Final answer:
To find the height of a cylinder with a given surface area and radius, use the formula for the surface area of a cylinder. In this case, the height is approximately 4 inches.
Explanation:
Surface Area of a Cylinder Formula: S = 2πrh + 2πr²
Given: surface area = 408.41 sq in, radius = 5 in
Plug in the values: 408.41 = 2π(5)h + 2π(5)²
Solve for height: h = (408.41 - 50π) / 10π ≈ 4 in
Therefore, the height of the cylinder is approximately 4 inches.
In which interval centered at the mean do 75% of the values drawn from this normal distribution lie? A) [33.7, 64.7] B) [37.7, 60.7] C) [40.7, 57.7] D) [43.7, 54.7]
Answer:
The Answer Is D
Step-by-step explanation:
I Juss Took It
What are the coordinates for this point?
Point D
Answer:
(-4, 0)
Step-by-step explanation:
We just need to identify where it is on both the x and y axis!
X Axis - Horizontal middle line.
Y Axis - Vertical middle line.
On the x-axis, you can see it is at -4, therefore we know our x is that.
On the y-axis, you can see it hasn't gone up or down from the vertex, showing us that it has neither gone up or down, so it is 0!
Carol constructed a cube and marked each face with a number.
She marked the faces with the numbers 1, 2, 2, 3, 3, and 4. If she
rolls the cube twice, what is the probability that the sum of the
numbers will be exactly 7?
9514 1404 393
Answer:
1/9
Step-by-step explanation:
Carol can roll a total of 7 in two ways: 3 +4 or 4 + 3.
Two of the six faces are marked with 3, so the probability of rolling a 3 is 2/6 = 1/3. One of the six faces is marked with 4, so the probability of rolling a 4 is 1/6.
Then the probability of rolling a 3, then 4 is (1/3)(1/6) = 1/18. Similarly, the probability of rolling a 4, then 3 is (1/6)(1/3) = 1/18. These are presumed independent so the probability of one or the other of these outcomes is ...
1/18 +1/18 = 1/9
The probability that the sum is exactly 7 after two rolls is 1/9.
A shirt regularly priced at 36.00$ was on sale for 25% off. What was the sale price?
A.9.00$
B.24.00$
C.27.00$
D.48.00$
E. None correct
Answer:$27
Step-by-step explanation:
cost price(cp)=$36
Percentage off=25
sale price=sp
Percentage off=(cp-sp)/cp x 100
25=(36-sp)/36 x 100
Cross multiplying we get
25x36=100(36-sp)
900=100(36-sp)
Divide both sides by 100 we get
900/100=100(36-sp)/100
9=36-sp
Collect like terms
sp=36-9
sp=27
In an electronics store, a $75 iPod is labeled, "Save 15%." What is the sale price of the pod
Answer:
$ 63.75
Step-by-step explanation:
Final answer:
The sale price of a $75 iPod with a 15% discount is calculated by determining the discount amount ($11.25) and subtracting it from the original price, resulting in a sale price of $63.75. A similar calculation method is used to find the total cost of an $85 jacket with 7.5% sales tax, totaling $91.38.
Explanation:
To calculate the sale price of an iPod that originally costs $75 with a 15% discount, we first need to calculate the amount of the discount. To do this, multiply the original price of $75 by the discount rate of 15%.
$75 × 0.15 = $11.25
Now, subtract the discount from the original price to find the sale price:
$75 - $11.25 = $63.75
So, the sale price of the iPod is $63.75.
To illustrate using a similar example, let's imagine Emily purchased a jacket for $85 and needs to calculate the total cost including a 7.5% sales tax. First, find the amount of the sales tax by multiplying the cost of the jacket by the tax rate:
$85 × 0.075 = $6.38
Then, add the sales tax to the original price of the jacket to find the total cost:
$85 + $6.38 = $91.38
Therefore, the total cost of the jacket, including tax, is $91.38.
Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative hypotheses, test statistic, P-value, and state the final conclusion that addresses the original claim. A safety administration conducted crash tests of child booster seats for cars. Listed below are results from those tests, with the measurements given in hic (standard head injury condition units). The safety requirement is that the hic measurement should be less than 1000 hic. Use a 0.05 significance level to test the claim that the sample is from a population with a mean less than 1000 hic. Do the results suggest that all of the child booster seats meet the specified requirement?
Answer:
Step-by-step explanation:
The question is incomplete. The missing part is shown in the comment box.
Mean = (697 + 759 + 1266 + 621 + 569 + 432)/6 = 724
Standard deviation = √(summation(x - mean)²/n
n = 6
Summation(x - mean)² = (697 - 724)^2 + (759 - 724)^2 + (1266 - 724)^2+ (621 - 724)^2 + (569 - 724)^2 + (432 - 724)^2 = 415616
Standard deviation = √415616/6 = 263.2
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
µ ≤ 1000
For the alternative hypothesis,
µ > 1000
It is a right tailed test.
Since the number of samples is small and no population standard deviation is given, the distribution is a student's t. The test statistic, t would be calculated with the formula below
Since n = 6
Degrees of freedom, df = n - 1 = 6 - 1 = 5
t = (x - µ)/(s/√n)
Where
x = sample mean = 724
µ = population mean = 1000
s = samples standard deviation = 263.2
t = (724 - 1000)/(263.2/√6) = - 2.57
We would determine the p value using the t test calculator. It becomes
p = 0.025
From the t distribution table, the critical value is 2.571
Since alpha, 0.05 > than the p value, 0.025, then we would reject the null hypothesis.
Therefore, at a 5% level of significance, the results do not suggest that all of the child booster seats meet the specified requirement.
The results suggests that the safety requirement for the hic measurement should be more than 1000 hic.
If you roll a dice three times what is the probability of rolling an odd number each time
Answer:
3/6
Step-by-step explanation:
there are 6 sides: 3 odd and 3 even numbers
if you need to find the probability of rolling an odd number, take the number of odd possibilities and form a fraction with the number of total sides, 6.
so, 3/6 Or 1/2
Answer:
It would most likely be a 3 out of 6 chance per roll
Step-by-step explanation
With each roll there is a 50% percent chance of getting an odd number
A 100-foot rope from the top of a tree house to the ground forms a 45∘ angle of elevation from the ground. How high is the top of the tree house? Round your answer to the nearest tenth of a foot.
Answer:
The height of tree house is 70.71 feet
Step-by-step explanation:
We are given that A 100-foot rope from the top of a tree house to the ground forms a 45∘ angle of elevation from the ground
Refer the attached figure
Length of rope AC = Hypotenuse =100 feet
The top of a tree house to the ground forms a 45∘ angle of elevation from the ground =[tex]\angle ACB = 45^{\circ}[/tex]
We are supposed to find the height of tree house i.e.AB = Perpendicular
So, Using trigonometric ratio
[tex]Sin \theta = \frac{perpendicular}{Hypotenuse}\\Sin 45= \frac{AB}{AC}\\\frac{1}{\sqrt{2}}=\frac{AB}{100}\\100 \times \frac{1}{\sqrt{2}}=AB\\70.71=AB[/tex]
Hence The height of tree house is 70.71 feet
PLEASE I WILL GIVE BRAINLIEST!
Which of the following shows 7 + (x + 4y) rewritten using the Associative Property of Addition?
7 + x + 4y
7x + (4 + y)
(7 + x) + 4y
x + (7 + 4y)
Answer:
7 + x + 4y
(7 + x) + 4y
x + (7 + 4y)
Step-by-step explanation:
the sum of elements does not change, no matter the order.
g According to the U.S. Census Bureau, 11% of children in the United States lived with at least one grandparent in 2009 (USA TODAY, June 30, 2011). Suppose that in a recent sample of 1630 children, 228 were found to be living with at least one grandparent. At a 5% significance level, can you conclude that the proportion of all children in the United States who currently live with at least one grandparent is higher than 11%? Use both the p-value and the critical-value approaches.
Final answer:
At a 5% significance level, we can conclude that the proportion of all children in the United States who currently live with at least one grandparent is higher than 11%. Both the p-value and critical-value approaches lead to the same conclusion.
Explanation:
To determine whether the proportion of all children in the United States who currently live with at least one grandparent is higher than 11%, we will perform a hypothesis test using both the p-value and the critical-value approaches.
P-Value Approach:
The null hypothesis (H0) is that the proportion is equal to 11%, while the alternative hypothesis (Ha) is that the proportion is greater than 11%.We will calculate the sample proportion: p = 228/1630 = 0.1399.We will calculate the standard error of the proportion: SE = sqrt((0.11 * (1 - 0.11)) / 1630) = 0.0083.We will calculate the z-score: z = (0.1399 - 0.11) / 0.0083 = 3.5542.Using a significance level of 0.05, the critical value for a one-tailed test is approximately 1.645.Since the z-score of 3.5542 is greater than the critical value of 1.645, we reject the null hypothesis.The p-value associated with the test statistic is less than 0.0001, indicating strong evidence against the null hypothesis.Therefore, we can conclude at a 5% significance level that the proportion of all children in the United States who currently live with at least one grandparent is higher than 11%.Critical-Value Approach:
Using a significance level of 0.05, the critical value for a one-tailed test is approximately 1.645.The test statistic, z = (0.1399 - 0.11) / 0.0083 = 3.5542.Since the test statistic is greater than the critical value, we reject the null hypothesis.Therefore, we can conclude at a 5% significance level that the proportion of all children in the United States who currently live with at least one grandparent is higher than 11%.What is the
numerator of the
fraction 3/5
Which shows the graph of the solution set of 6x + 4y < 12? On a coordinate plane, a dashed straight line has a negative slope and goes through (0, 3) and (3, 1). Everything below and to the left of the line is shaded. On a coordinate plane, a dashed straight line has a negative slope and goes through (0, 3) and (3, 1). Everything above and to the right of the line is shaded. On a coordinate plane, a dashed straight line has a negative slope and goes through (0, 3) and (2, 0). Everything to the left of the line is shaded. On a coordinate plane, a dashed straight line has a negative slope and goes through (0, 3) and (2, 0). Everything to the right of the line is shaded.
Answer:
(c) On a coordinate plane, a dashed straight line has a negative slope and goes through (0, 3) and (2, 0). Everything to the left of the line is shaded.
Step-by-step explanation:
You want a description of the graph of 6x +4y < 12.
InterceptsThe x-intercept will be the solution to ...
6x = 12 ⇒ x = 2, point (2, 0)
The y-intercept will be the solution to ...
4y = 12 ⇒ y = 3, point (0, 3)
ShadingThe form of the inequality ...
x < ( )
tells you the shading is left of the line, and the line is dashed. That is, solution set values of x are less than those on the line. The "or equal to" case is not included, so the line is not included in the solution set.
Find positive numbers x and y satisfying the equation xyequals15 such that the sum 3xplusy is as small as possible. Let S be the given sum. What is the objective function in terms of one number, x? Sequals nothing (Type an expression.) The interval of interest of the objective function is nothing. (Simplify your answer. Type your answer in interval notation.) The numbers are xequals nothing and yequals nothing. (Type exact answers, using radicals as needed.)
Answer:
[tex]x = \sqrt{5}\\\\y = \frac{15}{ \sqrt{5} }[/tex]
Step-by-step explanation:
According to the information of the problem
[tex]xy = 15[/tex]
And
[tex]S = 3x+y[/tex]
If you solve for [tex]y[/tex] on the first equation you get that
[tex]y = {\displaystyle \frac{15}{x}}[/tex]
then you have that
[tex]S = {\displaystyle 3x + \frac{15}{x} }[/tex]
If you find the derivative of the function you get that
[tex]S' = {\displaystyle 3 - \frac{15}{x^2}} = 0\\[/tex]
The equation has two possible solutions but you are looking for POSITIVE numbers that make [tex]S[/tex] as small as possible.
Then
[tex]x = \sqrt{5}\\\\y = \frac{15}{ \sqrt{5} }[/tex]
Look at the three-dimensional figure.
The volume of the prism is the amount of space
the figure
120 cubes fit inside the prism, so the figure has a
volume of square units.
5 units
4 units
6 units
Answer:
Step-by-step explanation:
the volume of the prism is the amount of space inside the figure.
120 cubes fit inside the prism, so the figure has a volume of 120 square unite
Answer:
1. B 2. C
Step-by-step explanation:
The SAT is an exam that is used by many universities for admission. Suppose that the scores on the SAT mathematics exam have a normal distribution with mean 500 and standard deviation of 100. The statistics department identified students scoring in the top 4% of the SAT mathematics exam for recruitment. About what is the cutoff score for recruitment by the statistics department
Answer:
The cutoff score for recruitment by the statistics department is 675.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 500, \sigma = 100[/tex]
Cutoff score for the top 4%.
100-4 = 96th percentile, which is X when Z has a pvalue of 0.96. So X when Z = 1.75.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.75 = \frac{X - 500}{100}[/tex]
[tex]X - 500 = 1.75*100[/tex]
[tex]X = 675[/tex]
The cutoff score for recruitment by the statistics department is 675.
The SAT math scores have a mean of 500 and a standard deviation of 100, and using the z-score for the 96th percentile (approximately 1.75), we calculate the cutoff score.
The SAT mathematics exam scores are normally distributed with a mean (μ) of 500 and a standard deviation (σ) of 100. To find the cutoff score for the top 4%, we need to determine the z-score that corresponds to the 96th percentile (since 100% - 4% = 96%).
Using a z-table or calculator, the z-score for the 96th percentile is approximately 1.75. We can use the formula for the z-score:
Z = (X - μ) / σ
Solving for X (the cutoff score), we get:
1.75 = (X - 500) / 100
X - 500 = 1.75 × 100
X - 500 = 175
X = 675
Therefore, the cutoff score for recruitment by the statistics department is approximately 675. This means students need to score about 675 or higher on the SAT mathematics exam to be in the top 4%.
1/2(x + 1)²- 3
a. What is the "a" value?
b. What is the "h" value?
C. What is the "k" value?
Answer:
a = 1/2h = -1k = -3Step-by-step explanation:
We assume you want to compare your expression to the form ...
a(x -h)² +k
1/2(x +1)² +k
The multiplier outside parentheses is ...
a = 1/2
The horizontal offset inside parentheses is ...
-h = 1
h = -1
The vertical offset outside parentheses is ...
k = -3
Brad bought a 1/3 pound of bag of beans he divided all the beans into two equal size pile how much did each of the piles weigh
Answer: the answer is 2/3
Answer:
3 ounces
Step-by-step explanation:
1/3 of a pound is 6 ounces.
6 divided by 2 is 3.
Each pile of beans weighs 3 ounces.
Consider the population of all 1-gallon cans of dusty rose paint manufactured by a particular paint company. Suppose that a normal distribution with mean μ=6
ml and standard deviation σ=0.2 ml is a reasonable model for the distribution of the variable x = amount of red dye in the paint mixture. Use the normal distribution model to calculate the following probabilities. (Round all answers to four decimal places.)
(a) P(x > 6) =
(b) P(x < 6.2)=
(c) P(x ≤ 6.2) =
(d) P(5.8 < x < 6.2) =
(e) P(x > 5.7) =
(f) P(x > 5) =
Answer:
a) 0.5.
b) 0.8413
c) 0.8413
d) 0.6826
e) 0.9332
f) 1
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 6, \sigma = 0.2[/tex]
(a) P(x > 6) =
This is 1 subtracted by the pvalue of Z when X = 6. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{6-6}{0.2}[/tex]
[tex]Z = 0[/tex]
[tex]Z = 0[/tex] has a pvalue of 0.5.
1 - 0.5 = 0.5.
(b) P(x < 6.2)=
This is the pvalue of Z when X = 6.2. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{6.2-6}{0.2}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a pvalue of 0.8413
(c) P(x ≤ 6.2) =
In the normal distribution, the probability of an exact value, for example, P(X = 6.2), is always zero, which means that P(x ≤ 6.2) = P(x < 6.2) = 0.8413.
(d) P(5.8 < x < 6.2) =
This is the pvalue of Z when X = 6.2 subtracted by the pvalue of Z when X 5.8.
X = 6.2
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{6.2-6}{0.2}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a pvalue of 0.8413
X = 5.8
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{5.8-6}{0.2}[/tex]
[tex]Z = -1[/tex]
[tex]Z = -1[/tex] has a pvalue of 0.1587
0.8413 - 0.1587 = 0.6826
(e) P(x > 5.7) =
This is 1 subtracted by the pvalue of Z when X = 5.7.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{5.8-6}{0.2}[/tex]
[tex]Z = -1.5[/tex]
[tex]Z = -1.5[/tex] has a pvalue of 0.0668
1 - 0.0668 = 0.9332
(f) P(x > 5) =
This is 1 subtracted by the pvalue of Z when X = 5.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{5-6}{0.2}[/tex]
[tex]Z = -5[/tex]
[tex]Z = -5[/tex] has a pvalue of 0.
1 - 0 = 1
Summary of probabilities
[tex](a)\ P(x > 6) = 0.5\\(b)\ P(x < 6.2) = 0.8413\\(c)\ P(x \leq 6.2) = 0.8413\\(d)\ P(5.8 < x < 6.2) = 0.6826\\(e)\ P(x > 5.7) = 0.9332\\(f)\ P(x > 5) \approx 1\\[/tex]
(a) [tex]\(P(x > 6)\)\\[/tex]
1. Calculate the z-score for [tex]\(x = 6\)[/tex] :
[tex]\[ z = \frac{6 - 6}{0.2} = \frac{0}{0.2} = 0 \][/tex]2. Find [tex]\(P(Z > 0)\)[/tex] :
Since the standard normal distribution is symmetric, [tex]\(P(Z > 0) = 0.5\)[/tex]So, [tex]\(P(x > 6) = 0.5\)[/tex](b) [tex]\(P(x < 6.2)\)[/tex]
1. Calculate the z-score for [tex]\(x = 6.2\)[/tex] :
[tex]\[ z = \frac{6.2 - 6}{0.2} = \frac{0.2}{0.2} = 1 \][/tex]2. Find [tex]\(P(Z < 1)\)[/tex]:
Using the Z-table, [tex]\(P(Z < 1) = 0.8413\)[/tex]So, [tex]\(P(x < 6.2) = 0.8413\)[/tex](c) [tex]\(P(x \leq 6.2)\)[/tex]
For continuous distributions, [tex]\(P(x \leq 6.2) = P(x < 6.2)\)[/tex]So, [tex]\(P(x \leq 6.2) = 0.8413\)[/tex](d) [tex]\(P(5.8 < x < 6.2)\)[/tex]
1. Calculate the [tex]\(z\)[/tex]-score for [tex]\(x = 5.8\):[/tex]
[tex]\[ z = \frac{5.8 - 6}{0.2} = \frac{-0.2}{0.2} = -1 \][/tex]2. Calculate the [tex]\(z\)[/tex]-score for [tex]\(x = 6.2\):[/tex]
[tex]\[ z = \frac{6.2 - 6}{0.2} = \frac{0.2}{0.2} = 1 \][/tex]3. Find [tex]\(P(Z < 1)\)[/tex] and [tex]\(P(Z < -1)\):[/tex]
[tex]\[ P(Z < 1) = 0.8413 \][/tex][tex]\[ P(Z < -1) = 0.1587 \][/tex]4. Calculate [tex]\(P(-1 < Z < 1)\):[/tex]
[tex]\[ P(-1 < Z < 1) = P(Z < 1) - P(Z < -1) = 0.8413 - 0.1587 = 0.6826 \][/tex]So, [tex]\(P(5.8 < x < 6.2) = 0.6826\)[/tex](e) [tex]\(P(x > 5.7)\)[/tex]
1. Calculate the [tex]\(z\)[/tex]-score for [tex]\(x = 5.7\):[/tex]
[tex]\[ z = \frac{5.7 - 6}{0.2} = \frac{-0.3}{0.2} = -1.5 \][/tex]2. Find [tex]\(P(Z > -1.5)\):[/tex]
Using the Z-table, [tex]\(P(Z < -1.5) = 0.0668\)[/tex]Thus, [tex]\(P(Z > -1.5) = 1 - 0.0668 = 0.9332\)[/tex]So, [tex]\(P(x > 5.7) = 0.9332\)[/tex](f) [tex]\(P(x > 5)\)[/tex]
1. Calculate the [tex]\(z\)[/tex]-score for [tex]\(x = 5\):[/tex]
[tex]\[ z = \frac{5 - 6}{0.2} = \frac{-1}{0.2} = -5 \][/tex]2. Find [tex]\(P(Z > -5)\):[/tex]
Since [tex]\(z = -5\)[/tex] is far in the tail of the standard normal distribution, [tex]\(P(Z < -5)\)[/tex] is almost 0.Thus, [tex]\(P(Z > -5) \approx 1\)[/tex]So, [tex]\(P(x > 5) \approx 1\)[/tex]A bag contains 20 marbles of which 4 are red what is the probability that a randomly selected marble will be red
Answer:
1/5
Step-by-step explanation:
4 of the 20 marbles are red, so the probability is 4/20 = 1/5.
A large game cube with a four-inch side length is wrapped with shrink wrap. How many square inches of shrink wrap will be used to wrap nine game cubes?
Answer:
864 square inches
Step-by-step explanation:
To solve this problem, first we need to know the area of each side of the cube(since the shrink wrap will cover these sides) :
The area of each side is A=[tex]L^{2}[/tex] where L is the length of the side. In this case, L= 4 inches.
Thus, the area of each side is [tex]A=L^{2}=4^{2} =16[/tex] square inches.
However, the cube has 6 sides so we have to multiply the area of each side by 6, this gives us [tex](16)(6)= 96[/tex] square inches. Thus, we need 96 square inches of shrink wrap for each cube.
Now, we have nine cubes, so we have to multiply those 96 square inches by 9, [tex](96)(9)= 864[/tex].
Thus, we need 864 square inches of shrink wrap to wrap 9 cubes.
9. A small airplane is 60 miles from the airport and is going down for landing with some angle of depression. However its navigation device malfunctions and incorrectly shows the distance to be 65 miles. The dispatcher noticed this mistake and figured out that if airplane continues on its current course, it will end up 16 miles from airport. By how many degrees should dispatcher adjust the airplane heading
Answer:
13.98 degrees
Step-by-step explanation:
Let the airplane be at point A, the airport at point B and the point of overshoot, point C.
If the plane is on path AC and the pilot wants to adjust to the path AB, the angle by which the pilot will adjust the airplane heading is the angle between AB and AC which is A.
Using Cosine Rule
[tex]Cos A=\dfrac{b^2+c^2-a^2}{2bc} \\Cos A=\dfrac{65^2+60^2-16^2}{2(65)(60)} \\Cos A=0.9704\\A=arcCos (0.9704)\\\angle A=13.98^\circ[/tex]
The pilot should adjust the plane's heading by 13.98 degrees.
CAN SOMEONE PLEASE HELP ME WITH THIS QUESTION?
Jason is asked to draw a quadrilateral with the following specifications.
two adjacent angles are acute and congruent
opposite angles are supplementary
Which of the following statements about this quadrilateral is true?
A.
Exactly one quadrilateral exists with the given conditions, and it must be a parallelogram.
B.
More than one quadrilateral exists with the given conditions, and all instances must be isosceles trapezoids.
C.
Exactly one quadrilateral exists with the given conditions, and it must be an isosceles trapezoid.
D.
More than one quadrilateral exists with the given conditions, and all instances must be parallelograms.
Answer:
B. More than one quadrilateral exists with the given conditions, and all instances must be isosceles trapezoids.
Step-by-step explanation:
In a parallelogram, adjacent angles are supplementary. They are only congruent if the parallelogram is a rectangle. In this problem, adjacent angles are both congruent and acute. If this were a triangle, it would guarantee the triangle is isosceles.
The fact that opposite angles are supplementary guarantees that the fourth side of the figure is parallel to the base between the acute angles. That makes the figure an isosceles trapezoid. Unless specific angles and side lengths are specified, the description matches any isosceles trapezoid.
Answer now And I’ll give brainliest!
Micah wants to know the most common style of surfboard used at Breakers Point. He surveys surfers at Breakers Point between 8.00 AM and
12 PM Which of the following statements is true about Micah's survey? Select all that apply.
Answer: C
Step-by-step explanation:
The population for the survey is all people who surf at Breakers Point. And Micah will not get a representative sample. Then the correct options are C and D.
What is the survey?In order to gather information about a service, product, or process, a survey is described as an act of looking at a process or questioning a predetermined sample of people. Surveys used to gather data ask a specific set of people about their beliefs, actions, or knowledge.
Surveys are research techniques used to gather data from a designated group of respondents in order to learn more and acquire insights into a range of interesting topics. Depending on the methodology chosen and the objective of the study, they can be conducted in a variety of methods and serve a variety of objectives.
The population for the survey is all people who surf at Breakers Point. And Micah will not get a representative sample. Then the correct options are C and D.
More about the survey link is given below.
https://brainly.com/question/17373064
#SPJ6
Does this have any solutions -60x+32=32x-60
Answer:
x = 30
Step-by-step explanation:
Alex has five rolls of shelf paper that is 800 cm long.She wants to use the to line the 1-meter wide shelves in her pantry. How many 1-meter wide can she line with the paper?
Answer:
Alex can line eight 1-meter wide with the paper.
Step-by-step explanation:
- Alex has five rolls of shelf paper that is 800cm.
- She wants to use the paper to line the 1-meter wide shelves in her pantry.
- We want to determine how many 1-meter wide she can line with the paper.
- First, we know that
100cm = 1m
- we need to determine how many meters are in 800cm.
100cm = 1m
800cm = xm
100x = 800
x = 800/100
= 8
Therefore, 800cm is equivalent to 8m
Alex can line eight 1-meter wide with the paper.
To determine the number of 1-meter wide shelves Alex can line with the 800 cm long shelf paper, convert the total length to meters and divide by the shelf width. Alex can line 8 shelves with the paper.
To find out how many 1-meter wide shelves Alex can line with the 800 cm long shelf paper, we need to convert the total length of the paper to meters to match the shelf width.
Convert 800 cm to meters: 800 cm = 8 meters
Divide the total length of the paper by the width of each shelf: 8 meters / 1 meter = 8 shelves
Alex can line 8 shelves with the 1-meter wide shelf paper she has.
A poll asked the following question: "If the military draft were reinstated, would you favor or oppose drafting women as well as men?" 45 percent of the 1000 people responding said that they would favor drafting women if the draft were reinstated. Using a 0.05 significance level, carry out a test to determine if there is convincing evidence that fewer than half of adult Americans would favor the drafting of women. (For z give the answer to two decimal places. For P give the answer to four decimal places.)
Answer:
Null hypothesis: H0 = 0.50
Alternative hypothesis: Ha < 0.50
z = -3.16
P value = P(Z<-3.16) = 0.0008
Decision we reject the null hypothesis and accept the alternative hypothesis. That is, there is convincing evidence that fewer than half of adult Americans would favor the drafting of women.
Rule
If;
P-value > significance level --- accept Null hypothesis
P-value < significance level --- reject Null hypothesis
Z score > Z(at 95% confidence interval) ---- reject Null hypothesis
Z score < Z(at 95% confidence interval) ------ accept Null hypothesis
Step-by-step explanation:
Given;
n=1000 represent the random sample taken
Null hypothesis: H0 = 0.50
Alternative hypothesis: Ha < 0.50
Test statistic z score can be calculated with the formula below;
z = (p^−po)/√{po(1−po)/n}
Where,
z= Test statistics
n = Sample size = 1000
po = Null hypothesized value = 0.50
p^ = Observed proportion = 0.45
Substituting the values we have
z = (0.45-0.50)/√{0.50(1-0.50)/1000}
z = -3.16
z = -3.16
To determine the p value (test statistic) at 0.05 significance level, using a one tailed hypothesis.
P value = P(Z<-3.16) = 0.0008
Since z at 0.05 significance level is between -1.96 and +1.96 and the z score for the test (z = -3.16) which doesn't falls with the region bounded by Z at 0.05 significance level. And also the one-tailed hypothesis P-value is 0.0008 which is lower than 0.05. Then we can conclude that we have enough evidence to FAIL or reject the null hypothesis, and we can say that at 5% significance level the null hypothesis is invalid, therefore we accept the alternative hypothesis.
Write an equation and solve this problem: Seventy is what percent of 50?
What is the area of the shaded triangle?
72 mm2
096 mm2
120 mm2
0 150 mm
Answer:
96 on edg
Step-by-step explanation:
Answer:
96mm2 on Edge 2021
It maybe wrong if your not on edge depends on what the teachers think, lol.
evaluate 6ab when a = 1/2 and b = 7
Answer:21
Step-by-step explanation:
To evaluate 6ab with a = 1/2 and b = 7, you multiply 6 by 1/2 to get 3, and then multiply that by 7 to get 21, which is the final answer.
Explanation:To evaluate the expression 6ab when a = 1/2 and b = 7, you substitute the given values for a and b into the expression. This means you would multiply 6 by 1/2 and then by 7. The operation looks like this: 6 × (1/2) × 7.
First, simplify 6 × (1/2), which equals 3. Then multiply this result by 7, giving you 3 × 7 = 21.
Therefore, when a = 1/2 and b = 7, the expression 6ab evaluates to 21.
Stan ran 4 7/10 miles, which was 1 3/10 fewer miles than Matt ran. Four students wrote and solved equations to find m, the number of miles that Matt ran. Which student wrote and solved the equation correctly?
Answer: Miles ran by Matt = 6 miles
Step-by-step explanation: Miles ran by Stan = 4 7/10
i.e. 1 3/10 miles less than Matt.
∴ Miles ran by Matt = 4 7/10 + 1 3/10 = 60/10 = 6miles
∴ Miles ran by Matt = 6 miles
Answer:
The answer is A Mollys work
Step-by-step explanation:
I just did the work, and also it says "Fewer" which is subtraction but you need to change the subtraction to addition. And the answer is 6.
I hope this helps! <Dekomori Sanae(Engilish way to say it)/Sane Dekomori(Japanease way to say it)