT)(sin 32°) – Fg Or the answer B, I checked it.

Answer:

B: Fnety = (FT)(sin 32°) – Fg

Explanation:

A 8.40 kg mass suspended from a spring with spring constant, k = 875.0 n/m, extends it to a total length of 0.250 m. find the total length of the spring when a 17.20 kg mass is suspended from it.

Answers

In the first scenario, since the spring extends upto 0.25 metre, the body must be at equilibrium at this point.
That implies,
ma = kx
a = 26 m/s^2
In the second scenario, (at equilibrium)
ma = kx
(17.2)(26) = 875(x)
x = 0.511m
Final answer:

The total length of the spring when a 17.20 kg mass is suspended from it is 34.85 cm, calculated using Hooke's Law and the original unstretched length of the spring.

Explanation:

To find the total length of the spring when a 17.20 kg mass is suspended from it, we use Hooke's Law, which is F = kx, where F is the force applied to the spring, k is the spring constant, and x is the extension from the spring's original unstretched length. First, we need to calculate the extension caused by the 8.40 kg mass: F = (8.40 kg)(9.8 m/s2) = 82.32 N. With k = 875 N/m, the extension (x) is F/k = 82.32 N / 875 N/m = 0.0941 m or 9.41 cm. This extension is in addition to the unstretched length of the spring (L0), given by the total length minus the extension for the 8.40 kg mass: L0 = 0.250 m - 0.0941 m = 0.1559 m.

Next, for the 17.20 kg mass, the force is F = (17.20 kg)(9.8 m/s2) = 168.56 N. The additional extension caused by this mass is x = F/k = 168.56 N / 875 N/m = 0.1926 m or 19.26 cm. Therefore, the total length of the spring with the 17.20 kg mass is L = L0 + x = 0.1559 m + 0.1926 m = 0.3485 m or 34.85 cm.

Learn more about Hooke's Law here:

https://brainly.com/question/29126957

#SPJ11

The asthenosphere is a layer whose distinctiveness from the rest of the mantle is based on its ___________.

Answers

reduced rigidity should be the answer 

Answer: Viscous property

Explanation: The asthenosphere is the layer that lies below the crust. This layer is generally viscous, where the rocks floats due to deformation. It is the top part of the mantle and generation of convection current pushes the materials to move, thereby breaking the crust, causing it to move in convergent or divergent direction or slide past each other. The composition is same for both the lithosphere and the asthenosphere but it has its viscous property.

Mayan kings and many school sports teams are named for the puma, cougar, or mountain lion felis concolor, the best jumper among animals. it can jump to a height of 11.7 ft when leaving the ground at an angle of 41.1°. with what speed, in si units, does it leave the ground to make this leap?

Answers

Final answer:

Using the principles of Physics and the equation for vertical displacement in projectile motion, it is calculated that the mountain lion, felis concolor, leaves the ground at a speed of approximately 8.3 m/s in order to reach a height of 11.7ft when jumping at an angle of 41.1 degrees.

Explanation:

The question is about the kinematics of projectile motion. To answer it, we can use the equation for the vertical displacement in projectile motion, which is h = v*sin(θ)*t - 0.5*g*t^2. Given that the mountain lion, felis concolor, jumps to a height of 11.7ft, we can substitute this value for h and convert it to SI units, which gives us 3.56m. The angle, θ, is given to be 41.1 degrees. We can assume that at the highest point of the jump, the velocity is zero, so we can set t as the time it takes for the lion to reach the peak of the jump and rearrange our equation to v*sin(θ) = 0.5*g*t. By substituting the known values of g and θ into this equation, we find that the mountain lion leaves the ground at a speed of about 8.3 m/s, calculated to one decimal place.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ12

The puma leaves the ground at a speed of approximately 12.79 m/s to make an 11.7 ft jump at an angle of 41.1°.

To determine the speed at which a puma, cougar, or mountain lion (Felis concolor) leaves the ground to achieve its impressive 11.7 ft (3.57 meters) jump at an angle of 41.1°, we apply projectile motion principles.

We are given:

Jump height (H) = 11.7 ft = 3.57 metersAngle of projection (θ) = 41.1°

The formula to find the initial vertical velocity component (V_oy) for a projective motion is:

H = (V_oy)² / (2g)

Here, 'g' is the acceleration due to gravity, which is approximately 9.81 m/s².

First, we solve for Voy:

V_oy = √(2gH)

Substitute the values:

V_oy = √(2 × 9.81 × 3.57) ≈ 8.35 m/s

Next, we use V_oy to find the initial speed (Vo) with the formula:

V_oy = Vo × sin(θ)

Rearranging gives:

Vo = V_oy / sin(θ)

Substitute the values:

Vo = 8.35 / sin(41.1°) ≈ 12.79 m/s

Therefore, the speed at which the puma leaves the ground to make this leap is approximately 12.79 m/s.

A person is just as likely to become dehydrated in the cold as in the heat. Please select the best answer from the choices provided. T F

Answers

The answer would be A) TRUE because we as humans can be dehydrated easily just by working out in sun or working out in the cold winter, that's how our body burns fat and calories, but it also burns our eyes since sweat has salt in it, and dehydrated means to run out of water for us, like not enough water, but yes to the answer its T.

A person is not only dehydrated during summer time but also in cold dry weather.

During cold dry weather we loss more fluids due to loss of water in respiratory parts.At that time our blood vessels constrict which makes it difficult for blood to flow freely to extremities.


During winter time one feels less thirsty.It is so because sweat evaporates very quickly in cold weather which decreases our thirst response. At that time more urine is also produced.


Hence the statement given in the question is true(T).


A) determine the capacitance of a teflon-filled parallel-plate capacitor having a plate area of 1.85 cm2 and a plate separation of 0.050 0 mm. pf (b) determine the maximum potential difference that can be applied to a teflon-filled parallel-plate capacitor having a plate area of 1.85 cm2 and a plate separation of 0.050 0 mm. kv

Answers

90 degree angle turn

Calculate the change in temperature of 20 kg of water if 30 kg of aluminum is dropped in the water and the aluminum changes temperature by 20°C (Hint: use the principle of conservation of energy.) °C

Answers

 ΔE = 0 

(m_alum) (c_alum) Δt - (m_water)(c_water) Δt' = 0 

(30) (897) (20) - (20)(4186) Δt' = 0 

Δt' = 6.42857 °C

Answer:

6.6°C

Explanation:

an object falls from rest on a high tower and takes 5.0s to hit the ground calculate the ovjects postition from tje top of the tower at 1.0s imtervals. make a positiom time graph for the objects motion in your reaponse show what you are given the equation that you used, any algebra required, a table of data, and your graph
G= 9.8m/s^2

Answers

G= 9.8m/s^2 = 
Well, think about the fall times and calculate the equation and then you will be able to solve G= 9.8m/s^2
I think G= gravity (I haven't learned this yet :P)
So gravity = 9.8m ( m = variable) 
/s^2 (/= division) (s^2 =1 S(2)   
(2 as power)
So if you set this up you will come up with[Gravity 9.8 multiplied by m divided by 1 multiplied by S(2)
I have never done something like this before so hope I got it right :)
Final answer:

The question involves using the free fall equation to calculate the positions of an object falling from rest every second, from the top of a tower. The positions calculated are 4.9m, 19.6m, 44.1m, 78.4m and 122.5m for each of the 5 seconds. On the position-time graph, the points would be plotted and connected by a curved line, indicating acceleration.

Explanation:

The subject of this question involves the concept of free fall in Physics. In this scenario, an object falls from a height under the influence of gravity alone, with an acceleration of 9.8 m/s². We will utilize the displacement equation to calculate the object's position from the top of the tower every 1.0 seconds.

The equation used is: d = 0.5 * g * t² where g = acceleration due to gravity (9.8 m/s²), t = time, and d = distance fallen.

At t = 1.0s, d = 0.5 * 9.8 * (1.0)² = 4.9 m At t = 2.0s, d = 0.5 * 9.8 * (2.0)² = 19.6 m At t = 3.0s, d = 0.5 * 9.8 * (3.0)² = 44.1 m At t = 4.0s, d = 0.5 * 9.8 * (4.0)² = 78.4 m At t = 5.0s, d = 0.5 * 9.8 * (5.0)² = 122.5 m

Please note that these are positions from the top of the tower, so the object is falling downwards.

Unfortunately, a pictorial representation of a position-time graph cannot be shown here. However, your graph should have time (in s) on the x-axis, and position (in m) on the y-axis, with data points plotted for each second up to 5 seconds, connected by a curved line—an implication of the accelerating object.

Learn more about Free Fall here:

https://brainly.com/question/35159043

#SPJ2

Dana has a sports medal suspended by a long ribbon from her rearview mirror. as she accelerates onto the highway, she notices that the medal is hanging at an angle of 15 â from the vertical. part a does the medal lean toward or away from the windshield? does the medal lean toward or away from the windshield? away from the windshield toward the windshield submitmy answersgive up correct part b what is her acceleration?

Answers

Refer to the diagram shown below.

m = the mass of the medal
T =  the tension in the string
g = 9.8 m/s²

Part (a)
The inertial force, F, tends to move the medal away from the windshield when the vehicle accelerates to the right.

Answer: The medal leans away from the windshield.

Part (b)
For force balance,
T cos(15°) = mg
0.9659 T = 9.8m
T = 10.1457m N

Also,
F = Tsin(15°) = 10.1457m*0.2588 = 2.6257m N
The inertial force is equal to the accelerating force, therefore
the acceleration, a, is given by
(2.6257m N) = (m kg)*(a m/s²)
a = 2.6257 m/s²

Answer: 2.626 m/s²

Final answer:

When Dana accelerates onto the highway, the sports medal leans away from the windshield due to inertia. Dana's acceleration is approximately 2.51 m/s^2 away from the wall.

Explanation:

When Dana accelerates onto the highway, the sports medal suspended from her rearview mirror leans away from the windshield. This can be attributed to the inertia of the medal. As the car accelerates, the medal tends to remain at rest due to inertia while the car moves forward. Thus, the medal appears to lean away from the windshield.

To find Dana's acceleration, we can use the given information that the medal hangs at an angle of 15 degrees from the vertical. The acceleration can be calculated using the equation:

acceleration = g * tan(angle)

Substituting the given values, we get:

acceleration = 9.8 m/s^2 * tan(15 degrees)

Therefore, Dana's acceleration is approximately 2.51 m/s^2 away from the wall.

Shows a 190 g hamster sitting on an 820 g wedge-shaped block. the block, in turn, rests on a spring scale. an extra-fine lubricating oil having μs=μk=0 is sprayed on the top surface of the block, causing the hamster to slide down. friction between the block and the scale is large enough that the block does not slip on the scale.

Answers

The scale read, in grams, as the hamster slides down along the wedge-shaped block is 931.5 g.

Given that:

Mass of the hamster, m = 190 g

Mass of the block, M = 820 g

The angle of the wedge block = 40°

Since the block does not have friction, the only force acting on the hamster is the normal force.

The normal component of the force is:

[tex]F_n=mgcos(\theta)[/tex]

This normal force has a downward component equal to:

[tex]F_d=F_ncos(\theta)[/tex]

[tex]F_d=mgcos^2(\theta)[/tex]

The net force acting on the hamster is:

F = Mg + mgcos²(θ)

  = (0.82 × 9.8) + (0.19 × 9.8 × cos²(40°))

  = 9.128 N

In grams, this can be found as:

[tex]\text{F}=\frac{9.128}{9.8} \times1000[/tex]

  [tex]=931.5\text{ g}[/tex]

Hence, the force is 931.5 g.

Learn more about Force here :

https://brainly.com/question/18329227

#SPJ12

The complete question with the figure is given below.

The figure shows a 190 g hamster sitting on an 820 g wedge-shaped block. The block, in turn, rests on a spring scale. An extra-fine lubricating oil having μs=μk=0 is sprayed on the top surface of the block, causing the hamster to slide down. The friction between the block and the scale is large enough that the block does not slip on the scale. What does the scale read, in grams, as the hamster slides down?

Final answer:

The question explores a physics scenario where a hamster slides off a lubricated block due to negligible friction. The block doesn't move due to sufficient friction with the scale. Concepts of forces, friction, and mechanical equilibrium are integral to understanding this.

Explanation:

The subject in question revolves around a scenario in Physics involving a hamster on a wedge-shaped block sprayed with lubricating oil, creating a scenario with negligible friction. In this case, the block is on a spring scale and the friction between the block and scale is enough to prevent slipping. This situation explores concepts of mass, force, friction, and mechanical equilibrium.

When the block is sprayed with lubricant, the friction between the hamster and the block decreases to nearly zero (μs=μk=0). This causes the hamster to slide off. The block, however, doesn't move because the friction between the block and the scale is high enough.

This scenario can be analyzed in a few different ways. One way could be through the use of Newton's laws of motion, considering the forces applied to the hamster and block separately. Another way could be using principles of energy conservation, though this might be more complex due to the dynamic nature of the situation.

Learn more about Friction here:

https://brainly.com/question/13000653

#SPJ11

Cyclist competes in a one-lap race around a flat, circular course of radius 140 m . starting from rest and speeding up at a constant rate throughout the race, the cyclist covers the entire course in 60 s . the mass of the bicycle (including the rider) is 76 kg . what is the magnitude of the net force fnet acting on the bicycle as it crosses the finish line?

Answers

Refer to the diagram shown below.

The angular distance traveled in one lap is θ = 2π radians.

Let  α =  the angular acceleration, rad/s².
Because 1 lap was completed in t = 60 s, therefore the angular acceleration is given by
θ = (1/2)*α*t²
That is,
2π rad = 0.5*(α rad/s²)*(60 s)² 
2π = 1800 α
α = 3.49 x 10⁻³ rad/s²

The angular velocity at the end of the lap is
ω = αt
    = (3.49 x 10⁻³ rad/s²)*(60 s)
    = 0.2094 rad/s

The tangential velocity is
v = rω = (140 m)*(0.2094) = 29.32 m/s

The centripetal force acting on the cyclist at the finish line is
F = m*r*ω²
   = (76 kg)*(140 m)*(0.2094 rad/s)²
   = 466.5 N

Answer: 466.5 N

The magnitude of the net of force is about 470 Newton

[tex]\texttt{ }[/tex]

Further explanation

Centripetal Acceleration can be formulated as follows:

[tex]\large {\boxed {a = \frac{ v^2 } { R } }[/tex]

a = Centripetal Acceleration ( m/s² )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

[tex]\texttt{ }[/tex]

Centripetal Force can be formulated as follows:

[tex]\large {\boxed {F = m \frac{ v^2 } { R } }[/tex]

F = Centripetal Force ( m/s² )

m = mass of Particle ( kg )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

period of the circular motion = T = 60 s

mass of the the bicycle = m = 76 kg

radius of the circuit = R = 140 m

Unknown:

magnitude of the net force = ΣF = ?

Solution:

We will use this following formula to find the tangential acceleration of the cyclist:

[tex]s = ut + \frac{1}{2}at^2[/tex]

[tex]2\pi R = 0(T) + \frac{1}{2}a(T)^2[/tex]

[tex]2\pi (140) = 0 + \frac{1}{2}a(60)^2[/tex]

[tex]280\pi = 1800a[/tex]

[tex]a = 280 \pi \div 1800[/tex]

[tex]a = \frac{7}{45} \pi \texttt{ m/s}^2[/tex]

[tex]\texttt{ }[/tex]

Next we will find the centripetal acceleration of the cyclist as it crosses the finish line:

[tex]a_c = v^2 \div R[/tex]

[tex]a_c = ( u + aT )^2 \div R[/tex]

[tex]a_c = ( 0 + \frac{7}{45} \pi(60))^2 \div 140[/tex]

[tex]a_c = \frac{28}{45} \pi^2 \texttt{ m/s}^2[/tex]

[tex]\texttt{ }[/tex]

Finally we could calculate the magnitude of the net force by using Newton's 2nd Law Of Motion as follows:

[tex]\Sigma F = m\sqrt{a^2 + a_c^2}[/tex]

[tex]\Sigma F = 76 \sqrt{(\frac{7}{45}\pi)^2+(\frac{28}{45}\pi^2)^2}[/tex]

[tex]\Sigma F \approx 470 \texttt{ Newton}[/tex]

[tex]\texttt{ }[/tex]

Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Circular Motion

a 8.2 L sample of gas has a pressure of 0.8 atm at a temperature of 259 K. If the temperature increases to 301 K, causing the volume to increase to 11.5 L, what is the new pressure? Round your answer to the nearest tenth.

Answers

P1*V1/T1=P2*V2/T2
P2=P1*V1*T2/(V2*T1)=0.8*8.2*301/(11.5*259)=0.67 atm

IT IS 0.7 THANK YOU. Also if your not sure if your answer is right or not don't put it down cause other people look at it and enter it and get a bad grade cause of your selfish ahh. Thank you

You are a pirate working for dread pirate roberts. you are in charge of a cannon that exerts a force 20000 n on a cannon ball while the ball is in the barrel of the cannon. the length of the cannon barrel is 2.41 m and the cannon is aimed at a 35⦠angle from the ground. the acceleration of gravity is 9.8 m/s 2 . if dread pirate roberts tells you he wants the ball to leave the cannon with speed v0 = 83 m/s, what mass cannon ball must you use? answer in units of kg.

Answers

Refer to the diagram shown below.

F = 2000 N, the force exerted on the cannonball
L = 2.41 m, the length of the barrel
V₀ = 83 m/s, the launch velocity
θ = 35°, the launch angle

Let m =  the mass of the cannonball.
Let a  =  the acceleration of the ball when fired.

The net force acting on the ball is
F - mg sinθ = 2000 - 9.8*m*sin(35°) =  2000 - 5.621*m N

Then, from Newton's Law of motion,
F = ma
2000 - 5.621*m = m*a             (1)

The launch velocity is V₀ = 8.3 m/s, therefore
V₀² = 2*a*L
(83 m/s)² = 2*(a m/s²)*(2.41 m)
6889 = 4.82*a
a = 6889/4.82 = 1429.25 m/s²      (2)

Insert (2) into (1)
2000 - 5.621*m = 1429.25*m
2000 = 1434.871*m
m = 1.394 kg

Answer: 1.394 kg



The sign has a mass of 100 kg with center of mass at g. determine the x, y, z components of reaction at the ball-and-socket joint a and the tension in wires bc and bd.

Answers

Final answer:

The problem is about finding the reaction components at a ball-and-socket joint and the tension in wires supporting a sign. You can do this by breaking the forces and moments into their x,y,z components, setting up force balance and moment balance equations, and solving for the unknowns.

Explanation:

This problem pertains to static equilibrium, where both the sum of forces and the sum of torques are zero. To begin, let's establish a coordinate system where the ball-and-socket joint 'a' is considered the origin.

Assuming the tension in the wires is T and the angles of the wires to the x, y, z axes are known, you can break the tensions into their respective components using trigonometric principles. Let's consider Tbc and Tbd to be the tensions in the strings.

For the x-component we would sum up the forces in the x-direction and set it equal to zero. This can be represented as ∑Fx = Tbc,x + Tbd,x=0

The same goes for the y and z components with the z component taking into account the force due to gravity on the sign. Hence, ∑Fy = Tbc,y + Tbd,y=0 and ∑Fz = Tbc,z + Tbd,z - weight of the sign = 0. Here, the weight of the sign is 100kg*9.81m/s2

By balancing torques about each axis, you can find the tensions in the strings. The tension force should be the same in each wire if they make the same angles with the axes and are of equal length.

Learn more about Mech Physics here:

https://brainly.com/question/34644538

#SPJ12

Final answer:

This problem in Physics requires setting up equilibrium equations based on the given mass and calculating forces at the ball-and-socket joint and cable pressures.

Explanation:

The subject of this question falls under the branch of

Physics

referred to as statics, specifically the study of systems in equilibrium. Equilibrium implies that an object is neither accelerating nor rotating, meaning the sum of all forces and the sum of all torques acting on the object must both be zero. The 'x', 'y' and 'z' components referred to are likely part of a coordinate system used to describe the forces at work on the sign.

To determine these, one would need to set up equilibrium equations based on the known details about the system, which could include the known weight (provided by the mass of the sign and gravity), any relevant distances for calculating torques, and any other forces present such as tension in wires. The process of solving this system of equations would then yield the desired reaction components at the ball-and-socket joint and the tensions in the wires.

Learn more about Statics here:

https://brainly.com/question/33327144

#SPJ2

A mass of 2000 kg. is raised 5.0 m in 10 seconds. What is the power output to raise the object?

Answers

P=E/t 
assume gravity : 9.8 m/s2 

P = W*s/t= m*g*s/t 
= 2000*9.8**5/10 
=9800 J/s 
=9800 Watt 

I hope this helps, but be careful with your units ok!

Answer:

9800 W

Explanation:

A dog is pulling a sled by applying a force of 75 newtons on it. The angle of force from the ground is 45°. If the sled moves 15 meters, how much work is done by the dog on the sled?

Answers

The work done with the force of 75 N and displacement of 15 meters and angle of 45 ° is 795.4 J.

What is work done ?

Work done in physics is the dot product of force and displacement. Work done is a vector quantity thus, it is characterised with a magnitude and direction.

When a force applied on an object is resulted in a displacement for the object, it is said to be work is done on the object. The work done by a force acting in angle θ in the horizontal direction is:

W = F d cos θ.

Given that, the force applied by the dog = 75 N

angle = 45 °

displacement = 15 m

Then, the work done W = 75 × cos 45 = 795.4 J.

Therefore, the work done by the dog on the sled is 795.4 J.

To find more on work done, refer here:

https://brainly.com/question/13662169

#SPJ2

4) Which of the following gases are typically used for colorful lighting when an electric current is applied ?

a) hydrogen and helium
b) argan and krypton
c) fluorine and chlorine
d) oxygen and nitrogen

please help a shawty out

Answers

The answer is B. Hope this Helps!

Argon and krypton gases are typically used for colorful lighting when an electric current is applied.

What is emission spectrum?

The electromagnetic radiation spectrum produced when an electron changes from a high energy state to a lower energy state is known as the emission spectrum of a chemical element or chemical compound.

The energy difference between the two states is equal to the photon energy of the emitted photon. Each atom contains a large number of potential electron transitions, and each transition has a distinct energy difference.

An emission spectrum is made up of a variety of transitions that result in various radiated wavelengths. The emission spectra of each element is distinct. Therefore, components in matter with an unknown composition can be identified via spectroscopy.

Due to emission spectrum of Argon and krypton gases, colorful lighting happens when an electric current is applied.

Learn more about emission spectrum here:

https://brainly.com/question/12472637

#SPJ6

If a gas has an absolute pressure of 319 kPa, its gage pressure is

Answers

The absolute pressure is related to the gauge pressure using the following formula:

Pabs = Pg + Patm
where
Pabs = absolute pressure
Pg = gauge pressure
Patm = atmospheric pressure

In units of kPa, Patm = 101.325 kPa.

Pabs = Pg + Patm
319 kPa = Pg + 101.325 kPa
Pg = 217.675 kPa

Thus, the gauge pressure is 217.675 kPa.

A 55 kg person moves at the constant speed of 7 m/s along a straight stretch of track for 20s. How far does he travel in this time ?

Answers

By definition,
Distance = Speed * Time

Therefore the distance traveled is
(7 m/s)*(20 s) = 140 m

Answer: 140 m

Both car a and car b leave school at the same time, traveling in the same direction. car a travels at a constant speed of 75 km/h, while car b travels at a constant speed of 91 km/h. how far is car a from school 1.7 h later? answer in units of km.

Answers

1)
S₁ = V₁*t = 75*1,7 = 127,5 km

2)
S₂ = V₂*t = 91*1,7 = 154,7 km

When both cars A and car B leave school at the same time, traveling in the same direction. car A travels at a constant speed of 75 km/h, while car B travels at a constant speed of 91 km/h, then car a would be 127.5 kilometers away from the school.

What is speed?

The total distance covered by any object per unit of time is known as speed. It depends only on the magnitude of the moving object. The unit of speed is a meter/second.

As given in the problem when both cars A and car B leave school at the same time, traveling in the same direction. car A travels at a constant speed of 75 km/h, while car B travels at a constant speed of 91 km/h,

The distance covered by car A after 1.7 hours = 75km/h × 1.7 hours

                                                                                  =127.5 kilometers

Thus, car A would be 127.5 kilometers away from the school after 1.7 hours.

Learn more about speed from here, refer to the link;

https://brainly.com/question/7359669

#SPJ2

NEED HELP URGENT!! A small, horizontal pipe with cross-sectional area A is joined to a large horizontal pipe with cross-sectional area 2A.  Both pipes are at the same height, and completely filled with water (density 1000 kg/m^3).  What is the speed of the water in the large pipe if the speed in the small pipe is 1 m/s?

Answers

Refer to the diagram shown below.

v₁ = 1 m/s, the speed in the smaller pipe
ρ = 1000 kg/m³, the density of the water (constant)
A, m² =  the cross-sectional area of the smaller pipe
2A, m² = the cross-sectional area of the larger pipe.

Let v₂ =  the velocity of the water in the larger pipe.

The mass flow rate is constant, and it is
[tex]Q = (\rho \, \frac{kg}{m^{3}} )*(v_{1} \, \frac{m}{s} )*(A \, m^{2}) = (\rho \, \frac{kg}{m^{3}} )*(v_{2} \, \frac{m}{s} )*(2A \, m^{2})[/tex]

Because v₁ = 1 m/s, obtain
ρ*v₂*(2A) = ρA
2v₂ = 1
v₂ = 1/2 m/s

Answer: 0.5 m/s

A 200 kg weather rocket is loaded with 100 kg of fuel and fired straight up. it accelerates upward at 30.0 m/s2 for 30.0s, then runs out of fuel. ignore any air resistance effects. part a what is the rocket's maximum altitude?

Answers

There are two stages to the flight: acceleration stage and deceleration stage.

m₁ = 200 kg, mass of the rocket
m₂ = 100 kg, mass of fuel
a₁ = 30.0 m/s², upward acceleration when burning fuel
Ignore air resistance and assume g = 9.8 m/s².

Acceleration stage:
The rocket starts from rest, therefore the initial vertical velocity is zero.
The distance traveled is given by
s₁ = (1/2)*(30.0 m/s²)*(30.0 s)² = 13500 m

Deceleration stage (due to gravity):
The initial velocity is u = (30.0 m/s²)*(30 s) = 900 m/s
The initial height is 13500 m
At maximum height, the vertical velocity is zero.
Let s₂ =  the extra height traveled. Then
(900 m/s)² - 2*(9.8 m/s²)*(s₂ m) = 0
s₂ = 900²/19.6 = 41326.5 m

The maximum altitude is 
s₁+s₂ = 54826.5 m

Answer: 54,826.5 m
Other Questions
What happens to ponyboy after the court hearing? 25% of all the seats in the auditorium is 37 shares the total number of seats in the auditorium is Irony plays an important role in developing the narration and tone of a story. Read this sentence from Bartleby, the Scrivener. What is the verbal irony in this excerpt? What does the use of irony tell the reader? In that direction, my windows commanded an unobstructed view of a lofty brick wall, black by age and everlasting shade; which wall required no spy-glass to bring out its lurking beauties, but, for the benefit of all near-sighted spectators, was pushed up to within ten feet of my window panes. Who is the intended audience for Lincolns address? Based on the content, how does Lincoln view these different groups? What is an intersection point? 120% of 33 is what number? What was the primary subject of the 1990s treaty between the U.S., Canada, and Mexico? A)immigration B)ending drug smuggling C)reduction of nuclear weapons D)free trade between the three countries Why did Democrats agree to the Compromise of 1877? Nathan and Sydney start out together on a bike trail that is 24 miles long. Nathan bikes at 88 miles per hour while Sydney bikes at 12 miles per hour. Which statement is true? Jackie deposited $315 into a bank account that earned 1.5% simple interest each year.If no money was deposited into or withdrawn from the account, how much money was in the account after 3 years?Round your answer to the nearest cent.Enter your answer in the box. Which kind of tumor grows slowly and is surrounded by membranes that prevent it from spreading from the original site? You will read and review the provided primary source documents. You then will analyze the documents using the following criteria:1. Brief summary2. Author's Purpose3. Historical Context Texaschic101Help please Which of the following most accurately labels the conflict between Louisa and her father, Mr. Gradgrind in Hard Times, by Charles Dickens? A.man v. man B.man v. self C.man v. nature D.man v. society The Potato Famine in Ireland in the mid 1800s can be considered a pull factor that caused people to migrate to the U.S.True or False? Please provide evidence. The Sheng family had dinner at their favorite restaurant. A 4% sales tax was added to their bill. Amy paid the bill with a $25 gift certificate plus $44.80. How much did the family's dinner cost before tax? Round your answer to the nearest penny.$ 71.59$ 66.01$ 67.12$ 67.01 What are some problems with eating fish from higher trophic levels? Suppose a parabola has vertex (-3,7) and pass throught the point (-2,11). write the equation of the parabola in vertex form. Which line would most likely be written by a reader analyzing Hamlet through a formalist lens?A)the female characters in the play are defined by their relationshipsB)the male characters in the play are defined by their powerC)the play includes repeated references to death and decayD)the play highlights political issues common in Shakespeare'so time Can someone help we with unscrambling these words on cells? One modern technique of examining cell contents is by using cell (tiontioncaraf) The cell's nucleus controls the cell's activities, many of which takes place in the (legselonar) Steam Workshop Downloader