Answer:
Example A describes a physical change and Example B describes a chemical change.
Explanation:
Physical Change
The changes that occur only due to change in shape or physical properties but their chemical or internal composition remain unchanged.
These changes were reversible.
They have same chemical property.
These changes can be observed with naked eye.
Example :
Vegetables are chopped and converted into smaller pieces the composition remain same. It is physical change.
Water converting to Ice
Water converting to gas
In this water molecule remain the same only they rearrange themselves that change its state of mater not composition
Chemical change:
The changes, that occur due to change in the composition of a substance and result in a different compound is known as chemical change.
These changes are irreversible
These changes occur due to chemical reactions
These may not be observed with naked eye
Example:
Combustion of fuel or wood: that oil or wood convert into energy, CO2 and ash in case of wood
Boiling of egg: that change the chemical composition of protein in the egg .
Food is broken up into simpler form during digestion and convert into the energy and particles which are different from original compound .
Answer:
Example A describes a physical change and Example B describes a chemical change.
Explanation:
Can someone help!! I think it’s D but idk maybe B..
Answer:it’s d the answer is d
Explanation:
Answer:
Explanation:
I have never used this representation before, but I think first of all the figure has 7 Carbons at each joint and 1 carbon at each end. If you count from the left side, the methyl is attached to the second joint, which makes it 2-methylheptane.
D is correct, or at least I agree with you.
Three different atoms or atomic cations with 4 electrons
Answer:
2 atoms leftb
Explanation:
Changing direction is an example of a kind of
A acceleration
B speed
C VelocIty
D constant rate
Answer:
Changing direction is an example of a kind of acceleration
Explanation:
Acceleration is the "change of velocity" of an object concerning time. Acceleration being vector quantities, thus an object’s acceleration is the produce of orientation of the net force that has been acted on the object.
Newton’s second law explains the magnitude of acceleration. An example is when a car travels in the straight line, it is accelerates in the direction of its travel. As the car turns the acceleration occurs in a new direction.
Changing direction refers to acceleration, because it's about the change in velocity, which includes both speed and direction. So, if the direction changes but speed remains the same, there is still acceleration.
Explanation:Changing direction is an example of a kind of acceleration. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity.
This is seen when an object changes its speed, direction, or both. For example, if you are driving a car and make a turn, even if your speed remains constant, you're experiencing acceleration because your direction is changing. Therefore, changing direction is associated with acceleration, not speed, velocity, or a constant rate.
Learn more about Acceleration here:https://brainly.com/question/11789833
#SPJ6
The pattern of__ is visualized on X-ray film by autoradiography.
Answer:
The pattern of decay emission is visualized on X-ray film by auto-radiography.
Explanation:
The image on the x-ray are auto-radiography or the nuclear emission that has been produced as a result of the decay emission because of the gamma particles or the beta particles which comes from a radioactive substance. These auto-radiography are available as the digital image as a result of recent development of gas detectors or because of the rare earth phosphor imaging system. Some of the can be studied microscopically for silver granules this method is called as micro- auto-radiography.
Answer: the pattern of hybridization
Explanation:
did it
What if you drop a 30 kg object and a 10 kg object from a bridge at the same time which one will hit the water first
Answer:
Both of them will hit the water at the same time.
Explanation:
The time taken to hit the water is given by:
Let H be the height of the bridge.
[tex]H=ut+\frac{1}{2}gt^{2}\\\\Initial\:Velocity=u=0\\\\H=\frac{1}{2}gt^{2}\\\\t=\sqrt{2gH}[/tex]
The time taken to hit the water does not depend on the weight of the object.
It only depends on the height of the bridge.
Since, both the objects are dropped from the same bridge, they will hit the water at the same time.
Which of the following is the substance that enables a leaf to use sunlight to produce food?
As a water wave nears the coastline, what happens to the height and speed of the wave?
A
Wave height increases, and wave speed decreases.
B
Wave height decreases, and wave speed increases.
C
Wave height increases, and wave speed remains the same.
D
Wave height decreases, and wave speed decreases
Answer:
D or B
Explanation:
Waves break by shorelines so height will decrease. I dont know about wave speed so i put two answers
As a water wave nears the coastline, the wave height increases and the wave speed decreases due to friction with the seafloor, a process called shoaling, which ultimately leads to the waves breaking on the shore.
As a water wave nears the coastline, its behavior changes due to the decreasing water depth. As the wave approaches shallow water, its wave speed decreases because it starts to feel the ocean bottom. When the depth becomes less than about half the wave's wavelength, the bottom part of the wave experiences friction and slows down, causing the wave to steepen. This is accompanied by a decrease in wavelength and an increase in wave height, a process known as shoaling. Eventually, this leads to the wave breaking when the wave steepness reaches a certain limit; commonly, this limit is when the wave height is one-seventh the wavelength.
16. When a reaction is at equilibrium
a. The forward reaction rate is equal to zero
b. The forward reaction rate is slower than the reverse reaction rate
C. The reverse reaction rate is equal to zero
d. The forward reaction rate is equal to the reverse reaction rate
Final answer:
At equilibrium, the forward reaction rate equals the reverse reaction rate, indicating a dynamic balance where the concentrations of reactants and products remain constant.So,option d. The forward reaction rate is equal to the reverse reaction rate is correct.
Explanation:
When a reaction is at equilibrium, the forward reaction rate is equal to the reverse reaction rate. This state is achieved when the rate of the forward reaction decreases and becomes constant while, simultaneously, the rate of the reverse reaction increases and becomes constant, reaching a point where both rates are equal. This equilibrium indicates that the concentrations of reactants and products remain constant over time, illustrating a dynamic balance between the forward and reverse processes.
If the ratio of the length of a rectangle to its width is 3 to 2, what is the
length of a rectangle whose width is 4 inches?
The length of a rectangle with a width of 4 inches and a length-to-width ratio of 3:2 is 6 inches.
If the ratio of the length of a rectangle to its width is 3 to 2, and if the width of the rectangle is 4 inches, we can set up a proportion to find the length. Using the ratio 3:2, we can write 3/2 = L/4, where L is the length of the rectangle we want to find. By cross-multiplying, we get 3 * 4 = 2 * L, which simplifies to 12 = 2L. Dividing both sides by 2, we find that L = 6 inches.
So, the length of the rectangle is 6 inches.
School Math. Homework.
Six. Mental Half
Cruel. Abuse Of
Hours. To. My
Of. Humans Energy wasted on random knowledge
Are
Lives
In the name of Jesus why does school exist
Answer:
The answer is TRUE!!!
Explanation:
Please mark brainliest... btw try online school... you can do the easiest thing such as: learning photography, basic drawling, digital art and design, web design, painting for beginers, fitness, etc.
Which of these gives a correct trend in ionization energy
Answer:
C. I, III , IV
Explanation:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
Ionization energy increases across a period and decreases down a group on the periodic table due to changes in atomic radius and nuclear charge. Successive ionization energies for a single element also increase because it's harder to remove each successive electron. There is a significant leap in ionization energy when removing a core electron as opposed to a valence electron.
Explanation:The ionization energy of an element is the energy required to remove an electron from a neutral atom. Generally, the ionization energy increases across a period and decreases down a group on the periodic table. This is due to variations in atomic radius and nuclear charge. As you move across a period, atomic radius decreases, while nuclear charge increases, making the electrons more tightly bound to the nucleus, thus increasing ionization energy.
When it comes to successive ionization energies for a single element, it increases as it's harder to remove each successive electron. For instance, when you compare IE₁ for Al and IE₁ for Tl, you will find that IE₁(Tl) < IE₁(Al) because the 6p¹ electron from Tl is easier to remove than the 3p¹ electron from Al.
An important trend to remember is that ionization energy significantly increases when removing a core electron compared to a valence electron due to the greater attraction to the nucleus. As a result, the second ionization energy for sodium, for instance, which removes a core electron, is much higher than its first ionization energy which removes a valence electron.
Learn more about Ionization Energy here:https://brainly.com/question/33907239
#SPJ11
Which of the following elements is an example of metal that is not a transition metal?
Question 19 options:
Hg
Pb
Cu
Ag
What is the atomic mass of uranium
Answer:
238
Explanation:
To find the atomic mass, you add protons and neutrons
Number of Protons: 92
Number of Neutrons: 146
146+92=238
find the mass of sucrose (molecular mass=342) required to be dissolved per 600cm² solution to prepare a semi molar solution.
To prepare a 0.5 M sucrose solution with a volume of 600 cm³, you would need to dissolve 102.6 grams of sucrose.
Explanation:How to Calculate the Mass of Sucrose for a Semi Molar Solution
To prepare a semi molar solution, you first need to understand that "semi molar" implies a 0.5 molar concentration of the solute. Given that the molecular mass of sucrose is 342 g/mol, we can proceed with the calculations.
To prepare a 0.5 M solution, 0.5 moles of sucrose per liter of solution are needed. Since the density of a sucrose solution is not provided, we will assume the density of water for this example, which is 1 g/cm³, making 600 cm³ of solution equivalent to 600 mL or 0.6 L.
Now, we calculate the number of moles of sucrose required as follows:
Number of moles = Molarity × Volume in liters = 0.5 mol/L × 0.6 L = 0.3 moles of sucroseFinally, to find the mass of sucrose:
Mass of sucrose = Number of moles × Molar mass = 0.3 moles × 342 g/mol = 102.6 grams of sucroseTherefore, to prepare a semi molar (0.5 M) solution, you would need to dissolve 102.6 grams of sucrose in 600 cm³ of solution.
Final answer:
To make a 0.5 M sucrose solution with a volume of 600 cm³, 102.6 grams of sucrose, which has a molar mass of 342, must be dissolved.
Explanation:
The question is about finding the mass of sucrose needed to prepare a semi molar solution, assuming semi molar refers to 0.5 M (molar concentration). Since the molecular mass of sucrose is given as 342, to prepare 600 cm³ (which is equivalent to 0.6 L) of a 0.5 M solution, the number of moles needed will be 0.5 moles/L × 0.6 L = 0.3 moles of sucrose. To find the mass of sucrose, we will multiply the number of moles by the molar mass:
Mass of sucrose = Number of moles × Molar mass
= 0.3 moles × 342 g/mole
= 102.6 g
Therefore, to prepare the desired semi molar solution, 102.6 grams of sucrose should be dissolved in 600 cm³ of solution.
When the sun impacts weather, an interaction with the __________ takes place.
atmosphere
biosphere
geosphere
hydrosphere
hint not atmosphere
Final answer:
The hydrosphere is the Earth's water system that interacts with the sun to influence weather patterns through the water cycle, including evaporation and condensation.
Explanation:
When the sun impacts weather, an interaction with the hydrosphere takes place. It is essential to understand that the hydrosphere, which includes all the Earth's water, is not an isolated system but interacts dynamically with other global systems such as the atmosphere, lithosphere, and biosphere. These interactions are part of what is known as the water cycle.
The sun is the primary energy source driving the water cycle by heating water in the hydrosphere, causing it to evaporate. When water vapor cools, it condenses, forming clouds and eventually falling back to Earth as precipitation, such as rain or snow. This continuous movement of water through the hydrosphere and the energy changes accompanying it significantly influence weather patterns on Earth.
Understanding these physical processes is key to studying the intricate and interdependent nature of Earth's systems, which collectively impact our global climate and environment. The hydrosphere, being a critical component of Earth's systems, plays a central role in weather and climate regulation due to its interaction with the sun's energy.
Calculate the molarity of solution given the following information: 10.0 g of NaOH were dissolved in 500.0 mL of solution. 0.020 M 0.500 M 5.00 M 20.0 M
Answer: 0.5M
Explanation: see attachment for explanation. Thanks!
Final answer:
The molarity of a solution prepared by dissolving 10.0 g of NaOH in 500.0 mL of solution is 0.500 M.
Explanation:
To calculate the molarity of a solution, we need to know the amount of solute in moles and the volume of the solution in liters. The question provides the mass of sodium hydroxide (NaOH) and the volume of the solution.
Solution
Before we start, we must convert the given mass of NaOH to moles using its molar mass, which is 40.00 g/mol:
10.0 g NaOH × (1 mol NaOH / 40.00 g NaOH) = 0.250 mol NaOH
Convert the volume of solution from milliliters to liters:
500.0 mL × (1 L / 1000 mL) = 0.500 L
Use the definition of molarity (M):
Molarity (M) = moles of solute / liters of solution
M = 0.250 mol / 0.500 L = 0.500 M
What subatomic particle does the atomic number identify?
Answer: proton
Explanation:
Why is it important that scientific knowledge changes?
Answer:
Scientific knowledge can change because it is often examined and re-examined by new investigations and scientific argumentation but because of these frequent examinations, scientific knowledge becomes stronger, leading to its durability. Scientific knowledge is durable and robust, but open to change.
The importance of scientific knowledge changing lies in the fact that it represents the evolving nature of science, allowing us to deepen our understanding of the natural world, undergo paradigm shifts, and build cumulatively on previous knowledge.
It is important that scientific knowledge changes because science is a continuous, self-correcting process that develops our understanding of the natural world. Paradigm shifts, such as those identified by Thomas Kuhn, indicate radical changes in scientific thought that enable fresh understandings and advancements. For instance, rather than discarding Gregor Mendel's laws of inheritance upon learning how genes control traits, scientists expanded the framework, illustrating that knowledge is cumulative and subject to refinement as new discoveries emerge.
Debate and skepticism are inherent aspects of the scientific method and are crucial for validating and improving upon established ideas. This democratic nature ensures that the best data and theories prevail. Consequently, scientific progress is advanced as new findings are built upon the foundations laid by past research, allowing us to develop a larger, more accurate picture of our world and universe.
Furthermore, recognizing that scientific models are mental constructs subject to change, empowers us to remain flexible and receptive to new evidence while appreciating that some scientific knowledge can stand the test of time, providing continuity amid change.
Which are abiotic factors?
Question 15 options:
A. sunlight, climate, water, air, and insects
B. temperature, soil, water, flowers and air
C. sunlight, temperature, soil, trees, and bacteria
D. sunlight, climate, soil, water, and air
Answer:
D. sunlight, climate, soil, water, and airExplanation:
Did you know? An ecosystem is defined as any community of living and non-living things that work together. Ecosystems do not have clear boundaries, and it may be difficult to see where one ecosystem ends and another begins. In order to understand what makes each ecosystem unique, we need to look at the biotic and abiotic factors within them. Biotic factors are all of the living organisms within an ecosystem. These may be plants, animals, fungi, and any other living things. Abiotic factors are all of the non-living things in an ecosystem.
Help this answer can help you :)
Sunlight, climate, soil, water, and air are the abiotic factors. Therefore, option D is correct.
What are abiotic factors ?Abiotic components, also known as abiotic factors, are non-living chemical and physical elements of the environment that have an impact on living organisms and the functioning of ecosystems. Biology is supported by abiotic factors and the phenomena associated with them.
Abiotic factors include sunlight, air, precipitation, minerals, and soil. These variables have a significant impact on species survival and reproduction in an ecosystem.
An abiotic factor is a non-living component of an ecosystem that influences its surroundings. Temperature, light, and water are some examples in a terrestrial ecosystem. Abiotic factors in a marine ecosystem include salinity and ocean currents.
Thus, option D is correct.
To learn more about the abiotic factor, follow the link;
https://brainly.com/question/29773665
#SPJ6
Should hydrogen be classified as a member of group 1, group 17, or is it unique? Explain your reasoning behind your choice.
Answer:
Honestly, while Hydrogen appears to be in group 1, it really isn't. It is unique, and has no characteristics similar to others, especially to the alkali metals in group 1 and halogens in group 17.
Hydrogen only shares one thing with alkali metals. It has one electron in the outermost shell, and has a valency of one. As far as halogens go, Hydrogen is a reducing agent, and halogens are known for being oxidizing agents.
So, I can say that more research needs to be done on Hydrogen. In the meantime, it is quite unique. Thanks!
consists of two or more different types of atoms bonded together. is a combination of different substances that can be separated by physical means. varies according to the amount of water present. has fixed definite proportions at all times. depends on the temperature.
Answer:
1. A molecule
2. A mixture
3. Concentration
4. Chemical formula
5. Kinetic energy
Explanation:
1. A molecule consists of two or more different types of atoms bonded together.
For this question, it's important to understand that we cannot be too abstract and use terms, such as compound. The reason is simple: molecules consist of atoms, and while molecules produce compounds, the latter can also be ionic. Ionic compounds would contain ions in them rather than atoms. In ionic compounds, electrons are transferred from one atom to the other to form cations and anions.
Molecules, on the other hand, consist of atoms. In fact, those atoms shouldn't necessarily be different: for example, we may have an oxygen gas molecule which consists of two oxygen atoms.
2. A mixture is a combination of different substances that can be separated by physical means.
Usually, mixtures are in the same physical state, for example, we may have a mixture of an aqueous layer, such as water, and an organic layer, such as hexane. In order to separate them, we might use a separation funnel, as water is polar and hexane is non-polar, they will form two separate layers. Collecting the bottom layer in a separate flask from the funnel and then the remaining layer will help us separate them based on their difference in polarity.
3. Many variables in chemistry depend on the amount of water present. Water is a solvent. One of the typical examples is concentration. Concentration, or molarity, is a ratio between the moles of a solute and the volume of a solution. Changing the amount of water would change the concentration of a solute as a result.
E. g., if we evaporate water, our solvent, from a specific solution, the concentration of a solute will increase, as we'll have the same amount of a solute in moles for a lower volume of a solution. Similarly, if we dilute the solution (increase the volume of it by adding more water), the volume will increase and we'll have the same amount in moles of the solute for a greater amount of the solution, so the concentration will decrease.
4. A chemical formula has fixed definite proportions at all times. Regardless of what mass of a compound we have, according to the law of definite proportions, atoms always combine in a fixed ratio in compounds. For example, we know that we would always have two hydrogen atoms and one oxygen atom in a water molecule regardless of what mass of water we have.
Similarly, if we remember ionic compounds, if we take sodium chloride, NaCl, the ionic ratio between sodium and chloride ions is always 1 : 1 (one sodium cation combined with one chloride anion). This is fundamentally true and it's independent of any quantity.
5. Similarly, this is an open question. A typical answer to this would be kinetic energy. Kinetic energy only depends on temperature of a substance. Kinetic energy is the energy of movement: the greater it is, the greater the velocity of an object.
The greater the temperature, the higher the kinetic energy. This direct proportionality is seen from the equation [tex]E_k = \frac{3}{2} kT[/tex], where k is a constant and T is the absolute temperature. Notice that for higher T values, the kinetic energy term is higher.
Thinking about it from the other perspective, density, as another example, also depends on temperature. The greater the temperature, the greater the distances between the molecules, so the density decreases with an increase in temperature.
There are many more thermodynamic examples to look at as well!
7. Air in a refrigeration system causes which of the follow-
ing problems?
A. Acid buildup
B. Moisture
C. Copper plating
D. All of the above
Answer:
Air in a refrigeration system causes All of the above problems.
Explanation:
The acid build up is basically seen when the circuit system comes in contact with air, moisture, more heat, various contaminants and also various impurities which enhances the chemical reaction helps in making of acid. Moisture is found when the warm air comes in contact with the cooling system inside the refrigerator. It basically occurs if the defrost condition not working properly. Copper plating is the compressors metal parts that has been coated with the copper when this comes in contact with air leads to corrosion.
how are the elements organized on the periodic table
Answer: By atomic number
Answer:
According to the atomic number or number of proton
Explanation:
in class 1500 students 1200 present find absent percentage
Answer: it is easiest if you first find the percent of people present. To do this, divide 1200/1500. This equals 80%. If there is 80% of students present, there needs to be 20% of students absent because it is out of 100% of students
Answer:
20%
Explanation:
Total number of students = 1500
Number of students present = 1200
Number of students absent = Total number of students - number of students present
Number of students absent = 1500 - 1200 =300
%number of students absent = 300 / 1500 * 100 = 20%
Does an apple that is falling from a tree have just PE, just KE, or both? Explain
Answer & Explanation:
Take, for example, an apple tree. ... When an apple falls from the tree to the ground, its energy of position (stored as gravitational potential energy) is converted to kinetic energy, the energy of motion, as it falls. When the apple hits the ground, kinetic energy is transformed into heat energy.
Three bags containing different number of wooden cubes are dropped from the same height. Which of the following statements is true?
A) Bag A has more kinetic energy than Bag C as it falls
B) Bag C has the most kinetic energy before it was release
C) Bag B has less kinetic energy than Bag A as it falls.
D) Bag A has the least potential energy when it is dropped
Answer:
I don't have the number of cubes in each bag, but whichever bag had the most cubes would have the most kinetic energy as it falls
Wave Properties
Instruction Active
Calculating Frequency
Quick
Check
A hummingbird can flutter its wings 4,800 times per minute.
What is the frequency of wing flutters per second?
flutters/second
What is the period for one wing flutter in seconds?
Answer:
f = 80 flutter/ second
T= 0.0125 sec
Explanation:
Given data:
Fluttering of wings = 4800 time per minute
Frequency of wings = ?
Period for one wing in sec = ?
Solution:
There are 60 seconds in one minute, thus frequency of wings
4800/60 = 80 flutter per second
Period:
T = 1/f
T = 1/80
T= 0.0125 sec
Answer:
flutters per second is 80 and the period is 0.013.
Explanation:
i just took the test.
Low energy waves have (3 points)
a short wavelength
a long wavelength
neither a short nor a long wavelength
no waves
Answer:
Low energy waves have a long wavelength.
Explanation:
Energy of wave is directly related to the frequency while it is inversely proportional to the wavelength.
If any wave have high energy it will have high frequency and smaller wavelength.
If the wave have lower energy then it will have lower frequency and higher wavelength.
Mathematical relationship:
E = h. f
E = h. c/λ
E= energy
h = planck's constant
f = frequency
c = speed of light
λ = wavelength
question is in the picture
Answer:
repelled
Explanation:
like charges repel one another
3. How do scientists determine whether a chemical reaction releases or stores energy?
A. Scientists can calculate the bond energies of the reactants and the products.
B
. Scientists compare the total bond energies of the reactants and the products.
C. Scientists know that each chemical has its own unique bond energy.
D. All of the above
Answer:
D)All of the above
Explanation: