First we assume that the compound containing only C,H,and O is combusted completely in the presence of excess oxygen, so that the only things that can be produced are water and carbon dioxide.
From there we should back calculate the amount of Hydrogen that is in the original sample by taking all of the hydrogen in the 0.239g to came from the organic compound.
And since we know that the original mass of the sample was .100g, we can also easily get a mass % H by taking the mass Hydrogen calculated over the total original mass (.100 g)
So that:
0.239g H2O / (18.01 g/mol) = .01327 moles H20
.01327 Moles H20 * 2.02g H (per every mole H2O) = .0268g H initially present in the sample
.0268g H / .100g sample = 26.8% H by mass
The mass percent of hydrogen in the 0.1 g sample of compound containing carbon–hydrogen–oxygen is 26.6%
We'll begin by calculating the mass of the hydrogen in the compound. This can be obtained as follow:
Molar mass of H₂O = (2×1) + 16 = 18 g/mol
Molar mass of H₂ = 2 × 1 = 2 g/mol
Mass H₂O produced = 0.239 g
Mass of H =?Mass of H = [tex]\frac{2}{18} * 0.239[/tex]
Mass of H = 0.0266 gFinally, we shall determine the mass percent of Hydrogen in the compound. This can be obtained as follow:
Mass of H = 0.0266 g
Mass of compound = 0.1
Mass percent of H =?[tex]Percentage = \frac{mass}{mass of compound} * 100\\\\= \frac{0.0266}{0.1} * 100[/tex]
Mass Percent of H = 26.6%Thus, the mass percent of hydrogen in the sample is 26.6%
Learn more: https://brainly.com/question/11952337
At 25 °c and 785 torr, carbon dioxide has a solubility of 0.0351 m in water. what is its solubility at 25 °c and 1510 torr?
The solubility of carbon dioxide in water at 25 °C increases from 0.0351 m at 785 torr to approximately 0.0675 m at 1510 torr.
The solubility of a gas in a liquid is described by Henry's Law, which states that at a constant temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas above the liquid.
Using this law, we can calculate the solubility of carbon dioxide (CO₂) in water at a different pressure while keeping the temperature constant at 25 °C.
At 785 torr, the solubility of CO₂ is 0.0351 m. According to Henry's Law, the solubility (S) can be calculated using the formula S₁/P₁ = S₂/P₂, where S₁ and S₂ are the solubilities at pressures P₁ and P₂, respectively.
If the pressure is increased to 1510 torr, we can find the new solubility (S₂) as follows:
S₂ = S₁ x (P₂/P₁)
= 0.0351 m x (1510 torr / 785 torr)
= 0.0351 m x (1510/785)
= 0.0351 m x 1.9235671
= 0.067533 m (approx)
The solubility of CO₂ at 25 °C and 1510 torr is approximately 0.0675 m.
Aside from carbon and hydrogen, which are always present in organic molecules, what are some other substances they may contain?
Determine the mass of 2.5 cups of water if the density of water is 1.00 g/cm3 and 1 cup = 240 mL\
how many reference points are needed to make a thermometer scale?
A kind of sedimentary rock formed from plant material over a long period of time is __________.
While in Europe, if you drive 119 km per day, how much money would you spend on gas in one week if gas costs 1.10 euros per liter and your car's gas mileage is 22.0 mi/gal ? Assume that 1euro=1.26dollars.
The weekly cost of gas for driving 119 km per day in Europe, considering the car's gas mileage of 22 mi/gal and gas cost of 1.10 euros per liter, is approximately $123.45 when converted from euros.
To calculate the weekly cost of gas while driving in Europe, we need to figure out the total number of kilometers driven in a week, convert this distance to miles, and then determine how much gas would be used, taking into account the car's gas mileage, and finally convert the cost to dollars.
Firstly, the student will drive 119 km per day. Over a week, this amounts to:
119 km/day × 7 days/week = 833 km/week.
Next, we convert kilometers to miles using the conversion factor 1 km ≈ 0.621371 miles:
833 km × 0.621371 mi/km ≈ 517.781 mi/week.
Given the car's gas mileage of 22.0 mi/gal, the amount of gas needed for the week is:
517.781 mi / 22.0 mi/gal = 23.535 gal/week.
Now we convert gallons to liters since gas in Europe is sold by the liter. There are approximately 3.78541 liters in one gallon:
23.535 gal × 3.78541 liters/gal ≈ 89.071 liters/week.
With the cost of gas at 1.10 euros per liter, this totals:
89.071 liters × 1.10 euros/liter = 97.978 euros/week.
Finally, we convert euros to dollars:
97.978 euros × 1.26 dollars/euro = $123.452.
Therefore, the cost of gas for one week is approximately $123.45.
How many ammonium ions and how many sulfate ions are present in an 0.370 mol sample of (nh4)2so4?
In a 0.370 mol sample of [tex](NH_4)_2SO_4[/tex], there are 0.740 mol of [tex]NH_4^+[/tex] ions and 0.370 mol of [tex]SO_4^{2-}[/tex] ions.
To determine the number of ammonium ([tex]NH_4^+[/tex]) and sulfate ([tex]SO_4^{2-}[/tex]) ions in a 0.370 mol sample of [tex](NH_4)_2SO_4[/tex], we use the stoichiometry of the compound. Each unit of ammonium sulfate contains two ammonium ions and one sulfate ion.
We calculate the number of ions as follows:
For ammonium ions: 0.370 mol of [tex](NH_4)_2SO_4[/tex]x 2 mol of [tex]NH_4^+[/tex] per mol of [tex](NH_4)_2SO_4[/tex] = 0.740 mol of [tex]NH_4^+[/tex]For sulfate ions: Since there is one sulfate ion per formula unit, we have 0.370 mol SO42-.The sample therefore contains 0.740 mol of [tex]NH_4^+[/tex] ions and 0.370 mol of [tex]SO_4^2^-[/tex] ions.
Which shows an electron being ejected from the atom? explain your reasoning?
Which two of the following elements would you expect to be most similar: nitrogen, chlorine, barium, fluorine, and sulfur?
Answer:
Chlorine and Flourine
Explanation:
It is important to identify the groups in which the elements being to. The elements in each group have the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons.
Since elements in a group have the same number of valence electrons, they behave similarly in chemistry.
Nitrogen - Group 5
Chlorine - Group 7
Barium - Group 2
Flourine - Group 7
Sulphur - Group 6
This means the most similar elements would be flourine and Chlorine because they are both group 7 elements.
The phosphate functional group in the non cyclic adenosine monophosphate molecule contains "acidic hydrogens".Explain what this phrase means.
A chemical that causes a sudden, almost instantaneous release of pressure, gas, and heat when subjected to sudden shock, pressure, or high temperatures best describes which type of DOT hazardous materials classification?
Answer:
The correct answer is class I explosives.
Explanation:
An explosive refers to a chemical, which leads to a sudden, almost immediate discharge of gas, pressure, and heat when exposed to sudden pressure, shock, or high temperature. These are unstable substances and are primarily of two kinds.
The type one comprises of substances possessing the tendency of undergoing supersonic reactions, like TNT and nitroglycerin. The other kind comprises substances, which burn briskly, however, at a subsonic rate. The examples are rocket propellants, gunpowder, and fireworks.
(EMG) Which sequence contains elements listed from most reactive to least?
1. Click to view
Alkali metals, alkaline earth metals, noble gases
2.
ransition metals, alkali metals, alkaline earth metals
3.Click to view
Alkaline earth metals, alkali metals, halogens
4. Click to view
Transition metals, noble gases, halogen
Alkali metals are the most reactive, followed by alkaline earth metals. Noble gases are the least reactive. Thus, the correct sequence from most to least reactive is alkali metals, alkaline earth metals, noble gases. Option 1
Explanation:In a periodic table, the reactivity of elements tends to decrease from the left to the right. Therefore, the correct sequence from most reactive to least reactive elements would be option 1: Alkali metals, alkaline earth metals, and then noble gases.
This is because alkali metals (group 1) are the most reactive elements, followed by alkaline earth metals (group 2). Noble gases (group 18) are very stable and hence the least reactive. On the other hand, transition metals are generally less reactive than alkali and alkaline earth metals, while halogens are more reactive than noble gases but less reactive than alkali and alkaline earth metals.
Option 1
Learn more about reactive here:https://brainly.com/question/11354664
#SPJ11
A new element is discovered that is very unstable and highly reactive, and it likes to lose its one valence electron. in what group should this element be placed in? explain.
Please answer ASAP! Will mark brainliest:
According to its periodic table entry, how many electrons does nickel have in its valence level?
a.) 2
b.) 8
c.) 16
d.) 28
Option A= 2
ExplanationAtomic Number of Nickel (Ni) = 28
Electronic configuration is 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d8
By definition, the highest principle quantum number is the valence shell. In the case of Nickel, n = 4 is the highest QN and contains 2 electrons (max allowed) in the s-orbital.
Which of the following correctly describes the relationship between speed and velocity?
What volume would 4 moles of gas occupy at stp? do this without a calculator. you may need to use longhand calculations. the question is designed to tolerate reasonable rounding?
A mixture of table salt and ice is used to chill the contents of hand-operated ice-cream makers. what is the molality of salt in a mixture of 2.00 lb of nacl and 12.00 lb of ice if exactly half of the ice melts? assume that all the nacl dissolves in the melted ice.
The molality of the table salt (NaCl) in the described mixture, where 2.00 lbs of NaCl is mixed with 12.00 lbs of ice (half of which melts), is approximately 5.71 mol/kg.
Explanation:The question asks for the calculation of the molality of salt (NaCl) in a mixture which involves a 2.00 lb sample of NaCl and 12.00 lb sample of ice that eventually melts to half its quantity. The steps for finding molality in such a scenario involve the conversion of weight measurements to mole measurements and utilize the fact that molality is calculated as moles of solute (NaCl) per kilogram of solvent (water).
Step 1: Convert the amount of NaCl and water (melted ice) from lb to grams. 1 lb is approximately 453.592 grams. So, 2.00 lb of NaCl is 907.185 grams of NaCl and 6.00 lb of water is 2721.55 grams (since half of the 12 lb of ice melts). This needs to be converted to kilogram giving us 2.72155 kg.
Step 2: Convert grams of NaCl to moles. The molar mass of NaCl is approximately 58.44 grams per mole. Therefore, 907.185 grams of NaCl is approximately 15.54 moles.
Step 3: Determine the molality using the formula molality = moles of solute (NaCl) / kg of solvent (melted ice). This gives us a molality of approximately 5.71 mol/kg.
Learn more about Molality here:https://brainly.com/question/26921570
#SPJ12
A 0.2 m solution of a weak acid ha dissociates such that 99.4% of the weak acid remains intact (i.e., remains as ha). what is the pka of the weak acid?
The pKa of a weak acid can be determined using the equation: pKa = -log10(Ka). In this case, we are given that 99.4% of the weak acid remains intact, which means that only 0.6% has dissociated. Therefore, we can calculate the equilibrium concentration of HA by multiplying the initial concentration of HA by 0.006.
Explanation:The pKa of a weak acid can be determined using the equation: pKa = -log10(Ka), where Ka is the acid dissociation constant. In this case, we are given that 99.4% of the weak acid remains intact, which means that only 0.6% has dissociated. Therefore, we can calculate the equilibrium concentration of HA by multiplying the initial concentration of HA by 0.006.
Since the [HA] is equal to the [HA]₀ * 0.006, we can use this calculated equilibrium concentration along with the given Ka value to find the pKa.
For example, let's assume the initial concentration of HA is 0.2 M. The equilibrium concentration of HA would be 0.2 M * 0.006 = 0.0012 M. Using the equation pKa = -log10(Ka), we can find the pKa value.
atp is a modified nucleotide used for cellular for energy that contains what sugar
ATP is a modified nucleotide used for cellular energy that contains the ribose sugar.
Further explanation
Ribose
It is a sort of sugar that is created by the body. It is utilized as a medicine. Ribose is utilized by mouth to diminish chest torment and improve heart work in individuals with coronary course illness.
ATP (Adenosine triphosphate)
It is an instant energy source. It is called as the energy currency of the cell. It is used as a coenzyme in many processes. ATP is synthesized during Krebs cycle and glycolysis. Mitochondria and chloroplast are involved in the production of ATP. ATP is involved in the active transport of molecules, in the processes like muscle contraction, protein synthesis and Calvin cycle. We synthesize 60 Kg of ATP per day. ATP is a large molecule but its energy lies in the terminal phosphate bond. ATP provides energy to cell by breaking its phosphate bond. By breaking one phosphate group ATP is converted to ADP molecule but it can be regenerated. ATP is also consumed by plants in the process of photosynthesis. Animals use ATP in the breakdown of carbohydrate and lipids. In fact, it is the principal molecule used in biochemical reactions.
Structure of ATP
ATP is composed of adenine which is a purine base, a ribose sugar and three phosphoric acid molecules. It also has ester linkage and high energy phosphate bond.
Phosphate bond is highly reactive bond but when it reacts with nucleoside, adenosine it becomes less reactive.
Answer details
Subject: Chemistry
Level: College
Keywords
Ribose Adenosine triphosphate Structure of ATPLearn more to evaluate
https://brainly.com/question/11073849
https://brainly.com/question/10885719
The molecular mass of the compound is 90 amu. What is the molecular formula for C2H5O?
First let us get the molecular mass of the compound C2H5O.
C has molar mass of 12 amu, H is 1 amu, while O is 16 amu, therefore:
C2H5O = 12 amu * 2 + 1 amu * 5 + 16 amu = 45 amu
So to get 90 amu, simply double all the elements, therefore:
C4H10O2
Let us assume that the given formula of elements is empirical formula where elements have simplest whole number ratio
The empirical mass = 2 X atomic mass of carbon + 5 X atomic mass of hydrogen + at mass of O
The empirical mass = 2 X 12 + 5 + 16 = 45
The ratio of molecular mass and empirical mass = 90 / 45 = 2
Molecular formula is obtained by multiplying the empirical formula with this ratio / factor
molecular formula = 2 X (C2H5O) = C4H10O2
A 3.52g sample of chromium metal reacts with fluorine to produce 7.38g of metal fluoride. What is the mass % of Cr in the metal fluoride?
What would the % p, on the npk ratio, be reported as for a 100g sample containing 7.5g of phosphorous?
Ans: 7.50% of P
Given:
Mass of NPK sample = 100 g
Mass of P in sample = 7.5 g
To determine:
The % P in the given sample
Explanation:
The percent of a particular substance (say,X) in a given total amount (M) is generally expressed as:
% X = [Mass of X/Total mass]*100
In this case:
%P = [mass of P/mass of NPK sample]*100
= [7.5/100]*100 = 7.5%
Give the symbol of the element that has the largest atomic size in group 3a (13).
Final answer:
Thallium, being the heaviest member of Group 13, will have the largest number of electron shells, which makes its atomic radius the largest of the group.
Explanation:
The element in Group 3A (13) with the largest atomic size is thallium, which has the symbol Tl. Atomic size generally increases from top to bottom within a group on the periodic table due to the addition of electron shells.
Thallium, being the heaviest member of Group 13, will have the largest number of electron shells, which makes its atomic radius the largest of the group.
The element with the largest atomic size in Group 3A (13) is thallium (Tl), as atomic size increases down a group.
In two or more complete sentences explain how to balance the chemical equation, KClO3 ⟶ KCl + O2 and include all steps
Which two body systems contribute to acid-base balance of blood?
Final answer:
The respiratory and renal systems are crucial in maintaining the acid-base balance of blood, by managing the levels of CO2 and bicarbonate, respectively.
Explanation:
The two body systems that contribute to the acid-base balance of blood are the respiratory system and the renal or excretory system. The primary blood buffer system is carbonic acid/hydrogen carbonate, which aids in maintaining the blood pH within a narrow range. The respiratory system regulates blood pH by exhaling carbon dioxide (CO2), while the renal system adjusts blood pH through the excretion of hydrogen ions (H+) and the conservation of bicarbonate (HCO3-). These two systems play a vital role in the acid-base homeostasis by removing excess acids or bases from the body.
Assume that 50.0 cal of heat is applied to a 15 g sample of sulfur at 20°C. What is the final temperature of the sample if the specific heat of sulfur is 0.175 cal/(g • °C)?
4. Which one of the following groups of chemical compounds is composed entirely of organic compounds? A. Ch3OCH3, Ca3(PO4)2, CO2, H2CO3 B. C2H2, CH4, CaCl2, CaCN2 C. C2H4O, CH2O, CaSO4, C3H5(OH)3 D. C6H6, C2H5OH, C6H5CH3, C3H5(NO3)3
Answer: The correct answer is Option D.
Explanation: Organic compounds are defined as the compounds which have hydrogen and carbon atoms in it. They are also known as hydrocarbons.
From the given options:
Option 1: [tex]Ca_3(PO_4)_2\text{ and }CO_2[/tex] are not organic compounds because these two compounds do not contain hydrogen element in it.
Option 2: [tex]CaCl_2\text{ and }CaCN_2[/tex] are not organic compounds because these two compounds do not contain hydrogen and carbon elements in it.
Option 3: [tex]CaSO_4[/tex] is not an organic compound because this compound do not contain hydrogen and carbon elements in it.
Option 4: All the compounds contain hydrogen and carbon elements in it and hence, all the compounds are organic compounds.
Therefore, the correct option is Option D.
Hydrides are compounds made up of hydrogen and metal. Why ammonia has the highest boiling point among the hydrides of elements in Group 15?
Select one:
a. The bonds in ammonia are polar
b. The size of the nitrogen atom is the smallest
c. The ammonia molecules is the smallest among the hydrides of the elements in Group 15
d. Hydrogen atoms bonded to the nitrogen atom can form hydrogen bonds
What is the mass (in grams) of 9.79 × 1024 molecules of methanol (CH3OH)?
Final answer:
To find the mass of methanol, divide the number of molecules by Avogadro's number to get moles, then multiply by molar mass. The mass of 9.79 × 10²⁴ molecules of methanol is 520.64 grams.
Explanation:
To calculate the mass of 9.79 × 10²⁴ molecules of methanol (CH₃OH), first, we need to determine how many moles of methanol there are. Since 1 mole of any substance contains 6.02 × 10²³ molecules (Avogadro's number), we can use this to find the number of moles:
Moles of methanol =
9.79 × 10²⁴ molecules / 6.02 × 10²³ molecules/mol
This calculation reveals that there are 16.27 moles of methanol. Next, we use the molar mass of methanol, which is 32.0 g/mol, to find the mass:
Mass of methanol = 16.27 moles × 32.0 g/mol = 520.64 grams. Therefore, 9.79 × 10²⁴ molecules of methanol have a mass of 520.64 grams.
How does acetaldehyde impurity arise in the fermentation?
Answer:
Explanation:
Acetaldehyde is a colorless, volatile liquid with a pungent and suffocating smell. It is produced as a result of the oxidation of ethyl alcohol to acid or acetic fermentation. Its formula is: CH3CHO formula.
Acetaldehyde occurs naturally in alcoholic beverages. In excess, however, it resembles the smell and taste of an immature green apple.
Fermentation is a process that degrades molecules to transform them into other simpler molecules.
The most frequent causes for which the impurity of acetaldehyde can be generated in fermentation:
It can be caused by the strain of yeast used. To avoid this, a suitable yeast strain should be chosen for the fermentation process. Due to the premature termination of fermentation: In this case it can occur in two different ways: Due to the depletion of must oxygen due to temperature changes and premature flocculation: Acetaldehyde is an intermediate compound in the formation of alcohol, if fermentation stops at the time of the transformation of glucose into alcohol at the stage of acetaldehyde, it produces a fruity flavor and aroma (green apple). For the exposure of alcohol to oxygen: Causing its oxidation and giving immature green apple flavors. Contamination by infection of the bacterium (acetobacter): It is produced as a byproduct of the end of fermentation when part of ethyl alcohol is transformed due to the action of Acetobacter, a genus of aerobic bacteria. For this reason it is convenient that the oxygen level is low at this stage of the fermentation so that the bacteria do not act.